ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook Of Aseptic Processing And Packaging

دانلود کتاب کتابچه راهنمای پردازش و بسته بندی آسپتیک

Handbook Of Aseptic Processing And Packaging

مشخصات کتاب

Handbook Of Aseptic Processing And Packaging

دسته بندی: تولید مواد غذایی
ویرایش: 3 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0367724804, 9781000631098 
ناشر: CRC Press | Taylor & Francis Group 
سال نشر: 2023 
تعداد صفحات: 703 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 130 مگابایت 

قیمت کتاب (تومان) : 44,000



کلمات کلیدی مربوط به کتاب کتابچه راهنمای پردازش و بسته بندی آسپتیک: غذا: نگهداری، غذا: بسته بندی، نگهداری مواد غذایی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Handbook Of Aseptic Processing And Packaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتابچه راهنمای پردازش و بسته بندی آسپتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتابچه راهنمای پردازش و بسته بندی آسپتیک

نه سال از انتشار ویرایش دوم کتاب راهنمای پردازش و بسته بندی آسپتیک می گذرد. تغییرات قابل توجهی در چندین منطقه پردازش و بسته بندی آسپتیک رخ داده است. این شامل پر کردن آسپتیک نوشیدنی‌های گیاهی برای قالب‌های غیر یخچالی پایدار برای ماندگاری طولانی‌تر و بسته‌بندی پایدار همراه با هزینه‌های مزایای زیست‌محیطی برای صرفه‌جویی در انرژی و ردپای کربن است. علاوه بر این، بینشی در مورد پردازش ایمن ذرات با استفاده از پردازش حرارتی دو بعدی و سه بعدی و به دنبال خنک‌سازی سریع ارائه می‌شود. در ویرایش سوم، ویراستاران موضوعات معاصر را با اطلاعات ترکیب شده از مقامات معتبر بین المللی در زمینه های خود گردآوری کرده اند. علاوه بر اطلاعات به روز شده، 12 فصل جدید در این آخرین نسخه اضافه شده است با محتوایی در: • طراحی سیستم پردازش آسپتیک و پردازش حرارتی • تجهیزات فرآیند حرارتی و فناوری گرمایش و سرمایش • توزیع زمان جریان و اقامت (RTD) برای سیالات همگن و ناهمگن • فرآیند حرارتی و بهینه سازی پردازش آسپتیک حاوی ذرات جامد • تجهیزات پر کردن و بسته بندی آسپتیک برای محصولات خرده فروشی و خدمات غذایی • طراحی تاسیسات، زیرساخت ها، و تاسیسات • نظافت و ضدعفونی برای عملیات پردازش و بسته بندی آسپتیک • میکروبیولوژی محصولات فرآوری شده و بسته بندی شده به روش آسپتیک • تحلیل ها و روش شناسی های مبتنی بر ریسک • ایجاد \"حالت معتبر\" برای سیستم های پردازش و بسته بندی آسپتیک • سیستم های مدیریت کیفیت و ایمنی مواد غذایی برای تولید آسپتیک و طولانی مدت ماندگاری (ESL). • مدل ها و شبیه سازی های محاسباتی و عددی برای پردازش آسپتیک • همچنین، هفت ضمیمه جدید در مورد اختراعات اصلی، نمونه‌هایی از محاسبات فرآیند حرارتی معمولی، و مطالعات ذرات - ذرات تک ذره و چند نوع، و تشکیل پرونده سازمان غذا و دارو (FDA) وجود دارد. سه ویراستار و 22 مشارکت کننده در این جلد بیش از 250 سال تجربه ترکیبی شامل تولید، نوآوری در پردازش و بسته بندی، تحقیق و توسعه، تضمین کیفیت و انطباق دارند. بینش آنها به روز رسانی جامعی را در مورد این فناوری پیشرفته به سرعت در حال توسعه برای صنعت پردازش مواد غذایی ارائه می دهد. آینده پردازش و بسته‌بندی بدون عفونی غذاها و نوشیدنی‌ها با راحتی و طعم مشتری، استفاده از مواد طبیعی با برچسب تمیز فعلی و جدید، استفاده از فناوری نگهداری چندعاملی یا مانع برای به حداکثر رساندن کیفیت محصول، و بسته‌بندی پایدار با ادعا هدایت خواهد شد. و پیام رسانی


توضیحاتی درمورد کتاب به خارجی

