دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تولید مواد غذایی ویرایش: 3 نویسندگان: Jairus R. D. David, Pablo M. Coronel, Josip Simunovic سری: ISBN (شابک) : 0367724804, 9781000631098 ناشر: CRC Press | Taylor & Francis Group سال نشر: 2023 تعداد صفحات: 703 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 130 مگابایت
کلمات کلیدی مربوط به کتاب کتابچه راهنمای پردازش و بسته بندی آسپتیک: غذا: نگهداری، غذا: بسته بندی، نگهداری مواد غذایی
در صورت تبدیل فایل کتاب Handbook Of Aseptic Processing And Packaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتابچه راهنمای پردازش و بسته بندی آسپتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
نه سال از انتشار ویرایش دوم کتاب راهنمای پردازش و بسته بندی آسپتیک می گذرد. تغییرات قابل توجهی در چندین منطقه پردازش و بسته بندی آسپتیک رخ داده است. این شامل پر کردن آسپتیک نوشیدنیهای گیاهی برای قالبهای غیر یخچالی پایدار برای ماندگاری طولانیتر و بستهبندی پایدار همراه با هزینههای مزایای زیستمحیطی برای صرفهجویی در انرژی و ردپای کربن است. علاوه بر این، بینشی در مورد پردازش ایمن ذرات با استفاده از پردازش حرارتی دو بعدی و سه بعدی و به دنبال خنکسازی سریع ارائه میشود. در ویرایش سوم، ویراستاران موضوعات معاصر را با اطلاعات ترکیب شده از مقامات معتبر بین المللی در زمینه های خود گردآوری کرده اند. علاوه بر اطلاعات به روز شده، 12 فصل جدید در این آخرین نسخه اضافه شده است با محتوایی در: • طراحی سیستم پردازش آسپتیک و پردازش حرارتی • تجهیزات فرآیند حرارتی و فناوری گرمایش و سرمایش • توزیع زمان جریان و اقامت (RTD) برای سیالات همگن و ناهمگن • فرآیند حرارتی و بهینه سازی پردازش آسپتیک حاوی ذرات جامد • تجهیزات پر کردن و بسته بندی آسپتیک برای محصولات خرده فروشی و خدمات غذایی • طراحی تاسیسات، زیرساخت ها، و تاسیسات • نظافت و ضدعفونی برای عملیات پردازش و بسته بندی آسپتیک • میکروبیولوژی محصولات فرآوری شده و بسته بندی شده به روش آسپتیک • تحلیل ها و روش شناسی های مبتنی بر ریسک • ایجاد \"حالت معتبر\" برای سیستم های پردازش و بسته بندی آسپتیک • سیستم های مدیریت کیفیت و ایمنی مواد غذایی برای تولید آسپتیک و طولانی مدت ماندگاری (ESL). • مدل ها و شبیه سازی های محاسباتی و عددی برای پردازش آسپتیک • همچنین، هفت ضمیمه جدید در مورد اختراعات اصلی، نمونههایی از محاسبات فرآیند حرارتی معمولی، و مطالعات ذرات - ذرات تک ذره و چند نوع، و تشکیل پرونده سازمان غذا و دارو (FDA) وجود دارد. سه ویراستار و 22 مشارکت کننده در این جلد بیش از 250 سال تجربه ترکیبی شامل تولید، نوآوری در پردازش و بسته بندی، تحقیق و توسعه، تضمین کیفیت و انطباق دارند. بینش آنها به روز رسانی جامعی را در مورد این فناوری پیشرفته به سرعت در حال توسعه برای صنعت پردازش مواد غذایی ارائه می دهد. آینده پردازش و بستهبندی بدون عفونی غذاها و نوشیدنیها با راحتی و طعم مشتری، استفاده از مواد طبیعی با برچسب تمیز فعلی و جدید، استفاده از فناوری نگهداری چندعاملی یا مانع برای به حداکثر رساندن کیفیت محصول، و بستهبندی پایدار با ادعا هدایت خواهد شد. و پیام رسانی
Nine years have passed since the second edition of the Handbook of Aseptic Processing and Packaging was published. Significant changes have taken place in several aseptic processing and packaging areas. These include aseptic filling of plant-based beverages for non-refrigerated shelf-stable formats for longer shelf life and sustainable packaging along with cost of environmental benefits to leverage savings on energy and carbon footprint. In addition, insight into safe processing of particulates using two- and three-dimensional thermal processing followed by prompt cooling is provided. In the third edition, the editors have compiled contemporary topics with information synthesized from internationally recognized authorities in their fields. In addition