دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: Feras A. Batarseh, Laura Freeman سری: ISBN (شابک) : 0323919197, 9780323919197 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 602 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب AI Assurance: Towards Trustworthy, Explainable, Safe, and Ethical AI به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تضمین هوش مصنوعی: به سوی هوش مصنوعی قابل اعتماد، قابل توضیح، ایمن و اخلاقی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تضمین هوش مصنوعی: به سوی هوش مصنوعی قابل اعتماد، قابل توضیح، ایمن و اخلاقی راه حلها و درک اساسی از روشهایی را در اختیار خوانندگان قرار میدهد که میتوانند برای آزمایش سیستمهای هوش مصنوعی و ارائه اطمینان به کار روند. هر کسی که سیستمهای نرمافزاری با هوشمندی، ایجاد الگوریتمهای یادگیری، یا استقرار هوش مصنوعی در یک مشکل خاص دامنه (مانند تخصیص نقضهای سایبری، تجزیه و تحلیل علت در مزرعه هوشمند، کاهش پذیرش مجدد در بیمارستان، اطمینان از ایمنی سربازان در میدان نبرد، یا پیشبینی توسعه میدهد). صادرات یک کشور به کشور دیگر) از روشهای ارائهشده در این کتاب بهرهمند خواهد شد.
از آنجایی که تضمین هوش مصنوعی در حال حاضر یک قطعه اصلی در تحقیقات هوش مصنوعی و مهندسی است، این کتاب به عنوان راهنمایی برای محققان، دانشمندان و دانشجویان در مطالعات و آزمایشاتشان. علاوه بر این، از آنجایی که هوش مصنوعی به طور فزاینده ای در مکان های دولتی و سیاست گذاری مورد بحث و استفاده قرار می گیرد، اطمینان از سیستم های هوش مصنوعی - همانطور که در این کتاب ارائه شده است - در پیوند چنین بحث هایی قرار دارد.
AI Assurance: Towards Trustworthy, Explainable, Safe, and Ethical AI provides readers with solutions and a foundational understanding of the methods that can be applied to test AI systems and provide assurance. Anyone developing software systems with intelligence, building learning algorithms, or deploying AI to a domain-specific problem (such as allocating cyber breaches, analyzing causation at a smart farm, reducing readmissions at a hospital, ensuring soldiers’ safety in the battlefield, or predicting exports of one country to another) will benefit from the methods presented in this book.
As AI assurance is now a major piece in AI and engineering research, this book will serve as a guide for researchers, scientists and students in their studies and experimentation. Moreover, as AI is being increasingly discussed and utilized at government and policymaking venues, the assurance of AI systems―as presented in this book―is at the nexus of such debates.
Front Cover AI Assurance Copyright Contents Contributors A note by the editors A note on the book cover Foreword 1 Foreword 2 Foreword 3 Part 1 Foundations of AI assurance 1 An introduction to AI assurance 1.1 Motivation and overview 1.1.1 Book content 1.2 The need for new assurance methods 1.3 Conclusion References 2 Setting the goals for ethical, unbiased, and fair AI 2.1 Introduction and background 2.1.1 Value-loading 2.1.1.1 The control problem 2.1.1.2 The value-loading problem 2.1.2 Human-compatible AI 2.1.2.1 Cooperative inverse reinforcement learning 2.1.3 The alignment problem 2.1.3.1 The role of training data 2.1.3.2 The objective function 2.1.4 AI assurance: a formal framework 2.2 Ethical AI but… how? 2.2.1 Three normative theories: a brief outline 2.2.1.1 Deontological ethics: duties 2.2.1.2 Utilitarianism 2.2.1.3 Virtue ethics 2.2.2 The implementation problem 2.2.2.1 Top-down approach 2.2.2.2 Bottom-up approach 2.2.3 Intentional statements and reward functions 2.2.3.1 The problem of specification 2.2.3.2 Moral uncertainty 2.3 Conclusion References 3 An overview of explainable and interpretable AI 3.1 Introduction 3.2 Methods and materials 3.2.1 Statistics and evaluation metrics 3.2.1.1 Mean 3.2.1.2 Median 3.2.1.3 Standard deviation and variance 3.2.1.4 R2 3.2.1.5 Accuracy 3.2.1.6 Precision, recall, and F1 3.2.2 Shape metrics 3.2.2.1 Area and perimeter 3.2.2.2 Shape proportion and encircled image-histograms 3.2.2.3 FD 3.2.2.4 Circularity 3.2.2.5 Eigenvalues and eccentricity 3.2.2.6 Number of corners 3.2.2.7 Hu moments 