Nine years have passed since the second edition of the Handbook of Aseptic Processing and Packaging was published. Significant changes have taken place in several aseptic processing and packaging areas. These include aseptic filling of plant-based beverages for non-refrigerated shelf-stable formats for longer shelf life and sustainable packaging along with cost of environmental benefits to leverage savings on energy and carbon footprint. In addition, insight into safe processing of particulates using two- and three-dimensional thermal processing followed by prompt cooling is provided. In the third edition, the editors have compiled contemporary topics with information synthesized from internationally recognized authorities in their fields. In addition to updated information, 12 new chapters have been added in this latest release with content on: • Design of the aseptic processing system and thermal processing • Thermal process equipment and technology for heating and cooling • Flow and residence time distribution (RTD) for homogeneous and heterogeneous fluids • Thermal process and optimization of aseptic processing containing solid particulates • Aseptic filling and packaging equipment for retail products and food service • Design of facility, infrastructure, and utilities • Cleaning and sanitization for aseptic processing and packaging operations • Microbiology of aseptically processed and packaged products • Risk-based analyses and methodologies • Establishment of "validated state" for aseptic processing and packaging systems • Quality and food safety management systems for aseptic and extended shelf life (ESL) manufacturing • Computational and numerical models and simulations for aseptic processing • Also, there are seven new appendices on original patents, examples of typical thermal process calculations, and particulate studies—single particle and multiple-type particles, and Food and Drug Administration (FDA) filing The three editors and 22 contributors to this volume have more than 250 years of combined experience encompassing manufacturing, innovation in processing and packaging, R&D, quality assurance, and compliance. Their insight provides a comprehensive update on this rapidly developing leading-edge technology for the food processing industry. The future of aseptic processing and packaging of foods and beverages will be driven by customer-facing convenience and taste, use of current and new premium clean label natural ingredients, use of multifactorial preservation or hurdle technology for maximizing product quality, and sustainable packaging with claims and messaging.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Foreword
Preface
Acknowledgments
Editors
Contributors
PART I Fundamentals and Frontiers, Framework for Regulations, and Marketing
	Chapter 1 Aseptic Processing and Packaging: Fundamentals and Frontiers
		1.1 Introduction
		1.2 Framework and Current State
		1.3 Departures from Optima and Challenges
		1.4 Current and Future Opportunities for Optimization
		1.5 Summary
		References
	Chapter 2 US Federal Regulations for Aseptic Processing and Packaging of Food
		2.1 Introduction
		2.2 US FDA Regulations
			2.2.1 Facility Registration and Product Filing
			2.2.2 Better Process Control School
			2.2.3 Process Authority
			2.2.4 Low-Acid Foods Packaged in Hermetically Sealed Containers
			2.2.5 Pasteurized Milk Ordinance
			2.2.6 Acidified Foods
			2.2.7 Process Filing Forms
			2.2.8 Preventive Controls for Human Foods
