دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تولید مواد غذایی ویرایش: نویسندگان: Suhaib A. Bandh (editor) سری: ISBN (شابک) : 3030830659, 9783030830656 ناشر: Springer سال نشر: 2021 تعداد صفحات: 262 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب Sustainable Agriculture: Technical Progressions and Transitions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کشاورزی پایدار: پیشرفتها و انتقالهای فنی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تعدادی از پیشرفت های تکنولوژیکی و روش شناختی اخیر در دستیابی به کشاورزی پایدار را مورد بحث قرار می دهد. این تکنیکهای نوآورانه و از نظر اقتصادی مقرونبهصرفه برای تولیدکنندگان، کارگران، مصرفکنندگان، سیاستگذاران و سایرینی را که در تلاش برای توسعه روشهای کشاورزی امن از نظر مواد غذایی و از نظر زیستمحیطی به نفع انسانها و محیطزیست هستند، پوشش میدهد. موضوعات کلیدی مورد بررسی عبارتند از: نقش فزاینده کودهای زیستی در کشاورزی پایدار، نانوذرات سنتز شده سبز برای نرخ تولید محصولات بالاتر، آفتکشهای گیاهی سازگار با محیط زیست به عنوان جایگزینی برای آفتکشهای مصنوعی/شیمیایی، استفاده از ژنومیک برای بهبود شیوههای اصلاح نباتات، و استفاده بیوچار برای افزایش ظرفیت نگهداری آب در خاک. این کتاب با مروری بر شیوههای فرسایش خاک مبتنی بر ماهواره برای نظارت و کنترل اثرات مضر تخریب زمین و بحث در مورد استراتژیهای بلندمدت برای کاهش تلفات محصول به دلیل آسیب آفات و حشرهکش به پایان میرسد. این کتاب مورد توجه دانشجویان و محققان در زمینه علوم محیطی، علوم کشاورزی، زراعت و توسعه پایدار خواهد بود.
This book discusses a number of recent technological and methodological progressions in achieving sustainable agriculture. It covers innovative and economically viable techniques for growers, laborers, consumers, policymakers, and others working to develop food-secure and ecologically sound agricultural practices to benefit humans and the environment. The key topics addressed include the increasing role of biofertilizers in sustainable agriculture, green synthesized nanoparticles for higher crop production rates, eco-friendly plant-based pesticides as alternatives to synthetic/chemical pesticides, use of genomics for improved plant breeding practices, and the use of biochar to increase the water-holding capacity in soil. The book concludes with an overview of satellite-based soil erosion practices to monitor and control the harmful impacts of land degradation, and a discussion of long-term strategies to reduce crop losses due to pest and insecticide damage. The book will be of interest to students and researchers in the field of environmental science, agriculture science, agronomy, and sustainable development.
Contents List of Figures List of Tables Chapter 1: Understanding Sustainable Agriculture 1.1 Introduction 1.2 Global Impact of Green Revolution on the Environment 1.3 Sustainable Agriculture 1.3.1 Advantages 1.3.2 Principles of Sustainable Agriculture 1.3.3 Goals of Sustainable Agriculture 1.4 Farming Systems and Agriculture Sustainability 1.4.1 Principles of Farming System 1.4.2 Aims of Farming System 1.4.3 Organic Farming 1.4.4 Principles of Organic Farming 1.4.5 Relevance of Organic Farming 1.4.6 Precision Agriculture 1.4.7 Climate-Resilient Crop Varieties 1.4.8 Micro-Irrigation 1.4.9 Tillage Management for the Effectiveness of Fertilisers and Pesticides 1.5 Soil and Its Sustainability 1.5.1 Soil and Plant Environment as a Sustaining Environment for Microbial Life 1.5.2 Mechanisms and Application of Plant Growth-Promoting Microbes in Agricultural Soils 1.5.3 Microbial Disease-Suppressive Agents 1.5.3.1 Siderophore 1.5.3.2 Phytoalexin 1.5.4 Impact of Microbes in Enhancing Soil Fertility, Health and Plant Growth Attributes 1.6 Conclusions References Chapter 2: Biofertilizers: The Role in Sustainable Agriculture 2.1 Introduction 2.1.1 Rhizobium 2.1.2 Azospirillum 2.1.3 Azotobacter 2.1.4 Phosphorus-Solubilizing and Phosphorus-Mobilizing Microbes 2.2 Biofertilizers: Why their Need Is Inevitable? 