ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Drilling Engineering: Towards Achieving Total Sustainability

دانلود کتاب مهندسی حفاری: به سوی دستیابی به پایداری کامل

Drilling Engineering: Towards Achieving Total Sustainability

مشخصات کتاب

Drilling Engineering: Towards Achieving Total Sustainability

دسته بندی: فن آوری های نفت و گاز
ویرایش:  
نویسندگان: ,   
سری: Sustainable Oil and Gas Development 
ISBN (شابک) : 9780128201930, 0128201932 
ناشر: Gulf Professional Publishing 
سال نشر: 2020 
تعداد صفحات: 802 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 50 مگابایت 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Drilling Engineering: Towards Achieving Total Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مهندسی حفاری: به سوی دستیابی به پایداری کامل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مهندسی حفاری: به سوی دستیابی به پایداری کامل

سری توسعه پایدار نفت و گاز: مهندسی حفاری مواد تحقیقاتی و فناوری‌های نوظهور را ارائه می‌دهد که با معیارهای حفاری پایدار مطابقت دارند. با شروع با راه‌حل‌های ایده‌آل بدون ضایعات در حفاری و مزایای بلندمدت، مرجع رویکرد پایداری را از طریق استفاده از راه‌حل‌های غیرخطی مورد بحث قرار می‌دهد و راه خود را از طریق متعارف‌ترین شیوه‌ها و رویه‌هایی که امروزه استفاده می‌شود، بررسی می‌کند. فرمول‌بندی‌ها و مثال‌های گام به گام ارائه شده‌اند تا نشان دهند که چگونه می‌توان به شیوه‌های مرسوم در مقابل رویکردهای پایدار نگاه کرد و در نهایت به سمت یک جایگزین پایدارتر واگرایی کرد. فناوری های نوظهور پوشش داده شده اند و تجزیه و تحلیل دقیق پایداری گنجانده شده است. ملاحظات اقتصادی، تجزیه و تحلیل، و پیامدهای بلندمدت، با تمرکز بر مدیریت ریسک، با نتیجه‌گیری و یک واژه‌نامه گسترده تکمیل می‌شود. سری توسعه پایدار نفت و گاز: مهندسی حفاری به مهندسان نفت و حفاری امروزی راهنمای چگونگی تجزیه و تحلیل و ارزیابی عملیات خود را به روشی مبتنی بر محیط زیست ارائه می دهد. معیارها و استراتژی‌های فنی پایدار را برای رایج‌ترین روش‌های حفاری امروزی مانند حفاری افقی، حفاری تحت فشار مدیریت‌شده و فعالیت‌های غیر متعارف شیل پیشنهاد می‌کند. در مورد مزایای اقتصادی و چالش‌های توسعه برای سرمایه‌گذاری در عملیات‌های سازگار با محیط‌زیست بحث می‌کند. جدیدترین تحقیقات، تحلیل‌ها و چالش‌های باقی مانده را برجسته می‌کند. از جمله بهینه سازی جهانی


توضیحاتی درمورد کتاب به خارجی

Sustainable Oil and Gas Development Series: Drilling Engineering delivers research materials and emerging technologies that conform sustainability drilling criteria. Starting with ideal zero-waste solutions in drilling and long-term advantages, the reference discusses the sustainability approach through the use of non-linear solutions and works its way through the most conventional practices and procedures used today. Step-by-step formulations and examples are provided to demonstrate how to look at conventional practices versus sustainable approaches with eventually diverging towards a more sustainable alternative. Emerging technologies are covered and detailed sustainability analysis is included. Economic considerations, analysis, and long-term consequences, focusing on risk management round out the with conclusions and a extensive glossary. Sustainable Oil and Gas Development Series: Drilling Engineering gives today's petroleum and drilling engineers a guide how to analyze and evaluate their operations in a more environmentally-driven way. Proposes sustainable technical criteria and strategies for today's most common drilling practices such as horizontal drilling, managed pressure drilling, and unconventional shale activity Discusses economic benefits and development challenges to invest in environmentally-friendly operations Highlights the most recent research, analysis, and challenges that remain including global optimization



