دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ترمودینامیک و مکانیک آماری ویرایش: نویسندگان: Martin Dehli, Ernst Doering, Herbert Schedwill سری: ISBN (شابک) : 3658389095, 9783658389093 ناشر: Springer سال نشر: 2022 تعداد صفحات: 622 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of Technical Thermodynamics: Textbook for Engineering Students به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی ترمودینامیک فنی: کتاب درسی برای دانشجویان مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی اصول علمی ضروری ترمودینامیک را به شیوه ای دقیق و ساختار یافته برای آموزش تمرین محور ارائه می دهد. این دانش از نظر تحلیلی قابل اعتماد را با توجه به کاربرد مهندسی منتقل می کند و کلید درک سریع به عنوان مثال را فراهم می کند. ماشین های حرارتی، انتقال حرارت، هوای مرطوب و احتراق. نسخه انگلیسی حاضر - در مقایسه با نسخههای قبلی آلمانی - به جنبههای مکانیک سیالات، دینامیک گازهای ایدهآل و ترمودینامیک شیمیایی گسترش یافته است.
This textbook presents the essential scientific principles of thermodynamics in a detailed and well-structured manner for practice-oriented teaching. It conveys analytically reliable knowledge with a view to engineering application and provides the key to a quick understanding of e.g. thermal machines, heat transfer, humid air and combustion. The present English edition - in comparison to earlier German editions - has been extended to include aspects of fluid mechanics, dynamics of ideal gases and chemical thermodynamics.
Foreword Table of Contents Important Formula Characters Authors Vita 1 Basic Thermodynamic Terms 1.1 Applications of Thermodynamics 1.2 System 1.3 State, State Variables, Changes of State 1.4 Process, Process Variables 2 The First Law of Thermodynamics 2.1 The Principle of Conservation of Energy 2.2 Potential Energy 2.3 Kinetic Energy 2.4 Work 2.4.1 Volume Change Work 2.4.2 Coupling Work 2.4.3 Shift Work 2.4.4 Pressure Change Work 2.4.5 Friction Work 2.5 Thermal Energy 2.5.1 Internal Energy 2.5.2 Heat 2.5.3 Enthalpy 2.6 Energy Balances 2.6.1 Energy Balance for the Closed System 2.6.2 Energy Balance for the Open System 2.7 Heat Capacity 2.7.1 Specific Heat Capacity 2.7.2 The Specific Heat Capacity of Gases 2.8 Fluid Mechanics 2.8.1 General Aspects 2.8.2 Flow Shapes 2.8.3 Friction and Roughness 2.8.4 Individual Resistances 2.8.5 Equivalent Pipe Length 3 The Second Law of Thermodynamics 3.1 The Statement of the Second Law 3.1.1 Reversible and Irreversible Processes 3.1.2 Quasi-Static Changes of State 3.2 Irreversible Processes 3.2.1 Friction 3.2.2 Temperature Equalisation 3.2.3 Pressure Equalisation 3.3 Entropy 3.3.1 Reversible Substitute Processes of Adiabatic Processes 3.3.2 The Calculation of the Entropy Change 3.3.3 Entropy as a State Variable, Total Differential 3.4 The Entropy Change of Irreversible Processes 3.4.1 Friction 3.4.2 Temperature Equalisation 3.4.3 Pressure Equalisation 3.4.4 Throttling 3.5 Non-Adiabatic Process and Reversible Substitute Process 3.5.1 Isentropic Change of State; Interpretations of Entropy 3.5.2 Entropy Diagrams 3.5.3 Circular Integral, Thermodynamic Temperature 3.5.4 Dissipative Energy 4 Ideal Gases 4.1 Thermal Equation of State 4.1.1 Law of Boyle and Mariotte 4.1.2 Law of Gay-Lussac 4.1.3 Physical Norm State 4.1.4 Gas Thermometer 4.1.5 Specific Gas Constant 4.1.6 Universal Gas Constant 4.2 Caloric State Variables of Ideal Gases 4.2.1 Internal Energy 4.2.2 Enthalpy 4.2.3 Entropy 4.3 Changes of State 4.3.1 Isochoric Change of State 4.3.2 Isobaric Change of State 4.3.3 Isothermal Change of State 4.3.4 Isentropic Change of State 4.3.5 Polytropic Change of State 4.3.6 Changes of State with Variable Mass 4.4 Specific Thermal Energy and Specific Work in the T,s Diagram 4.5 Mixtures of Ideal Gases 4.5.1 The Mixing Process in the Closed System 4.5.2 The Mixing Process Without Total Volume Change 4.5.3 The Mixing Process Without Temperature Change, Pressure Change and Total Volume