to updated information, 12 new chapters have been added in this latest release with content on: • Design of the aseptic processing system and thermal processing • Thermal process equipment and technology for heating and cooling • Flow and residence time distribution (RTD) for homogeneous and heterogeneous fluids • Thermal process and optimization of aseptic processing containing solid particulates • Aseptic filling and packaging equipment for retail products and food service • Design of facility, infrastructure, and utilities • Cleaning and sanitization for aseptic processing and packaging operations • Microbiology of aseptically processed and packaged products • Risk-based analyses and methodologies • Establishment of "validated state" for aseptic processing and packaging systems • Quality and food safety management systems for aseptic and extended shelf life (ESL) manufacturing • Computational and numerical models and simulations for aseptic processing • Also, there are seven new appendices on original patents, examples of typical thermal process calculations, and particulate studies—single particle and multiple-type particles, and Food and Drug Administration (FDA) filing The three editors and 22 contributors to this volume have more than 250 years of combined experience encompassing manufacturing, innovation in processing and packaging, R&D, quality assurance, and compliance. Their insight provides a comprehensive update on this rapidly developing leading-edge technology for the food processing industry. The future of aseptic processing and packaging of foods and beverages will be driven by customer-facing convenience and taste, use of current and new premium clean label natural ingredients, use of multifactorial preservation or hurdle technology for maximizing product quality, and sustainable packaging with claims and messaging.
Cover Half Title Title Page Copyright Page Table of Contents Foreword Preface Acknowledgments Editors Contributors PART I Fundamentals and Frontiers, Framework for Regulations, and Marketing Chapter 1 Aseptic Processing and Packaging: Fundamentals and Frontiers 1.1 Introduction 1.2 Framework and Current State 1.3 Departures from Optima and Challenges 1.4 Current and Future Opportunities for Optimization 1.5 Summary References Chapter 2 US Federal Regulations for Aseptic Processing and Packaging of Food 2.1 Introduction 2.2 US FDA Regulations 2.2.1 Facility Registration and Product Filing 2.2.2 Better Process Control School 2.2.3 Process Authority 2.2.4 Low-Acid Foods Packaged in Hermetically Sealed Containers 2.2.5 Pasteurized Milk Ordinance 2.2.6 Acidified Foods 2.2.7 Process Filing Forms 2.2.8 Preventive Controls for Human Foods 2.2.9 Aseptic Packaging Materials as Indirect Food Additives 2.3 USDA Regulations 2.4 Conclusion References Chapter 3 The US Markets for Aseptically Processed and Packaged Products 3.1 Development 3.2 Aseptic Metal Can Market 3.3 Aseptic Bag-In-Box 3.4 Aseptic Paperboard Market 3.5 Aseptic Plastic Cup Market 3.6 Aseptic Pouch Market 3.7 Aseptic Plastic Bottle Market PART II Science and Engineering Aspects of Aseptic Processing and Packaging Technologies Chapter 4 Processing System and Thermal Process Design 4.1 Introduction 4.2 Aseptic Processing Establishment 4.2.1 Considerations for Process Calculations 4.2.2 HACCP and Documentation of Control Points 4.3 Aseptic Processing Equipment 4.3.1 Mixing and Cooking Vessel 4.3.2 Pumps 4.3.3 Heat Exchangers 4.3.3.1 Steam Injection or Infusion