دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات محاسباتی ویرایش: نویسندگان: Raymond Greenlaw, H. James Hoover, Walter L. Ruzzo سری: ISBN (شابک) : 0195085914, 9781429406420 ناشر: سال نشر: 1995 تعداد صفحات: 325 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 1 مگابایت
در صورت تبدیل فایل کتاب Limits to Parallel Computation: P-Completeness Theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محدودیت های محاسبات موازی: تئوری P-Completeness نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تجزیه و تحلیل جامعی از مهمترین موضوعات در محاسبات موازی ارائه می دهد. این نوشته شده است تا بتوان از آن به عنوان یک راهنمای خود مطالعه در این زمینه استفاده کرد و محققان در محاسبات موازی آن را برای سالهای آینده مرجع مفیدی خواهند یافت. نیمه اول کتاب شامل مقدمه ای بر بسیاری از مسائل اساسی در محاسبات موازی است. نیمه دوم لیستی از مسائل P-comple- و باز را ارائه می دهد. این فهرست ها برای محققان صنعت و دانشگاه ارزش ماندگاری خواهند داشت. فهرست مشکلات، با اظهارات مربوطه، فهرست کامل، و صدها مرجع به ارزش استثنایی این منبع می افزاید. در حالی که زمینه هیجان انگیز محاسبات موازی به سرعت در حال گسترش است، این کتاب به عنوان راهنمای تحقیقات انجام شده در سال 1994 عمل می کند و همچنین مفاهیم اساسی را که کارگران جدید باید در سال های آینده بدانند، شرح می دهد. این برای هر کسی که علاقه مند به محاسبات موازی است، از جمله دانشجویان مقطع کارشناسی ارشد، دانشجویان کارشناسی ارشد، اساتید و افراد در صنعت در نظر گرفته شده است. به عنوان یک مرجع ضروری، کتاب در تمام کتابخانه های دانشگاهی مورد نیاز خواهد بود.
This book provides a comprehensive analysis of the most important topics in parallel computation. It is written so that it may be used as a self-study guide to the field, and researchers in parallel computing will find it a useful reference for many years to come. The first half of the book consists of an introduction to many fundamental issues in parallel computing. The second half provides lists of P-complete- and open problems. These lists will have lasting value to researchers in both industry and academia. The lists of problems, with their corresponding remarks, the thorough index, and the hundreds of references add to the exceptional value of this resource. While the exciting field of parallel computation continues to expand rapidly, this book serves as a guide to research done through 1994 and also describes the fundamental concepts that new workers will need to know in coming years. It is intended for anyone interested in parallel computing, including senior level undergraduate students, graduate students, faculty, and people in industry. As an essential reference, the book will be needed in all academic libraries.
Preface......Page 8
Contents......Page 14
Part I: Background and Theory......Page 18
1 Introduction......Page 20
2 Parallel Models of Computation......Page 36
3 Complexity......Page 55
4 Two Basic P-Complete Problems......Page 74
5 Evidence That NC Does Not Equal P......Page 78
6 The Circuit Value Problem......Page 88
7 Greedy Algorithms......Page 104
8 P-Complete Algorithms......Page 111
9 Two Other Notions of P-Completeness......Page 117
10 Approximating P-Complete Problems......Page 125
Part II: A Compendium of Problems......Page 134
P-Complete Problems......Page 136
A.1 Circuit Complexity......Page 138
A.2 Graph Theory......Page 145
A.3 Searching Graphs......Page 161
A.4 Combinatorial Optimization......Page 167
A.5 Local Optimality......Page 175
A.6 Logic......Page 184
A.7 Formal Languages......Page 193
A.8 Algebra......Page 202
A.9 Geometry......Page 218
A.10 Real Analysis......Page 223
A.11 Games......Page 225
A.12 Miscellaneous......Page 232
Open Problems......Page 238
Notation......Page 261
Complexity Classes......Page 264
Bibliography......Page 272
Problem List......Page 302
Index......Page 308