Change 4.5.4 The Mixing Process in the Open System 4.6 Dynamics of Ideal Gases: Compressible Stationary Gas Flow 4.6.1 Introduction 4.6.2 Velocity of Sound and Propagation of Sound 4.6.3 Energy Equation and Bernoulli Equation of Compressible One-Dimensional Ideal Gas Flow 4.6.4 Stagnation State Variables and Critical State 4.6.5 The Velocity Diagram of the Specific Energy Equation 4.6.6 Flow Function 4.6.7 Isentropic Gas Flow in Nozzles and Orifices 4.6.8 Accelerated Compressible Flow 4.6.9 Compression Shock 5 Real Gases and Vapors 5.1 Properties of Vapors 5.1.1 Phase Transitions 5.1.2 Two-Phase Regions 5.1.3 Boiling and Condensing 5.1.4 Evaporation and Thawing 5.1.5 Liquid 5.1.6 Two-Phase Liquid-Vapor State 5.1.7 Superheated Vapor 5.2 State Diagrams 5.2.1 The p,v,T Surface 5.2.2 The T,s Diagram 5.2.3 The h,s Diagram 5.3 Thermal Equations of State 5.3.1 The van der Waals Equation 5.3.2 The Boundary Curve and the Maxwell Relation 5.3.3 The Reduced van der Waals Equation 5.3.4 Different Approaches 5.3.5 Virial Coefficients 5.4 Calculation of State Variables; Property Tables 5.4.1 The Caloric State Variables 5.4.2 The Specific Heat Capacities cp and cv 5.4.3 The Isentropic Exponent and the Isothermal Exponent 5.4.4 The Clausius-Clapeyron Equation 5.4.5 Free Energy and Free Enthalpy 5.4.5.1 General 5.4.5.2 A g,s Diagram for Water and Steam 5.4.6 The Joule-Thomson Effect 6 Thermal Machines 6.1 Classification and Types of Machines 6.1.1 Classification According to the Direction of Energy Conversion 6.1.2 Classification According to the Construction of the Machines 6.1.3 Classification According to the Type of Process Taking Place 6.2 Ideal Machines 6.2.1 Compression and Expansion in Ideal Machines 6.2.2 Multi-Stage Compression and Expansion 6.2.3 The Energy Balance for Flow Machines 6.2.4 The Energy Balance for Displacement Machines 6.3 Energy Balances for Real Machines 6.3.1 Internal or Indexed Work 6.3.2 Total Work 6.3.3 Total Enthalpy 6.4 Real Machines 6.4.1 The Uncooled Compressor 6.4.2 The Cooled Compressor 6.4.3 Piston Compressor 6.4.4 Turbo Compressor 6.4.5 Gas and Steam Turbines 6.5 Efficiencies 6.5.1 Comparison Processes 6.5.2 The Internal Efficiency 6.5.3 The Mechanical Efficiency 6.5.4 The Total Efficiency 6.5.5 The Isentropic Efficiency 6.5.6 The Isothermal Efficiency 6.5.7 The Polytropic Efficiency 7 Cyclic Processes 7.1 Cyclic Process Work, Heat Input and Heat Output 7.2 Right-Hand and Left-Hand Cyclic Processes 7.3 The Theory of Right-Hand Cyclic Processes 7.3.1 Conversion of Thermal to Mechanical Energy 7.3.2 Thermal Efficiency 7.3.3 Right-Hand Carnot Process 7.3.4 Effect of Irreversible Processes 7.3.5 Carnot Factor 7.4 Technically Used Right-Hand Cyclic Processes 7.4.1 Seiliger Process, Otto Process, Diesel Process, Generalised Diesel Process 7.4.2 Joule Process 7.4.3 Ericsson Process 7.4.4 Stirling Process 7.4.5 Single-Polytropic Carnot Process 7.4.6 Gas Expansion Process 7.4.7 Clausius-Rankine Process 7.5 Comparative Evaluation of Right-Hand Cyclic Processes 7.5.1 Process Variables and Cyclic Processes 7.5.2 Mechanical Effort Ratios and Thermal Effort Ratios 7.5.3 Evaluation Criteria For Important Thermodynamic Cyclic Processes 7.5.3.1 General Thermodynamic Relations 7.5.3.2 Examples 7.5.3.3 Graphical Representation of the Thermodynamic Relations 7.5.3.4 Cyclic Process Calculations for Real Fluids 7.6 Left-Hand Cyclic Processes 7.6.1 Performance Number 7.6.2 Left-Hand Carnot Process 7.6.3 Left-Hand Joule Process 7.6.4 Gas Expansion Process as a Left-Hand Cycle Process 7.6.5 Cold Vapor Compression Process 8 Exergy 8.1 Energy and Exergy 8.1.1 Exergy of Heat 8.1.2 Exergy of Bound Energy 8.1.3 Exergy of Temperature Change Heat 8.1.4 Exergy of Volume Change Work 8.1.5 Exergy of Shift Work 8.1.6 Exergy of Pressure Change Work 8.1.7 Exergy of Internal Energy 8.1.8 Exergy of Enthalpy 8.1.9 Exergy of Free Energy 8.1.10 Exergy