فهرست مطالب

Drilling Engineering
Copyright
Preface
1. Introduction
	1.1 Introduction of the book
	1.2 Introduction to drilling engineering
		1.2.1 Importance of sustainability and need of research
	1.3 Emerging technologies in drilling engineering
	1.4 Sustainability analysis of current drilling technologies
	1.5 Toward achieving sustainability in drilling
		1.5.1 Challenges in waste management
		1.5.2 A novel desalination technique
	1.6 Introduction to various chapters
		1.6.1 Chapter 2: State-of-the-art of drilling engineering
		1.6.2 Chapter 3: Advances in directional drilling
		1.6.3 Chapter 4: Advances in horizontal well drilling
		1.6.4 Chapter 5: Advances in drilling technologies
		1.6.5 Chapter 6: Drilling in unconventional terrains
		1.6.6 Chapter 7: Monitoring and global optimization
		1.6.7 Chapter 8: Environmental sustainability
		1.6.8 Chapter 9: Summary and conclusions
2. State-of-the-art of drilling
	2.1 Introduction
		2.1.1 History of modern drilling engineering
	2.2 Drilling methods
		2.2.1 Brief history of oil discovery
		2.2.2 An overview of drilling engineering
		2.2.3 Role of drilling during field development
		2.2.4 Types of drilling wells
			2.2.4.1 Sequences of drilling operations
			2.2.4.2 Organization chart and manpower requirements during drilling operations
		2.2.5 Various types of drilling
			2.2.5.1 Percussion or cable drilling
			2.2.5.2 Rotary drilling
				2.2.5.2.1 Drilling parameters
				2.2.5.2.2 Drilling optimization
	2.3 Drilling fluids
		2.3.1 Drilling fluid circulating system
		2.3.2 Classification of drilling fluids
			2.3.2.1 Water-based mud
			2.3.2.2 Oil-based mud
			2.3.2.3 Air or gas-based mud
			2.3.2.4 Foam
			2.3.2.5 Special types of muds
		2.3.3 Composition of drilling fluids
		2.3.4 Mud additives
			2.3.4.1 Chemical additives
			2.3.4.2 Additives for water-based mud
		2.3.5 Additives for oil-based mud
		2.3.6 Solid control equipment
		2.3.7 Measurement of drilling fluids properties
			2.3.7.1 Mud density
			2.3.7.2 Mud viscosity
			2.3.7.3 Measurement of mud viscosity
			2.3.7.4 Gel strength
			2.3.7.5 pH Determination
			2.3.7.6 Filtration tests
			2.3.7.7 Sand content
			2.3.7.8 Determination of liquid and solids content
			2.3.7.9 Alkalinity
			2.3.7.10 Water hardness
			2.3.7.11 Water analysis
			2.3.7.12 Chemical analysis
			2.3.7.13 Chloride concentration
			2.3.7.14 Cation exchange capacity of clays
			2.3.7.15 Electrical properties
		2.3.8 Current development on drilling fluids
			2.3.8.1 Formulation of WBM
			2.3.8.2 Formulation of OBM
			2.3.8.3 Formulation of gas-based mud
			2.3.8.4 Development of environment-friendly mud system
			2.3.8.5 Application of nanotechnology
			2.3.8.6 Application of biomass
		2.3.9 Future trend on drilling fluids
			2.3.9.1 Cost analysis
			2.3.9.2 Development of environment friendly mud additives
			2.3.9.3 Sustainability
			2.3.9.4 Development of mud and/or additives for HTHP applications
	2.4 Drilling hydraulics
		2.4.1 Types of fluids
			2.4.1.1 Newtonian Fluid
			2.4.1.2 Non-Newtonian fluid
			2.4.1.3 Different rheological models for non-Newtonian fluids
		2.4.2 Flow regimes
			2.4.2.1 Laminar flow
			2.4.2.2 Turbulent flow
			2.4.2.3 Transitional flow
		2.4.3 Hydrostatic pressure calculation
			2.4.3.1 Liquid columns
			2.4.3.2 Gas columns
		2.4.4 Fluid flow through pipes
		2.4.5 Fluid flow through drill bits
		2.4.6 Pressure loss calculation of the rig system
			2.4.6.1 Pipe flow
			2.4.6.2 Annular flow
			2.4.6.3 Bit flow
		2.4.7 Current development on drilling hydraulics
			2.4.7.1 Drilling hydraulics optimization
			2.4.7.2 Down-hole motor technology
			2.4.7.3 Drilling hydraulics for the aerated “foam” fluids
			2.4.7.4 Drilling hydraulics of aerated fluids for vertical wells
			2.4.7.5 Drilling hydraulics of aerated fluids for deviated, horizontal, and ERD wells
