دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: اقتصاد ریاضی ویرایش: 1 نویسندگان: Lewis. Margaret سری: ISBN (شابک) : 9780415777988, 9780203808450 ناشر: Routledge سال نشر: 2012 تعداد صفحات: 465 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
کلمات کلیدی مربوط به کتاب آمار کاربردی برای اقتصاددانان: آمار، اقتصاد، اقتصاددانان
در صورت تبدیل فایل کتاب Applied Statistics for Economists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار کاربردی برای اقتصاددانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک متن در مقطع کارشناسی است که دانشجویان را با روش های آماری رایج در اقتصاد آشنا می کند. با استفاده از مثالهایی مبتنی بر مسائل اقتصادی معاصر و دادههای در دسترس، نه تنها مکانیزم روشهای مختلف را توضیح میدهد، بلکه دانشآموزان را برای اتصال نتایج آماری به تفاسیر اقتصادی دقیق راهنمایی میکند. از آنجایی که هدف این است که دانش آموزان بتوانند از روش های آماری ارائه شده استفاده کنند، منابع آنلاین برای داده های اقتصادی و دستورالعمل های انجام هر کار در اکسل نیز گنجانده شده است.
This book is an undergraduate text that introduces students to commonly used statistical methods in economics. Using examples based on contemporary economic issues and readily available data, it not only explains the mechanics of the various methods, but also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.
Front Cover Applied Statistics for Economists Copyright page Contents List of figures List of tables List of charts List of boxes Preface A note on the textbook’s focus and scope A note on the “Where can I find. . .?” boxes 1. The role of statistics in economics 1.1 Understanding the economy using empirical evidence 1.2 Measuring economic welfare 1.3 Distribution of household income 1.4 Assessing full employment 1.5 Calculating economic growth 1.6 Measuring inflation 1.7 Theoretical relationships between unemployment and economic growth 1.8 The connection between economic theory and statistical evidence Summary Concepts introduced Exercises 2. Visual presentations of economic data 2.1 Economic graphs and charts 2.2 Time-series data and charts 2.3 Cross-section data and charts 2.4 Panel data and charts 2.5 Creating effective charts 2.6 Constructing charts using Excel Summary Concepts introduced Exercises Part I: Descriptive statistics of an economic variable 3. Observations and frequency distributions 3.1 The design of observations: an introduction 3.2 Attributes and measured variables 3.3 Organizing data: absolute frequency distributions 3.4 Organizing data: relative frequency distributions 3.5 Visual presentations of frequency distribution: histograms 3.6 Classes in a frequency distribution 3.7 Constructing a frequency distribution 3.8 Frequency polygons 3.9 Cumulative frequency distributions and ogives Summary Concepts introduced Exercises 4. Measures of central tendency 4.1 Desirable properties for descriptive statistics 4.2 Three measures of central tendency: mean, median, and mode 4.3 Measures of central tendency for frequency distributions 4.4 Weighted arithmetic means 4.5 Geometric means 4.6 Positional measures for ungrouped data 4.7 Positional measures for a frequency distribution Summary Concepts introduced Exercises 5. Measures of dispersion 5.1 The concept of dispersion 5.2 Populations and samples 5.3 Range 5.4 Interquartile range 5.5 Average deviation 5.6 The concept of the standard deviation 5.7 Calculating the standard deviation for ungrouped data 5.8 Calculating measures of dispersion for frequency distributions 5.9 Locating extreme values 5.10 The shape of frequency distributions 5.11 Choosing the appropriate descriptive statistics 5.12 Assessing relative dispersion: coefficient of variation 5.13 Assessing relative dispersion: index of dispersion 5.14 Depicting relative dispersion: the Lorenz curve 5.15 Assessing relative dispersion: Gini coefficient of inequality Summary Concepts introduced Exercises Part II: Temporal descriptive statistics 6. Measuring changes in price and quantity 6.1 Important index numbers in empirical economics 6.2 Why economists use index numbers 6.3 Constructing a simple price index 6.4 Constructing a weighted price index 6.5 Selecting appropriate weights for an index number 6.6 Chained price indices 6.7 Price index applications 6.8 Shifting an index’s reference period 6.9 Quantity indices 6.10 Composite indices Summary Concepts introduced Exercises 7. Descriptions of stability: short-run changes 7.1 Measuring economic change over time 7.2 Calculating percentage growth 7.3 Compound growth 7.4 Annualized growth rates from sub-annual rates 7.5 Annualized growth rates from supra-annual rates 7.6 Continuous compound growth 7.7 Continuously compounded annual growth and logarithms Summary Concepts introduced Exercises 8. Patterns of long-term change 8.1 Economic growth over time 8.2 Constant long-run rates of growth 8.3 Growth by constant amounts 8.4 Change over time by constant rates or by constant amounts? 