دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تحلیل و بررسی ویرایش: Rev. ed نویسندگان: Sheng Gong, Youhong Gong سری: ISBN (شابک) : 9789812706935, 9812706933 ناشر: World Scientific سال نشر: 2007 تعداد صفحات: 257 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Concise complex analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل مختصر مختصر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کتاب درسی مختصر در مورد تجزیه و تحلیل پیچیده برای دانشجویان کارشناسی و کارشناسی ارشد، این کتاب از دیدگاه ریاضیات مدرن نوشته شده است: معادله نوار {جزئی}، هندسه دیفرانسیل، گروه های دروغ، تمام مطالب سنتی در مورد تجزیه و تحلیل مختلط گنجانده شده است. این کتاب با جدا کردن آن از دیگران، بسیاری از گزارهها و اثباتهای قضایای کلاسیک را در تحلیل پیچیده سادهتر، کوتاهتر و ظریفتر میکند: برای مثال، قضیه میتاگ لفر با استفاده از معادله بار {جزئی} و قضیه پیکارد اثبات میشود. با استفاده از روش های هندسه دیفرانسیل
A concise textbook on complex analysis for undergraduate and graduate students, this book is written from the viewpoint of modern mathematics: the Bar {Partial}-equation, differential geometry, Lie groups, all the traditional material on complex analysis is included. Setting it apart from others, the book makes many statements and proofs of classical theorems in complex analysis simpler, shorter and more elegant: for example, the Mittag Leffer theorem is proved using the Bar {Partial}-equation, and the Picard theorem is proved using the methods of differential geometry.
Cover......Page 1
Title page......Page 3
Date-line......Page 4
Dedication......Page 5
Preface to the Revised Edition......Page 7
Preface to the First Edition......Page 9
Foreword......Page 11
Contents......Page 17
1.1 A Brief Review of Calculus......Page 21
1.2 The Field of Complex Numbers, The Extended Complex Plane and Its Spherical Representation......Page 28
1.3 Derivatives of Complex Functions......Page 31
1.4 Complex Integration......Page 37
1.5 Elementary Functions......Page 39
1.6 Complex Series......Page 46
Exercise I......Page 49
2.1 Cauchy-Green Formula (Poinpeiu Formula)......Page 59
2.2 Cauchy-Goursat Theorem......Page 64
2.3 Taylor Series and Liouville Theorem......Page 72
2.4 Some Results about the Zeros of Holomorphic Functions......Page 79
2.5 Maximum Modulus Principle, Schwarz Lemma and Group of Holomorphic Automorphisms......Page 84
2.6 Integral Representation of Holomorphic Functions......Page 89
Exercise II......Page 95
Appendix I Partition of Unity......Page 102
3.1 Laurent Series......Page 105
3.2 Isolated Singularity......Page 110
3.3 Entire Functions and Meromorphic Functions......Page 113
3.4 Weierstrass Factorization Theorem, Mittag-Lefller Theorem and Interpolation Theorem......Page 117
3.5 Residue Theorem......Page 126
3.6 Analytic Continuation......Page 133
Exercise III......Page 137
4.1 Conformal Mapping......Page 143
4.2 Normal Family......Page 148
4.3 Riemann Mapping Theorem......Page 151
4.4 Symmetry Principle......Page 154
4.5 Some Examples of Riemann Surface......Page 156
4.6 Schwarz-Christoffel Formula......Page 158
Exercise IV......Page 161
Appendix II Riemann Surface......Page 163
5.1 Metric and Curvature......Page 165
5.2 Ahlfors-Schwarz Lemma......Page 171
5.3 The Generalization of Liouville Theorem and Value Distribution......Page 173
5.4 The Little Picard Theorem......Page 174
5.5 The Generalization of Normal Family......Page 176
5.6 The Great Picard Theorem......Page 179
Exercise V......Page 182
Appendix III Curvature......Page 183
6.1 Introduction......Page 189
6.2 Cartan Theorem......Page 192
6.3 Groups of Holomorphic Automorphisms of The Unit Ball and The Bidisc......Page 194
6.4 Poincare Theorem......Page 199
6.5 Hartogs Theorem......Page 201
7.1 The Concept of Elliptic Functions......Page 205
7.2 The Weierstrass Theory......Page 211
7.3 The Jacobi Elliptic Functions......Page 217
7.4 The Modular Function......Page 220
8.1 The Gamma Function......Page 227
8.2 The Rieniann $\\zeta$-function......Page 231
8.3 The Prime Number Theorem......Page 238
8.4 The Proof of The Prime Number Theorem......Page 242
Bibliography......Page 251
Index......Page 255