			2.4.7.6 Drilling hydraulics for coiled tubing drilling
		2.4.8 Future trends of drilling hydraulics
			2.4.8.1 Hydraulics of dual gradient drilling
			2.4.8.2 Enlargement of hydraulics operating window
			2.4.8.3 Introducing new hole cleaning devices
	2.5 Well control and monitoring program
		2.5.1 Well control system
			2.5.1.1 Well control principles
				2.5.1.1.1 Primary control
				2.5.1.1.2 Secondary control
			2.5.1.2 Warning signals of kicks
				2.5.1.2.1 Primary indicators
				2.5.1.2.2 Secondary indicators
		2.5.2 Control of influx and kill mud
			2.5.2.1 Analysis of shut-in pressure
			2.5.2.2 Type of influx and gradient calculation
			2.5.2.3 Kill mud weight calculation
			2.5.2.4 Kick analysis
			2.5.2.5 Shut-in surface pressure
			2.5.2.6 Kick detection equipment
			2.5.2.7 Kick management equipment
				2.5.2.7.1 Annular preventers
				2.5.2.7.2 Ramtype preventers
				2.5.2.7.3 Blowout preventer stack
				2.5.2.7.4 Drilling spools
				2.5.2.7.5 Casing spools
				2.5.2.7.6 Casing head
				2.5.2.7.7 Kill and choke lines
				2.5.2.7.8 Diverter system
				2.5.2.7.9 Choke manifold
				2.5.2.7.10 Choke device
				2.5.2.7.11 Internal preventers
				2.5.2.7.12 Accumulators
		2.5.3 Well monitoring system
		2.5.4 Current practice in well control and monitoring
		2.5.5 Managed pressure drilling
		2.5.6 Real-time data analysis with dynamic neural network
		2.5.7 Future trend on well control and monitoring system
			2.5.7.1 Real-time vibration measurement
3. Advances in directional drilling
	3.1 Introduction
		3.1.1 Technological advances in directional drilling technology
	3.2 Overview of directional drilling
		3.2.1 Basic terminologies
		3.2.2 Types of directional drilling
			3.2.2.1 Horizontal drilling
			3.2.2.2 Multilateral drilling
			3.2.2.3 Extended-reach drilling
			3.2.2.4 Coiled tubing drilling
			3.2.2.5 Buckling models in coiled tubing
		3.2.3 Well planning trajectory
			3.2.3.1 Directional patterns
		3.2.4 Directional drilling tools
			3.2.4.1 Drill collars
			3.2.4.2 Heavy-weight drill pipe
			3.2.4.3 Stabilizer
			3.2.4.4 Roller reamers
			3.2.4.5 Key seat wiper
			3.2.4.6 Crossover sub
			3.2.4.7 Drilling jars
		3.2.5 Deviating tools
			3.2.5.1 Whip stocks
			3.2.5.2 Jetting
			3.2.5.3 Downhole motors
			3.2.5.4 Steerable drilling system
			3.2.5.5 Operation of a steerable system
		3.2.6 Directional control with bottom hole assemblies
			3.2.6.1 Fulcrum assembly
		3.2.7 Well survey
			3.2.7.1 Survey tools
			3.2.7.2 Magnetic survey tools
			3.2.7.3 Magnetic single-shot surveys
			3.2.7.4 Magnetic multiple-shot surveys
		3.2.8 Measurement while drilling
			3.2.8.1 The positive system
			3.2.8.2 The negative pulse system
			3.2.8.3 The continuous-wave system
			3.2.8.4 Gyroscopes
			3.2.8.5 Gyro single-shot surveys
			3.2.8.6 Gyro multishot surveys
			3.2.8.7 Surface readout gyroscopes
			3.2.8.8 Gyrocompass (north seeking gyroscope)
			3.2.8.9 Survey calculation
			3.2.8.10 Principles of surveying
			3.2.8.11 Average angle method
			3.2.8.12 Radius of curvature
			3.2.8.13 Minimum curvature
			3.2.8.14 Balanced tangential method
			3.2.8.15 Survey calculations and plotting results
			3.2.8.16 Calculate the position of the survey station
			3.2.8.17 Calculate the displacement of the station in the vertical section
			3.2.8.18 Calculate the dogleg severity of the section
		3.2.9 Geosteering
	3.3 Theories and future expectations
		3.3.1 Bit/rock interaction
		3.3.2 Bottom hole assembly model
		3.3.3 Borehole propagation model
		3.3.4 Governing equations
			3.3.4.1 Geometry
			3.3.4.2 Bit/rock interface
			3.3.4.3 Cutter/rock interaction
	3.4 Novel tools for directional drilling accuracy
		3.4.1 Drill bit
			3.4.1.1 Future of drill bit technology
		3.4.2 Measurements while drilling
		3.4.3 Jetting
		3.4.4 Downhole motors
		3.4.5 Gyroscope
	3.5 Future trends and path to sustainability