			2.2.9 Aseptic Packaging Materials as Indirect Food Additives
		2.3 USDA Regulations
		2.4 Conclusion
		References
	Chapter 3 The US Markets for Aseptically Processed and Packaged Products
		3.1 Development
		3.2 Aseptic Metal Can Market
		3.3 Aseptic Bag-In-Box
		3.4 Aseptic Paperboard Market
		3.5 Aseptic Plastic Cup Market
		3.6 Aseptic Pouch Market
		3.7 Aseptic Plastic Bottle Market
PART II Science and Engineering Aspects of Aseptic Processing and Packaging Technologies
	Chapter 4 Processing System and Thermal Process Design
		4.1 Introduction
		4.2 Aseptic Processing Establishment
			4.2.1 Considerations for Process Calculations
			4.2.2 HACCP and Documentation of Control Points
		4.3 Aseptic Processing Equipment
			4.3.1 Mixing and Cooking Vessel
			4.3.2 Pumps
			4.3.3 Heat Exchangers
				4.3.3.1 Steam Injection or Infusion Heaters
				4.3.3.2 Plate Heat Exchangers
				4.3.3.3 Tubular Heat Exchangers
				4.3.3.4 Scraped Surface Heat Exchangers
				4.3.3.5 Ohmic Heating
				4.3.3.6 Microwave Heating
			4.3.4 Regeneration
			4.3.5 Continuous Holding Tubes
			4.3.6 Controls
			4.3.7 Sterile Surge Tanks, Barrier Seals, and Automatic Valves
				4.3.7.1 Sterile Surge Tanks
				4.3.7.2 Barrier Seals
				4.3.7.3 Valves
			4.3.8 Homogenizers
			4.3.9 Filters
				4.3.9.1 Filter for Gases
				4.3.9.2 Filters for Liquids
		4.4 Utilities
			4.4.1 Formulation Water
			4.4.2 System Sterilization Water
			4.4.3 Heating/Cooling Water
			4.4.4 Refrigerated Water
			4.4.5 Steam
			4.4.6 Air
		4.5 Aseptic Processing Operations
			4.5.1 Presterilization of the Processing System
			4.5.2 Loss of Sterility
			4.5.3 Cleaning
			4.5.4 Preventive Maintenance
		4.6 Concluding Remarks
		Nomenclature
		Bibliography
	Chapter 5 Thermal Processing Equipment for Heating and Cooling
		5.1 Introduction
		5.2 Direct Heating
			5.2.1 Direct Heating–Steam Injection
			5.2.2 Direct Heating–Steam Infusion
		5.3 Flash Evaporative Cooling
		5.4 Indirect Heat Exchangers
			5.4.1 Plate Heat Exchangers
			5.4.2 Tubular Heat Exchanger
				5.4.2.1 Double-Tube Tubular Heat Exchanger
				5.4.2.2 Triple-Tube Heat Exchanger
				5.4.2.3 Multitube Heat Exchanger
				5.4.2.4 Coil Tube Heat Exchangers
			5.4.3 Regeneration
			5.4.4 Scraped Surface Heat Exchanger
		5.5 Advanced Heating and Cooling Technologies
			5.5.1 Advanced Heating Systems
				5.5.1.1 Microwave Heating
				5.5.1.2 Ohmic Heating
			5.5.2 Advances in Cooling Technology
		5.6 Holding Tube
		5.7 Temperature Indicating Device and Temperature Recording Device
		5.8 Automatic Flow Diversion
		5.9 Back Pressure Valve
		5.10 Preproduction System Sterilization
		5.11 Differential Pressure
		5.12 Heat Transfer Media
			5.12.1 Steam
			5.12.2 Hot Water
			5.12.3 Cooling Media
		5.13 Concluding Remarks
		Nomenclature
			Latin Letters
			Greek Letters
			Subscripts
		References
	Chapter 6 Flow and Residence Time Distribution for Homogeneous and Heterogeneous Fluids
		6.1 Basic Considerations of Residence Time and Flow Profile
		6.2 Newtonian Fluids
		6.3 Non-Newtonian Fluids
		6.4 Flows with Particulates
			6.4.1 Residence Time Distribution Measurement of Particulate Flows
			6.4.2 Simulated Particle Design and Application for Conservative (Worst-Case or Cold-Spot Carrier) Validation
				6.4.2.1 Sensors, Data Capture, and Analysis for RTD Calculations