2.3 How Biofertilizers Work 2.3.1 Direct Way 2.3.2 Indirect Way 2.4 Methods of Application of Biofertilizers to Crops 2.4.1 Seed Treatment 2.4.2 Seedling Root Dip 2.4.3 Soil Treatment 2.5 The Role of Biofertilizers in the Alleviation of Environmental Stresses 2.6 Some Factors Limiting the Use of Biofertilizers 2.7 Conclusions References Chapter 3: Organic Farming for Sustainable Soil Use, Management, Food Production and Climate Change Mitigation 3.1 Introduction 3.2 Need for Organic Farming 3.3 Key Aspects of Organic Farming 3.4 Organic Fertilisers 3.5 Principles of Organic Farming 3.5.1 Principle of Health 3.5.2 Principle of Fairness 3.5.3 Principle of Ecological Balance 3.5.4 Principle of Care 3.6 Unsustainability of Conventional Farming 3.7 Essentials of Organic Farming 3.7.1 Farmyard and Other Organic Manures 3.7.2 Vermicompost 3.7.3 Green Manuring 3.7.4 Organic Matter Application and Restoration 3.7.5 Crop Rotation 3.7.5.1 Principles for Crop Rotation 3.7.5.2 Steps for Crop Rotation and Planning 3.7.6 Mulching 3.7.7 Integrated Nutrient Management 3.7.8 Zero Tillage 3.8 Benefits of Organic Farming 3.8.1 Crop Productivity 3.8.2 Soil Fertility and Biological Parameters 3.8.3 Sustainable Soil Management 3.8.4 Water Management 3.8.5 Pest and Disease Management 3.8.6 Cover Crops and Crop Rotation 3.9 The Organic Food System 3.9.1 Classification 3.9.2 Production 3.9.3 Distribution 3.10 Effect of Organic Farming on Climate Change 3.10.1 Reduction of Greenhouse Gas Emission 3.10.2 Reducing Energy Use 3.10.3 Helping Farmers to Adapt to Climate Change 3.10.4 Storing Carbon in the Soil 3.10.5 Advocating for Policy Change 3.11 Conclusions References Chapter 4: The Role of Plant Extracts in Sustainable Agriculture 4.1 Introduction 4.2 Commonly Used Botanicals 4.3 Significance of Botanicals 4.4 Plant Extracts Used as Biopesticides (Based on Different Categories) 4.5 Positives of Biopesticides 4.6 Plant Extracts Used as Bioherbicides (Categorized Based on Different Modes of Action) 4.7 Plant Extracts Used as Fungicides and Antimicrobial (Based on Modes of Action) 4.8 Secondary Metabolites and their Mechanism of Action 4.9 Plant Extracts with Anti-Parasitic Properties 4.10 Conclusions References Chapter 5: Botanical Pesticides for an Eco-Friendly and Sustainable Agriculture: New Challenges and Prospects 5.1 Introduction 5.2 Sustainable Agriculture: A Promise to the Future 5.3 The Growing Pest Emergence, Problem and Utilization of Chemical Pesticides 5.4 Erroneous Effects of Chemical Pesticides in Agriculture: Hazards to Human Health, Insect Biodiversity and Aquatic Ecosystem 5.5 Botanical Pesticides: A Natural Alternative for Chemical Pesticides 5.5.1 Source of Botanical Pesticides 5.5.2 Benefits of Botanical Pesticides over Synthetic Pesticides 5.5.3 Biodegradability of Botanical Pesticides 5.5.4 Botanical Pesticides for Integrated Pest Management 5.6 Prospects of Botanical Pesticides: Discussion and Conclusion References Chapter 6: The Role of Plant-Mediated Biosynthesised Nanoparticles in Agriculture 6.1 Introduction 6.2 Types of Different Nanoparticles (NPs) 6.2.1 Inorganic-Based Nanomaterials 6.2.2 Organic-Based Nanomaterials 6.2.3 Carbon-Based Nanomaterials 6.2.4 Composite-Based Nanomaterials 6.3 Techniques for the Readiness of Nanoparticles 6.3.1 Top-Down Approach 6.3.2 Bottom-Up Approach 6.4 Methods of