		3.5.1 Innovations in steering technology
		3.5.2 Rotary steerable drilling tools
		3.5.3 Directional system drilling with multiple motors
		3.5.4 Rapidly changing inclination during drilling
		3.5.5 Monitoring, geosteering, and drilling optimization
	3.6 Future with sustainable technology development
		3.6.1 Usage of natural frequency
		3.6.2 Sonic while drilling
		3.6.3 Smart wells: a research project
	3.7 Summary
	3.8 Nomenclature
	3.9 Exercise
	3.10 Example problems
4. Advances in horizontal well drilling
	4.1 Introduction
	4.2 Casing while drilling (CWD)
		4.2.1 Benefits of casing drilling
		4.2.2 Challenges in CWD
	4.3 System description of horizontal well drilling
		4.3.1 Progress in steering control and horizontal well drilling optimization
	4.4 Longer reach horizontal well
		4.4.1 Rotating drilling mode
		4.4.2 Application example
	4.5 Directional difficulty index (DDI)
	4.6 Multilateral wells
	4.7 Future trends
	4.8 Toward developing sustainable drilling
		4.8.1 Production history data processing
		4.8.2 Nonlinear filtering permeability data
	4.9 Summary
5. Advances in managed pressure drilling technologies
	5.1 Introduction
	5.2 Managed pressure drilling
		5.2.1 Process description
		5.2.2 Benefits of MPD
		5.2.3 Types of MPD
		5.2.4 Historical background
		5.2.5 Case studies MPD
		5.2.6 Key factors for improving performance
			5.2.6.1 Adaptability
			5.2.6.2 Extending the casing points
			5.2.6.3 Lost circulation
			5.2.6.4 Well kicks
			5.2.6.5 Differentially stuck drill pipe
			5.2.6.6 Deepwater drilling
		5.2.7 Basic mathematics behind MPD
			5.2.7.1 Bottomhole pressure calculations with liquids
			5.2.7.2 Basic well control
			5.2.7.3 Driller's method
			5.2.7.4 Dual gradient methods
				5.2.7.4.1 Riser gas lift
			5.2.7.5 Magnetic gradient drilling
	5.3 Underbalanced drilling
		5.3.1 Gaseated mud drilling
		5.3.2 Definitions
		5.3.3 Underbalance techniques
			5.3.3.1 Nonlinear two-phase flow system
			5.3.3.2 Drill string connection
			5.3.3.3 Drilling and tripping
			5.3.3.4 Full liquid column for MWD survey
			5.3.3.5 Interrupted supply and equipment failure
			5.3.3.6 Localized reservoir pressure depletion
		5.3.4 Means of wellbore pressure reduction
		5.3.5 Challenges in UBD
			5.3.5.1 Cost
			5.3.5.2 Pressure surges
			5.3.5.3 Other challenges
		5.3.6 Equipment for underbalanced drilling
		5.3.7 Underbalanced drilling fluid perforation system
		5.3.8 Benefits of underbalanced drilling
			5.3.8.1 Reservoir protection
			5.3.8.2 Reduction or elimination of lost circulation
			5.3.8.3 Elimination of differential sticking
			5.3.8.4 Increase in rate of penetration
			5.3.8.5 Extension of bit life
			5.3.8.6 Reservoir evaluation
	5.4 Western desert oil field area
	5.5 Nile delta oil field area
	5.6 Comparison of MPD and UBD
		5.6.1 Industry-recognized definitions
		5.6.2 Drilling fluid
		5.6.3 Tier-based system
			5.6.3.1 Underbalanced drilling
			5.6.3.2 Managed pressure drilling
		5.6.4 Candidate screening
			5.6.4.1 Underbalanced drilling
			5.6.4.2 Managed pressure drilling
		5.6.5 Drilling mud
			5.6.5.1 Underbalanced drilling
		5.6.6 Managed pressure drilling
		5.6.7 Drillstring and well construction design
			5.6.7.1 Underbalanced drilling
			5.6.7.2 Managed pressure drilling
		5.6.8 Footprints on location
			5.6.8.1 Underbalanced drilling
			5.6.8.2 managed pressure drilling
			5.6.8.3 Drilling methodology
			5.6.8.4 Underbalanced drilling
			5.6.8.5 Managed pressure drilling
		5.6.9 Well control strategy
			5.6.9.1 Underbalanced drilling
			5.6.9.2 Managed pressure drilling
		5.6.10 Annulus return flow measuring devices
			5.6.10.1 Underbalanced drilling
			5.6.10.2 managed pressure drilling
	5.7 Novel technologies
		5.7.1 Dynamic underbalanced drilling (DUBD)
		5.7.2 Drilling with recycled gas
6. Drilling in unconventional terrains
	6.1 Introduction
	6.2 Rock mechanics of difficult terrains