		6.5 Concluding Remarks
		Nomenclature
			Latin Letters
			Greek Letters
			Subscripts
		References
	Chapter 7 Thermal Process and Optimization of Aseptic Processes Containing Solid Particulates
		7.1 Introduction
		7.2 Optimization of Thermal Processes
			7.2.1 Thermal Process of Homogeneous Aseptic Products
			7.2.2 Quality of Aseptic Products
			7.2.3 The HTST Paradigm and Homogeneous Flow Optimization
		7.3 Comparison of Conventional Canning and Aseptic Processing and Packaging of Foods
			7.3.1 Comparison of Conventional Canning and Aseptic Processing and Packaging of Foods
			7.3.2 Some Advantages of Aseptic Processing and Packaging of Foods
				7.3.2.1 Nutritional Quality
				7.3.2.2 Sensory Quality
				7.3.2.3 Sustainability in Storage and Distribution
				7.3.2.4 Package Convenience and Microwaveability
			7.3.3 Comparison of Processing Methods
				7.3.3.1 Pasteurization
				7.3.3.2 Ultra-Pasteurization
				7.3.3.3 Conventional Canning
				7.3.3.4 Refrigerated Aseptic Products
				7.3.3.5 Comparison of Continuous Processing Methods Based on Optimization Hierarchy
		7.4 Aseptic Process Calculations for Particulate Flows
			7.4.1 Calculating Cumulative Thermal Process in Fluids and Particulates
			7.4.2 Thermal Treatments for Heterogeneous Products
		7.5 Aseptic Quality Optimization
			7.5.1 Ingredients
			7.5.2 Batching
			7.5.3 Heating
			7.5.4 Holding Tube
			7.5.5 Cooling
			7.5.6 Aseptic Storage
			7.5.7 Minimizing Shear Damage
		7.6 Aseptic Cost Optimization
			7.6.1 Ingredient Sourcing
			7.6.2 Factorywide Optimization
			7.6.3 Optimal Control Strategies
			7.6.4 Run-Length Extension
		7.7 Future Trends
		Nomenclature
		References
	Chapter 8 Aseptic Filling and Packaging for Retail Products and Food Service
		8.1 Introduction
		8.2 Aseptic Packaging
			8.2.1 Packaging Material
			8.2.2 Retail Packaging
			8.2.3 Packaging for Retail Food Service
			8.2.4 Tamper Proof
		8.3 Sterilizing Mechanisms
			8.3.1 Heat
				8.3.1.1 Wet Heat
				8.3.1.2 Dry Heat
				8.3.1.3 Heat Extrusion Process
			8.3.2 Chemical
			8.3.3 Radiation
				8.3.3.1 Ultraviolet Radiation
				8.3.3.2 Infrared Radiation
				8.3.3.3 Pulsed Light
				8.3.3.4 Cold Plasma
			8.3.4 Irradiation
		8.4 Filler Types
			8.4.1 Retail Fillers
				8.4.1.1 Aseptic Paperboard
				8.4.1.2 Aseptic Plastic Cup
				8.4.1.3 Bottle Packaging
				8.4.1.4 Pouch Packaging
			8.4.2 Aseptic Filler for Food Service
		8.5 Packaging Integrity Test
		8.6 Regulations for Packaging
		8.7 Smart Packaging for Aseptic Products
		8.8 Sustainability in Aseptic Packaging
		References
	Chapter 9 Aseptic Packaging Materials and Sterilants
		9.1 Product Requirements
		9.2 Materials
			9.2.1 Non-Barrier Sheeting
			9.2.2 Barrier Sheeting
		9.3 Sterilizing Agents
			9.3.1 Heat
			9.3.2 Hot Water
			9.3.3 Neutral Aseptic System (NAS
			9.3.4 Chemical Sterilants
			9.3.5 Radiation
		9.4 Packaging Systems
			9.4.1 Dole Aseptic Canning
			9.4.2 Preformed Thermoformed Containers
			9.4.3 Form–Fill–Seal
		9.5 Environmental Considerations
	Chapter 10 Aseptic Bulk Packaging
		10.1 Aseptic Bag-In-Box
		10.2 Aseptic Bulk Container
		10.3 Aseptic Bulk Storage
		10.4 Aseptic Ocean Liner Transportation and Storage
	Chapter 11 Design of Facility, Infrastructure, and Utilities
		11.1 Basic Considerations of Hygienic Design