Nanoparticle Production 6.4.1 Physical Methods 6.4.1.1 Mechanical Attrition 6.4.1.2 Condensation of Inert Gas 6.4.1.3 Physical Vapour Deposition 6.4.2 Chemical Methods 6.4.3 Gas-Phase Synthesis 6.4.4 Liquid-Phase Synthesis 6.5 Limitations of Chemical and Physical Methods 6.6 Characterisation of Nanomaterials 6.6.1 UV-vis Spectroscopy 6.6.2 Scanning Electron Microscopy (SEM) 6.6.3 X-Ray Diffraction (XRD) 6.6.4 Transmission Electron Microscopy (TEM) 6.6.5 Fourier Transmission Infrared Spectroscopy (FTIR) 6.6.6 Atomic Force Microscopy 6.7 Biological Synthesis of Nanomaterials 6.7.1 Bacteria-Mediated Biosynthesis of Nanomaterials 6.7.2 Fungal-Mediated Nanomaterials 6.7.3 Plant-Based Nanomaterials 6.8 The Role of Nanoparticles in Agriculture 6.8.1 Crop Productivity 6.8.2 Plant Protection 6.9 Conclusions References Chapter 7: The Role of Green Synthesised Zinc Oxide Nanoparticles in Agriculture 7.1 Introduction 7.2 Zinc Oxide Nanoparticles (ZnO-NPs) 7.3 Nanoparticles Synthesis 7.4 Methods of Nonmaterial Synthesis 7.4.1 Physical Synthesis 7.4.2 Chemical Synthesis 7.4.3 Biological Synthesis 7.5 Limitations of Conventional Methods for ZnO Nanoparticle Synthesis 7.6 Characterisation of ZnO Nanoparticles 7.6.1 UV-Visible Spectroscopy 7.6.2 Transmission Electron Microscopy 7.6.3 Scanning Electron Microscopy 7.6.4 Dynamic Light Scattering 7.6.5 Energy-Dispersive X-Ray Spectroscopy 7.6.6 X-Ray Diffraction 7.6.7 Fourier Transforms Infrared Spectroscopy 7.6.8 Atomic Force Microscopy (AFM) 7.7 The Role of Green Synthesised Zinc Oxide Nanoparticles (ZnO-NPs) in Agriculture 7.8 The Role of ZnO-NPs under Abiotic Stress References Chapter 8: Biochar: A Game Changer for Sustainable Agriculture 8.1 Introduction 8.2 Formulation, Properties and Biochemistry of Biochar 8.2.1 Feedstock for the Production of Biochar 8.2.2 Pyrolysis Methods for Biochar Production 8.2.3 Biochar Properties 8.3 The Role of Biochar in Sustainable Agriculture 8.3.1 Biochar and Nutrients Dynamics 8.3.1.1 Direct and Indirect Nutrient Values of Biochar 8.3.1.2 Biochar as a Soil Amendment 8.3.2 Biochar’s Impact on Soil Microbiota and Plant Growth 8.3.3 The Effect of Biochar on Soil Enzymes 8.3.4 The Effects of Biochar on Microorganism Extracted Soil Enzymes 8.4 Conclusions and Future Outlook References Chapter 9: Production of Biochar Using Top-Lit Updraft and Its Application in Horticulture 9.1 Introduction 9.2 Methods of Biochar Production 9.2.1 Properties and Characteristics of Biochar 9.2.1.1 Physical Characters 9.2.1.2 Chemical Characters 9.3 Biochar as a Soil Amendment 9.3.1 Biochar Impact on Soil Physicochemical Properties 9.3.2 Impact of Biochar on Soil Microorganisms 9.3.3 Application of Biochar in Horticulture 9.4 Sustainable Agriculture and Biochar 9.5 Conclusions References Chapter 10: The Use of Genomics and Precise Breeding to Genetically Improve the Traits of Agriculturally Important Organisms 10.1 Introduction 10.2 Genomic and Precise Breeding Techniques 10.2.1 454 Pyrosequencing 10.2.2 Ion Torrent 10.2.3 Illumina Sequencing 10.3 Applications of Genomics 10.4 Precision Breeding Techniques 10.4.1 Zinc Finger Nucleases 10.4.2 TALENs 10.4.2.1 Application of TALENs in Crop Plants 10.4.3 CRISPR/Cas 10.5 Regulation of Genome-Edited Crops 10.6 Technological Risks 10.7 Conclusions and Future Perspectives References Chapter 11: Plant Growth-Promoting Rhizobacteria (PGPR): Strategies to Improve Heavy Metal Stress Under Sustainable Agriculture 11.1 Introduction 11.2 An Introduction to PGPR 11.3 Mechanisms of PGPR’s Action 11.3.1 Direct Mechanism 11.3.1.1 Nitrogen Fixation 11.3.1.2 Phosphate Solubilisation 