		6.2.1 Natural and artificial fractures
			6.2.1.1 Interpretation of borehole images to identify breakouts
			6.2.1.2 Overall in situ stress orientations
		6.2.2 A new reservoir characterization tool
		6.2.3 Origin of fractures
		6.2.4 Seismic fracture characterization
			6.2.4.1 Effects of fractures on normal moveout velocities and P-wave azimuthal AVO response
			6.2.4.2 Effects of fracture parameters on properties of anisotropic parameters and P-wave NMO velocities
	6.3 Reservoir heterogeneity
		6.3.1 Filtering permeability data
		6.3.2 Estimates of fracture properties
		6.3.3 Special considerations for shale
	6.4 Abnormal pressure formation
		6.4.1 Origin of abnormal pressure
		6.4.2 Methods of determination and prediction of pressure abnormality
		6.4.3 Most comprehensive method
	6.5 Mud loss susceptibility
		6.5.1 Prediction of mud loss
	6.6 Cavernous formations
	6.7 Harsh environment drilling
	6.8 Summary
7. Monitoring and global optimization
	7.1 Introduction
	7.2 Drilling while seismic
		7.2.1 Separation of reflections by dual measurements
		7.2.2 Improvement of the SWD technology
		7.2.3 Field test of the improved methodology
	7.3 Reservoir characterization during drilling
		7.3.1 Overbalanced drilling
		7.3.2 Underbalanced drilling
		7.3.3 Reservoir characterization with image log and core analysis
		7.3.4 Geophysical logs
		7.3.5 Circumferential borehole imaging log
	7.4 Comparison between geophysical logs and well testing
		7.4.1 Petrophysical data analysis using Nuclear Magnetic Resonance
		7.4.2 Core analysis
		7.4.3 Total volume estimate
	7.5 Dynamic optimization
		7.5.1 Closed loop approach
			7.5.1.1 Optimization methods
				7.5.1.1.1 Gradient-based algorithms
				7.5.1.1.2 Gradient-free algorithms
				7.5.1.1.3 Artificial intelligence algorithms
			7.5.1.2 Optimization under geological uncertainty
		7.5.2 Fast and robust optimization techniques
		7.5.3 Oil field application
			7.5.3.1 Factors affecting rate of penetration
			7.5.3.2 Optimization of ROP
	7.6 Adaptive control in drilling operations
		7.6.1 Research initiatives
		7.6.2 Adaptive control of a Rig system
8. Environmental sustainability
	8.1 Introduction
	8.2 Environmental sustainability of petroleum operations
		8.2.1 Pathways of crude oil formation
		8.2.2 Pathways of oil refining
			8.2.2.1 Process emissions
			8.2.2.2 Combustion emissions
			8.2.2.3 Fugitive emissions
			8.2.2.4 Storage and handling emissions
			8.2.2.5 Auxiliary emissions
	8.3 Current practices in exploration, drilling, and production
		8.3.1 Key to sustainability
	8.4 Sour gas
		8.4.1 Trends in oil, natural gas, and sour gas contents
		8.4.2 Casing and strategies for sour gas containing petroleum
			8.4.2.1 Finite service life design theory
			8.4.2.2 Corrosion environment for high-temperature high-pressure sour gas wells
			8.4.2.3 Increment of elementary sulfur
			8.4.2.4 Finite service life evaluation for example well
		8.4.3 No-flare operations
	8.5 Challenges in waste management
	8.6 Zero-waste operations
		8.6.1 Green inputs and outputs
		8.6.2 Zero emissions (air, soil, water, solid waste, hazardous waste)
		8.6.3 Zero waste of resources (energy, material, and human)
		8.6.4 Zero waste in administration activities
		8.6.5 Zero use of toxics (processes and products)
		8.6.6 Zero waste in product life cycle (transportation, use and end-of-life)
		8.6.7 Zero waste in reservoir management
	8.7 Greening of petroleum operations
		8.7.1 Direct use of solar energy
		8.7.2 Effective separation of solid from liquid
		8.7.3 Effective separation of liquid from liquid
		8.7.4 Effective separation of gas from gas
		8.7.5 Natural substitutes for gas-processing chemicals (glycol and amines)
		8.7.6 Membranes and absorbents
		8.7.7 A novel desalination technique
		8.7.8 A novel refining technique
		8.7.9 Use of solid acid catalyst for alkylation