8.5 A complete model for describing change 8.6 Seasonal effects 8.7 Cyclical effects 8.8 Irregular effects Summary Concepts introduced Exercises Part III: Statistical inferences about a single variable 9. Basic concepts in statistical inference 9.1 Populations and samples revisited 9.2 Sampling procedures 9.3 Concepts of probability 9.4 Probability distributions 9.5 Continuous probability distributions: the normal distribution 9.6 Continuous probability distributions: standard normal distribution 9.7 Identifying a normal distribution 9.8 The concept of the sampling distribution of means 9.9 Sampling distribution of means and the Central Limit Theorem 9.10 Sampling distribution of the Z-statistic Summary Concepts introduced Exercises 10. Statistical estimation 10.1 Sample surveys as a source of data 10.2 Interval estimates of the population mean when the variance of the population is known 10.3 Confidence levels and the precision of an interval estimate 10.4 The t-distribution 10.5 Confidence intervals for the population mean when the variance of the population is not known 10.6 Confidence intervals for proportions, percentages, and rates 10.7 Confidence intervals for differences between means and proportions Summary Concepts introduced Exercises 11. Statistical hypothesis testing of a mean 11.1 Testing hypotheses in economics: an analogy to criminal trials 11.2 An overview of hypothesis testing in economics: evaluating truth in advertising 11.3 Economic hypothesis testing: stating the hypotheses 11.4 Economic hypothesis testing: selecting the level of significance 11.5 Economic hypothesis testing: establishing the decision rule 11.6 Economic hypothesis testing: constructing the test statistic and making a decision about the null hypothesis 11.7 Testing hypotheses versus estimating confidence intervals 11.8 Evaluating a statistical rule in terms of a Type I error 11.9 Evaluating a statistical rule in terms of a Type II error 11.10 The p-value and hypothesis testing Summary Concepts introduced Exercises Part IV: Relationships between two variables 12. Correlation analysis 12.1 Statistical relationships between two variables 12.2 Correlation analysis: descriptive statistics 12.3 Testing the significance of the correlation coefficient 12.4 Testing the sign on the correlation coefficient Summary Concepts introduced Exercises 13. Simple linear regression analysis: descriptive measures 13.1 Introduction to simple linear regression analysis 13.2 The algebra of linear relationships for regression analysis 13.3 Simple linear regression analysis: education and GDP 13.4 The algebra of variations in linear regression relationships 13.5 The coefficient of determination in regression analysis 13.6 Simple linear regression analysis: infant mortality rates and skilled health personnel at birth Summary Concepts introduced Exercises 14. Simple regression analysis: statistical inference 14.1 The need for statistical inference in regression analysis 14.2 Testing hypotheses about the GDP–education regression model’s slope coefficient 14.3 Sampling distributions of the linear regression’s slope and intercept coefficients 14.4 Establishing the null and alternative hypotheses for the slope coefficient 14.5 Levels of significance and decision rules 14.6 The test statistic and p-value for the slope coefficient 14.7 An example of a hypothesis about the slope coefficient: infant mortality rates 14.8 What hypothesis testing does and does not prove Summary Concepts introduced Exercises 15. Simple regression analysis: variable scales and functional forms 15.1 Rescaling variables and interpreting the regression coefficients 15.2 Specifying the regression equation: functional forms 15.3 Semi-log functional forms: the log–lin model 15.4 Semi-log functional forms: the lin–log model 15.5 Double-log functional form 15.6 Other functional forms 15.7 Selecting the appropriate functional form Summary Concepts introduced Exercises Part V: Relationships between multiple variables 16. Multiple regression analysis: estimation and interpretation 16.1 Simple to multiple regression analysis: an introduction 16.2 The multiple-variable linear regression model 16.3 Specifying the independent variables and functional form for the multiple regression model 16.4 Specifying a multiple regression model for infant mortality rates 16.5 Estimating a multiple regression model for infant mortality rates Summary Concepts introduced Exercises 17. Multiple regression analysis: ypothesis tests for partial regression coefficients and overall goodness of fit 17.1 General procedures for testing the significance of the partial regression coefficients (bi) 17.2 Testing the significance of partial regression coefficients (bi): IMR model 17.3 Evaluating the overall goodness of fit 17.4 Interpreting the infant mortality model’s overall goodness of fit 17.5 Testing joint hypotheses about the regression model’s overall significance: basic concepts and procedures 17.6 Testing joint hypothesis about the IMR multiple regression model’s overall significance 17.7 Is each independent variable statistically related to the dependent variable? 17.8 The “best” statistical multiple regression model 17.9 The “better” statistical infant mortality model? 17.10 Closing observations about the IMR multiple regression results Summary Concepts introduced Exercises 18. Multiple regression analysis: dummy variables and statistical problems 18.1 Independent dummy variables: basic concepts and considerations 18.2 Independent dummy variables: infant mortality rates and sub-Saharan Africa 18.3 Multicollinearity 18.4 Model misspecification and omitted variable bias 18.5 “Misbehaved” regression residuals: heteroskedasticity and serial correlation Summary Concepts introduced Exercises Notes Bibliography Index