Heaters 4.3.3.2 Plate Heat Exchangers 4.3.3.3 Tubular Heat Exchangers 4.3.3.4 Scraped Surface Heat Exchangers 4.3.3.5 Ohmic Heating 4.3.3.6 Microwave Heating 4.3.4 Regeneration 4.3.5 Continuous Holding Tubes 4.3.6 Controls 4.3.7 Sterile Surge Tanks, Barrier Seals, and Automatic Valves 4.3.7.1 Sterile Surge Tanks 4.3.7.2 Barrier Seals 4.3.7.3 Valves 4.3.8 Homogenizers 4.3.9 Filters 4.3.9.1 Filter for Gases 4.3.9.2 Filters for Liquids 4.4 Utilities 4.4.1 Formulation Water 4.4.2 System Sterilization Water 4.4.3 Heating/Cooling Water 4.4.4 Refrigerated Water 4.4.5 Steam 4.4.6 Air 4.5 Aseptic Processing Operations 4.5.1 Presterilization of the Processing System 4.5.2 Loss of Sterility 4.5.3 Cleaning 4.5.4 Preventive Maintenance 4.6 Concluding Remarks Nomenclature Bibliography Chapter 5 Thermal Processing Equipment for Heating and Cooling 5.1 Introduction 5.2 Direct Heating 5.2.1 Direct Heating–Steam Injection 5.2.2 Direct Heating–Steam Infusion 5.3 Flash Evaporative Cooling 5.4 Indirect Heat Exchangers 5.4.1 Plate Heat Exchangers 5.4.2 Tubular Heat Exchanger 5.4.2.1 Double-Tube Tubular Heat Exchanger 5.4.2.2 Triple-Tube Heat Exchanger 5.4.2.3 Multitube Heat Exchanger 5.4.2.4 Coil Tube Heat Exchangers 5.4.3 Regeneration 5.4.4 Scraped Surface Heat Exchanger 5.5 Advanced Heating and Cooling Technologies 5.5.1 Advanced Heating Systems 5.5.1.1 Microwave Heating 5.5.1.2 Ohmic Heating 5.5.2 Advances in Cooling Technology 5.6 Holding Tube 5.7 Temperature Indicating Device and Temperature Recording Device 5.8 Automatic Flow Diversion 5.9 Back Pressure Valve 5.10 Preproduction System Sterilization 5.11 Differential Pressure 5.12 Heat Transfer Media 5.12.1 Steam 5.12.2 Hot Water 5.12.3 Cooling Media 5.13 Concluding Remarks Nomenclature Latin Letters Greek Letters Subscripts References Chapter 6 Flow and Residence Time Distribution for Homogeneous and Heterogeneous Fluids 6.1 Basic Considerations of Residence Time and Flow Profile 6.2 Newtonian Fluids 6.3 Non-Newtonian Fluids 6.4 Flows with Particulates 6.4.1 Residence Time Distribution Measurement of Particulate Flows 6.4.2 Simulated Particle Design and Application for Conservative (Worst-Case or Cold-Spot Carrier) Validation 6.4.2.1 Sensors, Data Capture, and Analysis for RTD Calculations 6.5 Concluding Remarks Nomenclature Latin Letters Greek Letters Subscripts References Chapter 7 Thermal Process and Optimization of Aseptic Processes Containing Solid Particulates 7.1 Introduction 7.2 Optimization of Thermal Processes 7.2.1 Thermal Process of Homogeneous Aseptic Products 7.2.2 Quality of Aseptic Products 7.2.3 The HTST Paradigm and Homogeneous Flow Optimization 7.3 Comparison of Conventional Canning and Aseptic Processing and Packaging of Foods 7.3.1 Comparison of Conventional Canning and Aseptic Processing and Packaging of Foods 7.3.2 Some Advantages of Aseptic Processing and Packaging of Foods 7.3.2.1 Nutritional Quality 7.3.2.2 Sensory Quality 7.3.2.3 Sustainability in Storage and Distribution 7.3.2.4 Package Convenience and Microwaveability 7.3.3 Comparison of Processing Methods 7.3.3.1 Pasteurization 7.3.3.2 Ultra-Pasteurization 7.3.3.3 Conventional Canning 7.3.3.4 Refrigerated Aseptic Products 7.3.3.5 Comparison of Continuous Processing Methods Based on Optimization Hierarchy 7.4 Aseptic Process Calculations for Particulate Flows 7.4.1 Calculating Cumulative Thermal Process in Fluids and Particulates 7.4.2 Thermal Treatments for Heterogeneous Products 7.5 Aseptic Quality Optimization 7.5.1 Ingredients 