of Free Enthalpy 8.1.11 Difference between EU and EF 8.1.12 Difference between EH and EG 8.1.13 Free Energy and Free Enthalpy as Thermodynamic Potentials 8.2 Exergy and Anergy 8.2.1 Anergy in a p, V Diagram and in a T,S Diagram 8.2.2 Anergy-Free Energies 8.3 Exergy Loss 8.3.1 Irreversibility and Exergy Loss 8.3.2 Exergy Loss and Anergy Gain 8.3.3 Exergetic Efficiencies 9 Heat Transfer 9.1 Heat Radiation 9.1.1 Stefan-Boltzmann Law 9.1.2 Kirchhoff ’s Law 9.1.3 Planck’s Radiation Law 9.1.4 Wien’s Displacement Law 9.1.5 Lambert’s Cosine Law 9.1.6 Irradiance Number 9.2 Radiation Exchange 9.2.1 Cavity Method 9.2.2 Envelopment of One Surface by Another 9.2.3 Two Parallel Surfaces of Equal Size 9.2.4 Matrix Representation 9.3 Stationary One-Dimensional Heat Conduction 9.3.1 Plane Wall 9.3.2 Pipe Wall 9.4 Instationary One-Dimensional Heat Conduction 9.4.1 Plane Single-Layer Wall 9.4.2 Semi-Infinite Body 9.5 Heat Transfer by Convection 9.5.1 Heat Transfer Coefficient 9.5.2 Similarity Theory 9.5.3 Reynolds Analogy 9.5.4 Prandtl Analogy 9.5.5 Power Number Approaches for Laminar and Turbulent Flow 9.5.6 Approaches for Phase Transitions 9.6 Over-All Heat Transfer 9.6.1 Over-All Heat Transfer Coefficient 9.6.2 Fin Efficiency and Area Efficiency 9.6.3 Mean Temperature Difference 9.6.4 Operating Characteristic (Effectiveness) 9.7 Finned Heat Transfer Surfaces 9.7.1 Straight Fin with Rectangular Cross-Section 9.7.2 Circular Fin with Rectangular Cross-Section 9.8 Partition Wall Heat Exchangers 9.8.1 Unidirectional Flow Heat Exchanger 9.8.2 Counterflow Heat Exchanger 9.8.3 Crossflow Heat Exchanger 9.8.4 Heat Transfer with Phase Transition in a Heat Exchanger 9.9 Evaluation and Design 9.9.1 Correction Factor for a Crossflow Heat Exchanger 9.9.2 Representation of the Operating Characteristic 9.9.3 Longitudinal Heat Conduction in a Plane Partition Wall 9.9.4 Design Diagram 10 Humid Air 10.1 State Variables of Humid Air 10.1.1 Relative Humidity 10.1.2 Humidity Ratio and Saturation 10.1.3 Specific Enthalpy 10.2 Changes of State of Humid Air 10.2.1 Temperature Change 10.2.2 Humidification and Dehumidification 10.2.3 Mixing of Two Humid Air Quantities 10.3 The h,x Diagram of Mollier 10.3.1 Temperature Change 10.3.2 Humidification and Dehumidification 10.3.3 Mixing of Two Humid Air Quantities 10.4 Evaporation Model 10.4.1 Evaporation Coefficient 10.4.2 Energy Balances 10.4.3 Lewis Relationship 10.5 Cooling Limit 10.6 Evaporation and Dew Precipitation 10.7 Water Vapor Diffusion Through Walls 11 Combustion 11.1 Fuels 11.1.1 Gaseous Fuels 11.1.2 Solid and Liquid Fuels 11.1.3 Composition of the Combustion Gas, Combustion Triangles, Combustion Control 11.2 Technical Aspects of Combustion 11.2.1 Initiation and Progression of Combustion 11.2.2 Complete and Incomplete Combustion 11.2.3 Dew Point of Combustion Gases 11.2.4 Chimney Draught 11.3 Upper Calorific Value and Lower Calorific Value 11.4 Theoretical Combustion Temperature 12 Chemical Thermodynamics 12.1 Systems Involving Chemical Reactions 12.2 Reaction Turnover and Reaction Rate 12.3 Molar Enthalpies of Reaction and Standard Molar Enthalpies of Formation; Theorem of Hess 12.3.1 Molar Enthalpies of Reaction 12.3.2 Standard Molar Enthalpies of Formation; Theorem of Hess 12.4 Absolute Molar Entropies; Third Law of Thermodynamics 12.5 The Importance of the Second Law for Chemical Reactions 12.6 Chemical Exergies 12.7 Fuel Exergies 12.8 Chemical Potentials 12.9 The Law of Mass Action 12.10 Pressure and Temperature Dependence of the Constants of the Law of Mass Action; Law of Le Chatelier and Braun 12.11 Model of Isothermal-Isobaric Reversible Chemical Reactions 12.11.1 Model of Reversible Oxidation of Hydrogen 12.11.2 Model of Arbitrary Homogeneous Reversible Chemical Reactions of Ideal Gases 12.11.3 Reversible Storage of Heat and Work in the Form of Chemical Energy 12.12 Fuel Cells Appendix References Index