		8.7.10 Use of bacteria to break down heavier hydrocarbons to lighter ones
		8.7.11 Use of cleaner crude oil
		8.7.12 Use of gravity separation systems
		8.7.13 A novel separation technique
	8.8 Selected patents on “green” drilling
		8.8.1 Hossain and Wajheuddin (2018), environmentally safe filtration control agents for drilling fluids
		8.8.2 Investigation of the potential use of nonedible vegetable oil as part of a sustainable drilling mud system composition (Hos ...
		8.8.3 A drilling mud composition with aloe vera particles and a fracking process using the same (Hossain, 2018)
		8.8.4 Robust technique for optimizing drilling rate (Al-Rubaii and Hossain, 2019)
		8.8.5 New automated robust ratio of key performance indicator to improve rig efficiency (Al-Rubaii and M. Enamul Hossain, 2019)
		8.8.6 An artificial intelligent technique to identify loss circulation incidents in real time (Gharbi and Hossain, 2019)
9. Summary and conclusions
	9.1 Chapter 1: Introduction
	9.2 Chapter 2: State-of-the-art of drilling engineering
	9.3 Chapter 3: Advances in directional drilling
	9.4 Chapter 4: Advances in horizontal well drilling
	9.5 Chapter 5 Advances in managed pressure drilling technologies
	9.6 Chapter 6 Drilling in unconventional terrains
	9.7 Chapter 7 Monitoring and global optimization
	9.8 Chapter 8 Environmental sustainability
Appendix
	Environmentally safe filtration control agents for drilling fluids(Hossain and Wajheuddin, 2018)
	Example 1
	Sample preparationdgrass powder
	Example 2
	Characterization of grass powderd—300 micron particle size
	Example 3
	Characterization of grass powderd—90 micron particle size
	Example 4
	Characterization of grass powderd—35 micron particle size
	Example 5
	Sample preparationddate seed powder
	Example 6
	Characterization of date seed powderd—600 micron particle size
	Example 7
	Characterization of date seed powderd—300 micron particle size
	Example 8
	Characterization of date seed powderd—125 micron particle size
	Example 9
	Sample preparationdgrass ash powder
	Example 10
	Characterization of grass powderd—300 micron particle size
	Example 11
	Characterization of grass ash powderd—90 micron particle size
	Example 12
	Characterization of grass ash powderd—26 micron particle size
	Investigation of the potential use of nonedible vegetable oil as part of a sustainabledrilling mud system composition (Hossain, 2019)
	Abstract
	Background and description
	Example 13
	Prior efforts
	A drilling mud composition with aloe vera particles and a frackingprocess using the same (Hossain, 2018)
	Abstract
	Brief summary of the invention
	Detailed description of the embodiments
	Example 14
	Aloe vera particle characterization
	Example 15
	Aloe vera particle synthesis
	Example 16
	Drilling mud preparation and properties
	Robust technique for optimizing drilling rate (Al-Rubaii and Hossain)
	Abstract
	Introduction
	Methodology
	Phase I: Collecting and screening field data to identify the significant parameters
	Phase II: Study of the effect of drilling parameters and drilling hydraulics
	Summary
	List of abbreviations
	List of equations
	New automated robust ratio of key performance indicator to improve rig efficiency(Al-Rubaii and M. Enamul Hossain, 2019)
	New automated robust ratio of key performance indicator to improve rig efficiency(Al-Rubaii and M. Enamul Hossain, 2019)
	Abstract
	Introduction
	Perfect technical limit ratio
	Validation
	Results and discussion
	Conclusions and summary
	An artificial intelligent technique to identify loss circulation incidents in real time(Msng ref. Gharbi and Hossain, 2019)
	Abstract
	Current methodology
	The model algorithm
	Loss circulation
	Total loss
	Well control
	Result
	Patents cite
	The model limitation
References
	References
	Further reading
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z




نظرات کاربران