7.5.2 Batching 7.5.3 Heating 7.5.4 Holding Tube 7.5.5 Cooling 7.5.6 Aseptic Storage 7.5.7 Minimizing Shear Damage 7.6 Aseptic Cost Optimization 7.6.1 Ingredient Sourcing 7.6.2 Factorywide Optimization 7.6.3 Optimal Control Strategies 7.6.4 Run-Length Extension 7.7 Future Trends Nomenclature References Chapter 8 Aseptic Filling and Packaging for Retail Products and Food Service 8.1 Introduction 8.2 Aseptic Packaging 8.2.1 Packaging Material 8.2.2 Retail Packaging 8.2.3 Packaging for Retail Food Service 8.2.4 Tamper Proof 8.3 Sterilizing Mechanisms 8.3.1 Heat 8.3.1.1 Wet Heat 8.3.1.2 Dry Heat 8.3.1.3 Heat Extrusion Process 8.3.2 Chemical 8.3.3 Radiation 8.3.3.1 Ultraviolet Radiation 8.3.3.2 Infrared Radiation 8.3.3.3 Pulsed Light 8.3.3.4 Cold Plasma 8.3.4 Irradiation 8.4 Filler Types 8.4.1 Retail Fillers 8.4.1.1 Aseptic Paperboard 8.4.1.2 Aseptic Plastic Cup 8.4.1.3 Bottle Packaging 8.4.1.4 Pouch Packaging 8.4.2 Aseptic Filler for Food Service 8.5 Packaging Integrity Test 8.6 Regulations for Packaging 8.7 Smart Packaging for Aseptic Products 8.8 Sustainability in Aseptic Packaging References Chapter 9 Aseptic Packaging Materials and Sterilants 9.1 Product Requirements 9.2 Materials 9.2.1 Non-Barrier Sheeting 9.2.2 Barrier Sheeting 9.3 Sterilizing Agents 9.3.1 Heat 9.3.2 Hot Water 9.3.3 Neutral Aseptic System (NAS 9.3.4 Chemical Sterilants 9.3.5 Radiation 9.4 Packaging Systems 9.4.1 Dole Aseptic Canning 9.4.2 Preformed Thermoformed Containers 9.4.3 Form–Fill–Seal 9.5 Environmental Considerations Chapter 10 Aseptic Bulk Packaging 10.1 Aseptic Bag-In-Box 10.2 Aseptic Bulk Container 10.3 Aseptic Bulk Storage 10.4 Aseptic Ocean Liner Transportation and Storage Chapter 11 Design of Facility, Infrastructure, and Utilities 11.1 Basic Considerations of Hygienic Design 11.2 Plant Design and Site Selection 11.2.1 Exterior Considerations 11.2.1.1 Landscaping 11.2.1.2 Exterior Walls 11.2.1.3 Roof 11.2.1.4 Loading Docks 11.2.1.5 Entry Points 11.2.2 Interior 11.2.2.1 Floors 11.2.2.2 Walls 11.2.2.3 Ceiling 11.2.2.4 Drains 11.2.2.5 Equipment Anchoring 11.2.2.6 Personnel Facilities: Locker Rooms and Bathrooms 11.2.3 Equipment Design 11.2.3.1 Materials of Construction 11.2.3.2 Hygienic Design Standards 11.3 Zoning and Flow of Materials and Personnel 11.4 Air-Handling 11.5 Concluding Remarks References Chapter 12 Cleaning and Sanitization for Aseptic Processing Operations 12.1 Introduction 12.2 Equipment Preparation and Set Up (EPSU 12.3 Principles of Sanitation 12.3.1 Principles of Sanitation 12.3.2 Personal Hygiene 12.4 CIP (Clean-In-Place 12.4.1 Flow (Scrubbing or Mechanical Force to Remove the Soil) for UHT Systems 12.4.2 Chemical Concentration 12.4.2.1 UHT Processor 12.4.2.2 Sterile Tank 12.4.2.3 Fillers 12.4.3 Time 12.4.4 Temperature for Cleaning UHT Systems 12.4.5 For Sterile Tanks 12.4.6 For Fillers 12.4.6.1 For ESL Fillers 12.4.7 Pulsing of Valves 12.4.8 Ingredients 12.5 Clean-Out-of-Place (COP 12.6 SIP (Sterilization-In-Place 12.7 Aseptic Intermediate Clean (AIC 12.7.1 Concentration of Chemical 12.7.2 Sterile Tanks 12.7.3 Fillers 12.8 Validation and Verification 12.8.1 Validation 12.8.2 Verification 12.9 Passivation 12.9.1 Passivation Process 12.9.1.1 Some Preliminary Considerations 12.9.1.2 Passivation Process 12.9.1.3 Cleaning and Passivation 12.10 Maintenance 12.10.1 Preventive Maintenance 12.10.2 Breakdown Maintenance 12.11 Change Control Management Program (CCM-P 12.11.1 Program Change 12.11.2 Ingredient Change 12.11.3 Procedure Change 12.11.4 Chemical