		11.2 Plant Design and Site Selection
			11.2.1 Exterior Considerations
				11.2.1.1 Landscaping
				11.2.1.2 Exterior Walls
				11.2.1.3 Roof
				11.2.1.4 Loading Docks
				11.2.1.5 Entry Points
			11.2.2 Interior
				11.2.2.1 Floors
				11.2.2.2 Walls
				11.2.2.3 Ceiling
				11.2.2.4 Drains
				11.2.2.5 Equipment Anchoring
				11.2.2.6 Personnel Facilities: Locker Rooms and Bathrooms
			11.2.3 Equipment Design
				11.2.3.1 Materials of Construction
				11.2.3.2 Hygienic Design Standards
		11.3 Zoning and Flow of Materials and Personnel
		11.4 Air-Handling
		11.5 Concluding Remarks
		References
	Chapter 12 Cleaning and Sanitization for Aseptic Processing Operations
		12.1 Introduction
		12.2 Equipment Preparation and Set Up (EPSU
		12.3 Principles of Sanitation
			12.3.1 Principles of Sanitation
			12.3.2 Personal Hygiene
		12.4 CIP (Clean-In-Place
			12.4.1 Flow (Scrubbing or Mechanical Force to Remove the Soil) for UHT Systems
			12.4.2 Chemical Concentration
				12.4.2.1 UHT Processor
				12.4.2.2 Sterile Tank
				12.4.2.3 Fillers
			12.4.3 Time
			12.4.4 Temperature for Cleaning UHT Systems
			12.4.5 For Sterile Tanks
			12.4.6 For Fillers
				12.4.6.1 For ESL Fillers
			12.4.7 Pulsing of Valves
			12.4.8 Ingredients
		12.5 Clean-Out-of-Place (COP
		12.6 SIP (Sterilization-In-Place
		12.7 Aseptic Intermediate Clean (AIC
			12.7.1 Concentration of Chemical
			12.7.2 Sterile Tanks
			12.7.3 Fillers
		12.8 Validation and Verification
			12.8.1 Validation
			12.8.2 Verification
		12.9 Passivation
			12.9.1 Passivation Process
				12.9.1.1 Some Preliminary Considerations
				12.9.1.2 Passivation Process
				12.9.1.3 Cleaning and Passivation
		12.10 Maintenance
			12.10.1 Preventive Maintenance
			12.10.2 Breakdown Maintenance
		12.11 Change Control Management Program (CCM-P
			12.11.1 Program Change
			12.11.2 Ingredient Change
			12.11.3 Procedure Change
			12.11.4 Chemical Change
		12.12 Environmental Cleaning
			12.12.1 Environmental Monitoring
			12.12.2 Air Quality
			12.12.3 Zoning and Segregation
			12.12.4 Other Items
		12.13 Summary
		12.14 Definitions
		12.15 Acronyms
		References
Part III Risk-Based Analyses for Attaining “Validated State” for Production of Commercially Sterile Shelf-Stable Products and Guidance for Quality Assurance, Microbiological Food Safety, and Regulatory Compliance
	Chapter 13 Microbiology of Aseptically Processed and Packaged Products
		13.1 Introduction
		13.2 Microbiological Risks Associated with Aseptically Processed Food
			13.2.1 Food Safety Risks
				13.2.1.1 Spore-Forming Bacterial Pathogens
				13.2.1.2 Non-Spore-Forming Bacterial Pathogens
			13.2.2 Spoilage Risks
				13.2.2.1 Spore-Forming Spoilage Bacteria
				13.2.2.2 Non-Spore-Forming Spoilage Bacteria
				13.2.2.3 Spoilage Fungi
		13.3 Mitigation of the Microbiological Risks Associated with Aseptically Processed Foods
			13.3.1 Thermal Treatment
				13.3.1.1 Kinetics of Microbial Destruction
				13.3.1.2 Industry Standard Thermal Treatments (F-Value Concept
				13.3.1.3 Designing a Thermal Treatment
			13.3.2 Chemical Sterilants
		13.4 Causes of Microbiological Failure in Aseptic Processing and Packaging
			13.4.1 Hermetic Seal Failures
			13.4.2 Failure Caused by Poor Valve Design or Malfunction
			13.4.3 Failure Caused by Poor Design or Inappropriate SIP/CIP Practices for Product Lines