3.2.3 Modeling algorithms 3.2.3.1 OLS, GLM, and non-linear models 3.2.3.2 Knn 3.2.3.3 Naïve Bayes 3.2.3.4 Linear and quadratic discriminant analysis 3.2.3.5 Trees 3.2.3.6 Random forests 3.2.3.7 SVM 3.2.3.8 CNNs 3.2.3.9 DAMG 3.2.3.10 Perceived accuracy 3.2.4 Dimensionality reduction 3.2.4.1 Subset selection procedures 3.2.4.2 LASSO, ridge, and elastic net 3.2.4.3 PCA 3.2.4.4 FA 3.2.4.5 Fourier transform 3.2.4.6 Manifolds 3.2.5 Model assurance 3.2.5.1 Resampling methods 3.2.5.2 Effect comparison 3.2.5.3 HILT models 3.2.5.4 Influential observations 3.2.5.5 Visualization methods 3.3 Experiments using XAI models 3.3.1 Satellite imagery 3.3.2 White blood cell 3.4 Discussion 3.4.1 XAI vs. AI in critical applications 3.4.2 Explainability, interpretability, and model assurance in practice 3.4.3 XAI models outperform CNN-based solutions 3.4.4 XAI, deep learning models, and human inputs 3.4.5 Extending the lessons learned to non-image problems 3.5 Future work 3.6 Conclusion Acknowledgments References 4 Bias, fairness, and assurance in AI: overview and synthesis 4.1 Introduction 4.2 Assurance and ethical AI 4.2.1 Overview of bias and lack of assurance in AI 4.2.2 Current assurance methods for bias reduction 4.3 Validation methods 4.4 Synthesis of the literature 4.5 Conclusion References 5 An evaluation of the potential global impacts of AI assurance 5.1 Introduction 5.2 Literature review 5.3 Methodology & modeling 5.3.1 Scenario 1: full adoption of AI across all regions 5.3.2 Scenario 2: estimation of gains from AI ethical frameworks across all regions 5.3.3 Estimation of loss due to strict liabilities across all regions 5.4 Results and analysis 5.4.1 Impact of policy shocks on GDP of countries/regions 5.4.2 Impact of policy shocks on output of countries/regions 5.4.3 Impact of policy shocks on employment of countries/regions 5.4.4 Impact of policy shocks on export of countries/regions 5.4.5 Impact of policy shocks on import of countries/regions 5.5 Conclusion Acknowledgment References Part 2 AI assurance methods 6 The role of inference in AI: Start S.M.A.L.L. with mindful modeling 6.1 Real wisdom on artificial intelligence 6.2 Fundamentals: decision-making, heuristics and cognitive biases 6.2.1 Dual-process model of decision-making 6.2.2 Error and bias in medical decision-making 6.2.3 Implicit and/or explicit: bias in AI practitioners and AI models 6.3 Fundamentals: yearning to make sense of the world through models and inference 6.3.1 Mindful modeling approaches: a mark of thoughtful work 6.3.2 Start S.M.A.L.L. (Specific-Mindful-Attainable-Limited-Lucid) 6.3.2.1 Conceptual modeling 6.3.2.2 Group model building process 6.3.2.3 Causal modeling 6.3.3 Inference in modeling 6.3.3.1 Frequentist (Fisherian) inference 6.3.3.2 Probabilistic (Bayesian) inference: a gateway to causal inference 6.3.3.3 Causal inference: tempting the trope that ``correlation does not imply causation'' 6.4 Bolstering AI assurance: reducing biases with inferential methods 6.4.1 What is AI assurance? 6.4.1.1 Working scenario: mitigating bias in healthcare through AI assurance 6.4.2 Contemporary AI: mindful modeling before data engineering helps reduce bias 6.4.2.1 Question 1: what is the basis of ground truth for teaching the machine? 6.4.2.2 Question 2: who determines when predictive analytics are used in decision-making? 6.4.2.3 Question 3: when is a problem cognitively complex enough to obscure bias present in decision-making? 