Change 12.12 Environmental Cleaning 12.12.1 Environmental Monitoring 12.12.2 Air Quality 12.12.3 Zoning and Segregation 12.12.4 Other Items 12.13 Summary 12.14 Definitions 12.15 Acronyms References Part III Risk-Based Analyses for Attaining “Validated State” for Production of Commercially Sterile Shelf-Stable Products and Guidance for Quality Assurance, Microbiological Food Safety, and Regulatory Compliance Chapter 13 Microbiology of Aseptically Processed and Packaged Products 13.1 Introduction 13.2 Microbiological Risks Associated with Aseptically Processed Food 13.2.1 Food Safety Risks 13.2.1.1 Spore-Forming Bacterial Pathogens 13.2.1.2 Non-Spore-Forming Bacterial Pathogens 13.2.2 Spoilage Risks 13.2.2.1 Spore-Forming Spoilage Bacteria 13.2.2.2 Non-Spore-Forming Spoilage Bacteria 13.2.2.3 Spoilage Fungi 13.3 Mitigation of the Microbiological Risks Associated with Aseptically Processed Foods 13.3.1 Thermal Treatment 13.3.1.1 Kinetics of Microbial Destruction 13.3.1.2 Industry Standard Thermal Treatments (F-Value Concept 13.3.1.3 Designing a Thermal Treatment 13.3.2 Chemical Sterilants 13.4 Causes of Microbiological Failure in Aseptic Processing and Packaging 13.4.1 Hermetic Seal Failures 13.4.2 Failure Caused by Poor Valve Design or Malfunction 13.4.3 Failure Caused by Poor Design or Inappropriate SIP/CIP Practices for Product Lines 13.4.4 Failure of Sterile Air Overpressure or Unidirectional Sterile Airflow to Protect Filler 13.4.5 Failure Due to Plugged Sterilization Nozzles in Aseptic Filler 13.4.6 Failures Caused by the Presence of Highly Heat-Resistant Microorganisms 13.4.7 Failure Due to Poor Hydration of Critical Ingredients 13.4.8 Other Potential Causes of Microbiological Failures and General Observations 13.5 Summary References Chapter 14 Risk-Based Analyses and Methodologies 14.1 Introduction and Background 14.2 Risk-Based Approach 14.2.1 Why Do We Need Standardization 14.2.1.1 Why Do We Need This While It Is Not a Regulatory Requirement in Some Counties/Regions 14.2.2 What Is The Risk 14.2.3 Why Do We Need Risk Analyses of the Aseptic Systems 14.2.4 Risk-Averse Culture Development for Food Systems Should be the Focus of Company-Wide Mission and Vision 14.3 What Should be the Approach to Mitigate Risks 14.3.1 Determination of Food Safety Objectives (FSO) as Part of the Risk Management 14.3.1.1 What Is The PC and How Do We Calculate the Required Log Reduction 14.3.1.2 Log Reduction Calculation 14.4 Systematic Approach is the Key 14.4.1 Operational Readiness and Risk Management 14.5 Failure Mode and Effect Analysis 14.6 Additional Risk Analysis Methodologies 14.6.1 Statistical Methodologies for the Production Data Analyses and Better Decision-Making 14.6.2 Preliminary Hazard Analysis (PHA 14.6.3 Hazard Operability Analysis (HAZOP 14.6.4 Hazard Analysis and Critical Control Point (HACCP 14.6.5 Failure Mode Effects and Criticality Analysis 14.6.6 Fault Tree Analysis (FTA 14.7 Summary Case Studies Glossary References Chapter 15 Establishing “Validated State” of Aseptic Processing and Packaging Systems 15.1 Introduction 15.2 Validation Master Plan (VMP 15.2.1 Microbiological Validation Plan 15.2.2 Acceptance Criteria 15.2.2.1 Hydration of Dry Ingredients 15.2.2.2 Effectiveness of Particle Distribution 15.2.2.3 Batching Time and Temperature 15.2.2.4 Aseptic Filler Operations 15.2.2.5 Aseptic Processing Operations 15.3 Aseptic System Specifications 15.3.1 Process Schematic 15.3.2 P&ID Schematic 15.3.3 Design Review 15.3.4 