			13.4.4 Failure of Sterile Air Overpressure or Unidirectional Sterile Airflow to Protect Filler
			13.4.5 Failure Due to Plugged Sterilization Nozzles in Aseptic Filler
			13.4.6 Failures Caused by the Presence of Highly Heat-Resistant Microorganisms
			13.4.7 Failure Due to Poor Hydration of Critical Ingredients
			13.4.8 Other Potential Causes of Microbiological Failures and General Observations
		13.5 Summary
		References
	Chapter 14 Risk-Based Analyses and Methodologies
		14.1 Introduction and Background
		14.2 Risk-Based Approach
			14.2.1 Why Do We Need Standardization
				14.2.1.1 Why Do We Need This While It Is Not a Regulatory Requirement in Some Counties/Regions
			14.2.2 What Is The Risk
			14.2.3 Why Do We Need Risk Analyses of the Aseptic Systems
			14.2.4 Risk-Averse Culture Development for Food Systems Should be the Focus of Company-Wide Mission and Vision
		14.3 What Should be the Approach to Mitigate Risks
			14.3.1 Determination of Food Safety Objectives (FSO) as Part of the Risk  Management
				14.3.1.1 What Is The PC and How Do We Calculate the Required Log Reduction
				14.3.1.2 Log Reduction Calculation
		14.4 Systematic Approach is the Key
			14.4.1 Operational Readiness and Risk Management
		14.5 Failure Mode and Effect Analysis
		14.6 Additional Risk Analysis Methodologies
			14.6.1 Statistical Methodologies for the Production Data Analyses and Better Decision-Making
			14.6.2 Preliminary Hazard Analysis (PHA
			14.6.3 Hazard Operability Analysis (HAZOP
			14.6.4 Hazard Analysis and Critical Control Point (HACCP
			14.6.5 Failure Mode Effects and Criticality Analysis
			14.6.6 Fault Tree Analysis (FTA
		14.7 Summary
		Case Studies
		Glossary
		References
	Chapter 15 Establishing “Validated State” of Aseptic Processing and Packaging Systems
		15.1 Introduction
		15.2 Validation Master Plan (VMP
			15.2.1 Microbiological Validation Plan
			15.2.2 Acceptance Criteria
				15.2.2.1 Hydration of Dry Ingredients
				15.2.2.2 Effectiveness of Particle Distribution
				15.2.2.3 Batching Time and Temperature
				15.2.2.4 Aseptic Filler Operations
				15.2.2.5 Aseptic Processing Operations
		15.3 Aseptic System Specifications
			15.3.1 Process Schematic
			15.3.2 P&ID Schematic
			15.3.3 Design Review
			15.3.4 Sterilization, Operation, Clean-in-Place, and Maintenance
		15.4 Factory Acceptance Test
		15.5 Qualification and Commissioning
			15.5.1 Installation Qualification (IQ
			15.5.2 Operational Qualification
				15.5.2.1 Controls Validation
				15.5.2.2 CIP Validation
			15.5.3 Performance Qualification
		15.6 Steps toward “Validated State” of the Aseptic System
			15.6.1 Commercial Sterility and System Operation
			15.6.2 Selection of Surrogate Organism
			15.6.3 UHT Validation
			15.6.4 Aseptic Tank Validation
			15.6.5 Pre-Production Sterilization of Aseptic Filler
			15.6.6 Validation of Aseptic Packaging Material Sterilization
			15.6.7 Conveyor Chain Sterilization Test
			15.6.8 Maintenance of Aseptic Zone Sterility
			15.6.9 Commercial Sterility Test
		15.7 Management of Change (MOC) Program
			15.7.1 Structure of the MOC Program
			15.7.2 Structure of the Committee of MOC
			15.7.3 Impact Assessment of a Change
			15.7.4 Change Request Process
			15.7.5 Change and Urgency Classification