11.3.1.3 Siderophore Production 11.3.1.4 Production of Phytohormone Indole Acetic Acid (IAA) Gibberellins and Cytokinins 11.3.2 Indirect Mechanisms 11.3.2.1 Antibiotic Production 11.3.2.2 Lytic Enzyme Production 11.3.2.3 Development of Induced Systemic Resistance (ISR) 11.4 Impact of PGPR on Plants 11.4.1 As Biofertilisers 11.4.2 As Biocontrol Agent 11.4.3 As Environmental Stress Controller 11.5 Reports on the Effect of PGPRs in the Role of Biofertilisers 11.6 Heavy Metal Stress in the Environment 11.6.1 Effects of PGPRs on Plants in Heavy Metal-Contaminated Soil 11.7 Conclusions References Chapter 12: Exploring the Phytoremediation Potential of Macrophytes for Treating Sewage Effluent Through Constructed Wetland Technology (CWT) for Sustainable Agriculture 12.1 Introduction 12.2 Composition of Sewage Water 12.3 Characteristics of Sewage Effluent 12.4 Types of Aquatic Plants 12.4.1 Free-Floating Hydrophytes 12.4.2 Underwater (Submerged) Hydrophytes 12.4.3 Emergent Hydrophytes 12.5 Constructed Wetlands 12.5.1 Surface Flow Constructed Wetlands 12.5.2 Subsurface Flow Constructed Wetlands 12.5.2.1 Horizontal Subsurface Flow System 12.5.2.2 Vertical Subsurface Flow System 12.5.2.3 Hybrid System 12.6 The Role of Aquatic Plants in Constructed Wetlands 12.7 Rhizofiltration 12.8 Plant-Microbe Interactions 12.9 Root Exudates 12.9.1 Role of Root Exudates in CWs 12.10 The Role of Enzymes in CWs 12.11 CWs for Municipal and Sewage Wastewater Treatment 12.12 Conclusions References Chapter 13: Satellite-Based Soil Erosion Mapping 13.1 Introduction 13.2 Assessing Land Degradation 13.2.1 Land Degradation Mapping and Modelling 13.2.2 Assessing the spatio-temporal distribution of features associated with land degradation 13.2.3 Collecting input data for process simulation models that create maps of ground cover, plant cover and bare soil. 13.2.4 Spatio-Temporal Distribution Assessment 13.2.5 Detection and Quantification of Indicators 13.2.6 Modelling Input Data 13.3 Soil Erosion Modelling Techniques 13.3.1 Estimation of Soil Loss 13.3.2 Erosivity and Erodibility 13.3.3 Erosivity of Rainfall 13.4 Factors Affecting the Erosivity of Rainfall 13.4.1 Intensity of Rainfall 13.4.2 Distribution of Drop Sizes 13.4.3 Terminal Velocity 13.4.4 Wind Speed 13.4.5 Slope Direction 13.5 Erosivity Estimation Using Rainfall Data 13.5.1 EI30 Index Method 13.5.2 KE > 25 Index Method 13.6 Procedure for Calculation 13.6.1 Erodibility of the Soil 13.6.2 Determination of Erodibility 13.6.2.1 In Situ Erosion Plots 13.6.2.2 Measuring K Under a Simulated Rainstorm 13.6.2.3 Predicting K 13.7 Correlation of Soil Erosion and Rainfall Energy 13.8 The Universal Soil Loss Equation (USLE) 13.9 Parameters of Universal Soil Loss Equation 13.9.1 The Factor of Rainfall (R) 13.9.2 Factor of Soil Erodibility (K) 13.9.3 The Factor of Topography (LS) 13.9.4 The Factor of Crop Management (C) 13.9.5 The Factor of Support Practices (P) 13.10 USLE Parameter Estimation 13.10.1 Rainfall Erosivity Factor (R) 13.10.2 Soil Erodibility Factor (K) 13.10.3 Topographic Factor (LS) 13.10.4 Crop Management Factor (C) 13.10.5 Support Practice Factor (P) 13.11 Applications of Universal Soil Loss Equation 13.12 Limitations of Universal Soil Loss Equation 13.13 Revised Universal Soil Loss Equation (RUSLE) 13.14 Modified Universal Soil Loss Equation (MUSLE) 13.15 Spatial Erosion Assessment 13.16 Mapping Erosion From Space 13.17 Satellites and Sensors Applied in Erosion Research 13.18 Detection of Erosion 13.19 Geographic Information Systems (GIS) and Simulation of Soil Erosion 13.20 Satellite Remote Sensing 13.21 Conclusions References Index