Sterilization, Operation, Clean-in-Place, and Maintenance 15.4 Factory Acceptance Test 15.5 Qualification and Commissioning 15.5.1 Installation Qualification (IQ 15.5.2 Operational Qualification 15.5.2.1 Controls Validation 15.5.2.2 CIP Validation 15.5.3 Performance Qualification 15.6 Steps toward “Validated State” of the Aseptic System 15.6.1 Commercial Sterility and System Operation 15.6.2 Selection of Surrogate Organism 15.6.3 UHT Validation 15.6.4 Aseptic Tank Validation 15.6.5 Pre-Production Sterilization of Aseptic Filler 15.6.6 Validation of Aseptic Packaging Material Sterilization 15.6.7 Conveyor Chain Sterilization Test 15.6.8 Maintenance of Aseptic Zone Sterility 15.6.9 Commercial Sterility Test 15.7 Management of Change (MOC) Program 15.7.1 Structure of the MOC Program 15.7.2 Structure of the Committee of MOC 15.7.3 Impact Assessment of a Change 15.7.4 Change Request Process 15.7.5 Change and Urgency Classification 15.7.5.1 Types of Change 15.7.5.2 Level of Urgency 15.7.6 Implementation Plan, Final Disposition, and Closeout 15.7.7 Conclusion and Recommendations 15.8 Regulatory Requirements, Filing, and Standards 15.8.1 Regulations for Aseptic Systems 15.8.2 Regulatory Filing of Aseptic Lines and Products 15.8.3 Standards for Aseptic Equipment 15.9 Summary and Recommendations 15.10 Frequently Asked Questions Glossary References Chapter 16 Quality and Food Safety Management System (QFSMS) for Aseptic and ESL Manufacturing Companies 16.1 Introduction 16.1.1 Concepts 16.1.2 Quality Control (QC 16.1.3 Quality Assurance 16.2 Quality Assurance for Aseptically Processed and Packaged Foods 16.2.1 Quality and Safety by Design 16.2.2 Quality and Safety Risk Management 16.2.3 Corrective and Preventive Action (CAPA 16.2.3.1 Triggers for CAPA 16.2.4 Change Control 16.2.4.1 Need for Change 16.2.4.2 Leadership Support 16.2.4.3 Expert Advice 16.2.4.4 Executing Change Control 16.2.4.5 Monitoring and Verification 16.2.5 Process Authority Roles in the Food Industry 16.2.5.1 Thermal Process Review 16.2.6 External Certification Schemes (GFSI—BRC, SQF, FSSC2200 16.3 The Quality Management Systems Model 16.3.1 Preprocess Assurance 16.3.2 Raw Materials 16.3.3 In-Process Assurance 16.3.4 Postprocess Assurance 16.3.5 Incubated Product Evaluation 16.3.6 Shelf-Life Determination and Stability of Aseptic and ESL Products 16.3.6.1 Storage Protocol 16.3.6.2 Sensory Analysis 16.3.7 Microbiological Testing for Sterility and Sample Size Consideration 16.3.8 Distribution, Handling, and Storage 16.3.9 ASTM Drop Test 16.3.10 Cumulative Assurance and Product Release 16.4 System Requirements for Prerequisite Programs 16.4.1 Facilities and Equipment 16.4.1.1 Grounds and Environment 16.4.1.2 Facility Layout 16.4.1.3 Production Equipment 16.4.1.4 Thermal Processing Operations 16.4.1.5 Aseptic Filling and Packaging Operations 16.4.2 Utilities 16.4.3 Inline Inspection Requirements 16.4.4 Internal Assessments and Auditing 16.4.5 Human Resources and Personnel Development 16.4.5.1 Management Responsibility 16.4.5.2 Plan Creation 16.4.5.3 Implementation 16.4.5.4 Review 16.4.5.5 Sustainability 16.4.5.6 Summary 16.5 The Food Safety Management Systems Models 16.5.1 Hazard Analysis Critical Control Point (HACCP) Program 16.5.1.1 Principles of HACCP 16.5.1.2 Categories of Hazards 16.5.2 Hazard Analysis and Risk-Based Preventive Control 16.5.2.1 Supporting Programs for Food Safety Management 16.5.2.2 Process Controls 16.5.2.3 Current Good Manufacturing Practices 16.5.2.4 Allergen Program 16.5.2.5 Sanitation