				15.7.5.1 Types of Change
				15.7.5.2 Level of Urgency
			15.7.6 Implementation Plan, Final Disposition, and Closeout
			15.7.7 Conclusion and Recommendations
		15.8 Regulatory Requirements, Filing, and Standards
			15.8.1 Regulations for Aseptic Systems
			15.8.2 Regulatory Filing of Aseptic Lines and Products
			15.8.3 Standards for Aseptic Equipment
		15.9 Summary and Recommendations
		15.10 Frequently Asked Questions
		Glossary
		References
	Chapter 16 Quality and Food Safety Management System (QFSMS) for Aseptic and ESL Manufacturing Companies
		16.1 Introduction
			16.1.1 Concepts
			16.1.2 Quality Control (QC
			16.1.3 Quality Assurance
		16.2 Quality Assurance for Aseptically Processed and Packaged Foods
			16.2.1 Quality and Safety by Design
			16.2.2 Quality and Safety Risk Management
			16.2.3 Corrective and Preventive Action (CAPA
				16.2.3.1 Triggers for CAPA
			16.2.4 Change Control
				16.2.4.1 Need for Change
				16.2.4.2 Leadership Support
				16.2.4.3 Expert Advice
				16.2.4.4 Executing Change Control
				16.2.4.5 Monitoring and Verification
			16.2.5 Process Authority Roles in the Food Industry
				16.2.5.1 Thermal Process Review
			16.2.6 External Certification Schemes (GFSI—BRC, SQF, FSSC2200
		16.3 The Quality Management Systems Model
			16.3.1 Preprocess Assurance
			16.3.2 Raw Materials
			16.3.3 In-Process Assurance
			16.3.4 Postprocess Assurance
			16.3.5 Incubated Product Evaluation
			16.3.6 Shelf-Life Determination and Stability of Aseptic and ESL Products
				16.3.6.1 Storage Protocol
				16.3.6.2 Sensory Analysis
			16.3.7 Microbiological Testing for Sterility and Sample Size Consideration
			16.3.8 Distribution, Handling, and Storage
			16.3.9 ASTM Drop Test
			16.3.10 Cumulative Assurance and Product Release
		16.4 System Requirements for Prerequisite Programs
			16.4.1 Facilities and Equipment
				16.4.1.1 Grounds and Environment
				16.4.1.2 Facility Layout
				16.4.1.3 Production Equipment
				16.4.1.4 Thermal Processing Operations
				16.4.1.5 Aseptic Filling and Packaging Operations
			16.4.2 Utilities
			16.4.3 Inline Inspection Requirements
			16.4.4 Internal Assessments and Auditing
			16.4.5 Human Resources and Personnel Development
				16.4.5.1 Management Responsibility
				16.4.5.2 Plan Creation
				16.4.5.3 Implementation
				16.4.5.4 Review
				16.4.5.5 Sustainability
				16.4.5.6 Summary
		16.5 The Food Safety Management Systems Models
			16.5.1 Hazard Analysis Critical Control Point (HACCP) Program
				16.5.1.1 Principles of HACCP
				16.5.1.2 Categories of Hazards
			16.5.2 Hazard Analysis and Risk-Based Preventive Control
				16.5.2.1 Supporting Programs for Food Safety Management
				16.5.2.2 Process Controls
				16.5.2.3 Current Good Manufacturing Practices
				16.5.2.4 Allergen Program
				16.5.2.5 Sanitation Program
				16.5.2.6 CIP System Validation
				16.5.2.7 Aseptic Intermediate Cleanings (AIC
				16.5.2.8 Recall
				16.5.2.9 Consumer Complaints
				16.5.2.10 Supply Chain
		16.6 Conclusions and Final Recommendations
		Glossary
		References
Part IV Frontiers and R&D Opportunities and Challenges
	Chapter 17 Computational and Numerical Models and Simulations for Aseptic Processing
		17.1 Introduction
		17.2 Computational Fluid Dynamics and Heat Transfer Modeling: General
			17.2.1 Turbulent Flow Modeling
			17.2.2 Non-Newtonian Flow Behavior
			17.2.3 CFD Heat Transfer Models in Aseptic Processing
		17.3 Examples
			17.3.1 Example 1: Conventional Tube-in-Tube Cooling
				17.3.1.1 Comparison of Cooling Between Annular and Inner Tube Product Flow for Counter-Current and Co-Current Heat Exchangers
				17.3.1.2 Comparison of the Fastest-Moving and the Least-Cooled Fluid Particles
			17.3.2 Example 2: Continuous-Flow Microwave Heating—First Generation
			17.3.3 Example 3: Continuous-Flow Microwave Heating—Second Generation
			17.3.4 Example 4: Continuous-Flow Heating of Products Containing Particles
			17.3.5 Example 5: Using Spreadsheet-Based Models for Evaluating Thermal Processes
		17.4 Conclusion
		List of Symbols
		References
	Chapter 18 Frontiers and Research and Development: Challenges and Opportunities
		18.1 Introduction
		18.2 Research and Development Needs and Challenges
			18.2.1 Raw Product
				18.2.1.1 Raw Food Quality
				18.2.1.2 Thermization
				18.2.1.3 Enzyme Blockers and Biotechnology
				18.2.1.4 Economic Spoilage and Control
			18.2.2 Processing
				18.2.2.1 12D “Bot Cook” for Milk
				18.2.2.2 Lethality Credit for Come-Up Time
				18.2.2.3 Control of Hold Time and Temperature
				18.2.2.4 Heat Exchangers and Product Quality
				18.2.2.5 Holding Tubes
				18.2.2.6 Cooling Cycle and Leak Detection
				18.2.2.7 Surge Tank
				18.2.2.8 Aseptic Processing of Low-Acid Particulate Foods
				18.2.2.9 Ohmic Heating
				18.2.2.10 Microwave Heating
				18.2.2.11 Other Non-Thermal Processes
				18.2.2.12 Additive and Synergistic Processes
			18.2.3 Aseptic Filling and Packaging
				18.2.3.1 Line Speed
				18.2.3.2 At-Line and Online Measurements
				18.2.3.3 Packaging Issues
				18.2.3.4 Bulk Packaging (Chapter 10
				18.2.3.5 Pulsed Light Technology
				18.2.3.6 Seal Integrity
				18.2.3.7 Aseptic Filler or Sterile Work Zone Integrity and Validation
				18.2.3.8 Computational and Numerical Models and Simulations
				18.2.3.9 Cleanup and Extended Run
				18.2.3.10 Defect Rate or Sterility Assurance Level (SAL
			18.2.4 Finished Product and Package
				18.2.4.1 Flavor Problems
				18.2.4.2 Gelation and Other Physical Defects
				18.2.4.3 Rapid Microbiological Methods
				18.2.4.4 Consumer Education
				18.2.4.5 “Aseptic“ versus Quality Fresh
				18.2.4.6 Product Development
			18.2.5 Process Controls and Electronic Records
				18.2.5.1 21 CFR Part 11
		18.3 Management and Administrative Challenges and Opportunities
			18.3.1 Capital Cost
			18.3.2 Complexity
			18.3.3 Reliability
			18.3.4 Repair and Maintenance
			18.3.5 Education and Continual Learning, and Funding for Research
		18.4 Future
		18.5 Summary
		References
Part V Appendices
	Appendix 1: United States History & Evolution
	Appendix 2: Dr. William McKinley Martin—Father of Aseptic Canning
	Appendix 3: Aseptic Filler Profiles
	Appendix 4: Aseptic Contract Manufacturers in the United States
	Appendix 5: Examples of Typical Thermal Process Design for Aseptically Processed Fluids and Purees
	Appendix 6: Process Design and Microbial Validation of a Product with Large Particulates
	Appendix 7: Process Design and Microbial Validation of a Product with Large Particulates of Multiple Types
	Appendix 8: Thermal Processing Methods
Index




نظرات کاربران