Program 16.5.2.6 CIP System Validation 16.5.2.7 Aseptic Intermediate Cleanings (AIC 16.5.2.8 Recall 16.5.2.9 Consumer Complaints 16.5.2.10 Supply Chain 16.6 Conclusions and Final Recommendations Glossary References Part IV Frontiers and R&D Opportunities and Challenges Chapter 17 Computational and Numerical Models and Simulations for Aseptic Processing 17.1 Introduction 17.2 Computational Fluid Dynamics and Heat Transfer Modeling: General 17.2.1 Turbulent Flow Modeling 17.2.2 Non-Newtonian Flow Behavior 17.2.3 CFD Heat Transfer Models in Aseptic Processing 17.3 Examples 17.3.1 Example 1: Conventional Tube-in-Tube Cooling 17.3.1.1 Comparison of Cooling Between Annular and Inner Tube Product Flow for Counter-Current and Co-Current Heat Exchangers 17.3.1.2 Comparison of the Fastest-Moving and the Least-Cooled Fluid Particles 17.3.2 Example 2: Continuous-Flow Microwave Heating—First Generation 17.3.3 Example 3: Continuous-Flow Microwave Heating—Second Generation 17.3.4 Example 4: Continuous-Flow Heating of Products Containing Particles 17.3.5 Example 5: Using Spreadsheet-Based Models for Evaluating Thermal Processes 17.4 Conclusion List of Symbols References Chapter 18 Frontiers and Research and Development: Challenges and Opportunities 18.1 Introduction 18.2 Research and Development Needs and Challenges 18.2.1 Raw Product 18.2.1.1 Raw Food Quality 18.2.1.2 Thermization 18.2.1.3 Enzyme Blockers and Biotechnology 18.2.1.4 Economic Spoilage and Control 18.2.2 Processing 18.2.2.1 12D “Bot Cook” for Milk 18.2.2.2 Lethality Credit for Come-Up Time 18.2.2.3 Control of Hold Time and Temperature 18.2.2.4 Heat Exchangers and Product Quality 18.2.2.5 Holding Tubes 18.2.2.6 Cooling Cycle and Leak Detection 18.2.2.7 Surge Tank 18.2.2.8 Aseptic Processing of Low-Acid Particulate Foods 18.2.2.9 Ohmic Heating 18.2.2.10 Microwave Heating 18.2.2.11 Other Non-Thermal Processes 18.2.2.12 Additive and Synergistic Processes 18.2.3 Aseptic Filling and Packaging 18.2.3.1 Line Speed 18.2.3.2 At-Line and Online Measurements 18.2.3.3 Packaging Issues 18.2.3.4 Bulk Packaging (Chapter 10 18.2.3.5 Pulsed Light Technology 18.2.3.6 Seal Integrity 18.2.3.7 Aseptic Filler or Sterile Work Zone Integrity and Validation 18.2.3.8 Computational and Numerical Models and Simulations 18.2.3.9 Cleanup and Extended Run 18.2.3.10 Defect Rate or Sterility Assurance Level (SAL 18.2.4 Finished Product and Package 18.2.4.1 Flavor Problems 18.2.4.2 Gelation and Other Physical Defects 18.2.4.3 Rapid Microbiological Methods 18.2.4.4 Consumer Education 18.2.4.5 “Aseptic“ versus Quality Fresh 18.2.4.6 Product Development 18.2.5 Process Controls and Electronic Records 18.2.5.1 21 CFR Part 11 18.3 Management and Administrative Challenges and Opportunities 18.3.1 Capital Cost 18.3.2 Complexity 18.3.3 Reliability 18.3.4 Repair and Maintenance 18.3.5 Education and Continual Learning, and Funding for Research 18.4 Future 18.5 Summary References Part V Appendices Appendix 1: United States History & Evolution Appendix 2: Dr. William McKinley Martin—Father of Aseptic Canning Appendix 3: Aseptic Filler Profiles Appendix 4: Aseptic Contract Manufacturers in the United States Appendix 5: Examples of Typical Thermal Process Design for Aseptically Processed Fluids and Purees Appendix 6: Process Design and Microbial Validation of a Product with Large Particulates Appendix 7: Process Design and Microbial Validation of a Product with Large Particulates of Multiple Types Appendix 8: Thermal Processing Methods Index