6.4.3 Considering the level of system predictability when designing AI assurance 6.5 Rest assured: mindful approaches in modeling may help avoid another AI winter 6.6 Further reading Acknowledgments References 7 Outlier detection using AI: a survey 7.1 Introduction and motivation 7.2 Outlier detection methods 7.2.1 Statistical and probabilistic based methods 7.2.1.1 Parametric distribution models 7.2.1.2 Non-parametric distribution models 7.2.1.3 Miscellaneous statistical models 7.2.1.4 Advantages of statistical and probabilistic based methods 7.2.1.5 Disadvantages of statistical and probabilistic based methods 7.2.1.6 Research gaps and suggestions 7.2.2 Density-based methods 7.2.2.1 Advantages of density-based methods 7.2.2.2 Disadvantages of density-based methods 7.2.2.3 Research gaps and suggestions 7.2.3 Clustering-based methods 7.2.3.1 Advantages of clustering-based methods 7.2.3.2 Disadvantages of clustering based methods 7.2.3.3 Research gaps and suggestions 7.2.4 Distance-based methods 7.2.4.1 K-nearest neighbor models 7.2.4.2 Pruning techniques 7.2.4.3 Time series data 7.2.4.4 Advantages of distance-based methods 7.2.4.5 Disadvantages of distance-based methods 7.2.4.6 Research gaps and suggestions 7.2.5 Ensemble methods 7.2.5.1 Advantages of ensemble methods 7.2.5.2 Disadvantages of ensemble methods 7.2.5.3 Research gaps and suggestions 7.2.6 Learning-based methods 7.2.6.1 Subspace learning models 7.2.6.2 Active learning models 7.2.6.3 Graph-based learning models 7.2.6.4 Deep learning models 7.2.6.5 Advantages of learning-based methods 7.2.6.6 Disadvantages of learning-based methods 7.2.6.7 Research gaps and suggestions 7.3 Tools for outlier detection 7.4 Datasets for outlier detection 7.5 AI assurance and outlier detection 7.6 Conclusions References 8 AI assurance using causal inference: application to public policy 8.1 Introduction and motivation 8.2 Causal inference 8.2.1 An introduction to causal inference 8.2.2 Overview of causal inference methods 8.3 AI assurance using causal inference 8.3.1 AI assurance: goals and methods 8.3.2 Methods for leveraging causality in assurance 8.3.3 Application of causality in assurance: economy of technology example 8.4 Network representations of data 8.4.1 An introduction to graph theory 8.4.2 Recurrent graph neural networks (RGNN) 8.4.3 Economy of technology dataset as a network 8.5 Conclusion Acknowledgments References 9 Data collection, wrangling, and pre-processing for AI assurance 9.1 Introduction and motivation 9.2 Relevant data characteristics 9.3 Data pre-processing: data wrangling and munging 9.4 Data processing architectures: ETL & ELT 9.5 DataOps: data operations automation management 9.6 Data tagging, provenance, and lineage References 10 Coordination-aware assurance for end-to-end machine learning systems: the R3E approach 10.1 Introduction 10.2 Background and motivation 10.2.1 Background – characterizing BDML 10.2.2 Motivating example: machine learning for classifying building elements 10.2.3 Research questions 10.3 Key elements of R3E approach 10.3.1 QoAChain: chaining diverse types of quality constraints as a contract for optimizing end-to-end BDML 10.3.2 R3E objects and operations 10.3.2.1 Conceptualize R3E objects 10.3.2.2 R3E attributes associated with R3E objects 10.3.2.3 R3E operations and APIs 10.3.3 Engineering methods 10.3.3.1 Coordination for R3E 10.3.3.2 Monitoring and analytics 10.3.3.3 Testing, benchmarking, and experimenting for R3E 10.4 Illustrative examples 10.5 Discussion 10.6 Conclusions and future work Acknowledgments References Part 3 AI assurance and applications 11 Assuring AI methods for economic policymaking 11.1 Introduction to harnessing AI for economics 11.1.1 ML in economic models 11.1.2 AI accountability models in economic research 11.1.3 Adopters of economic forecasting using XAI 11.2 Commonplace explainability methods 11.2.1 Local interpretable model-agnostic explanations (LIME) explainer 11.2.1.1 LIME methodology 11.2.1.2 LIME implementation 11.2.2 SHapley Additive exPlanations (SHAP) 11.2.2.1 SHAP methodology 11.2.2.2 SHAP implementation 11.2.3 Partial dependence plots 11.2.3.1 PDP methodology 11.2.3.2 PDP implementation 11.3 Mitigating bias in AI models for economic prediction 11.3.1 NLP use in central banking 11.3.2 NLP transformer networks 11.3.3 LIME for text explanations 11.3.4 LLMs and the AI central banker 11.3.5 Data assurance of LLMs 11.3.6 LLM transparency 11.3.7 Association rules mining 11.3.8 Graph neural networks 11.3.8.1 GNNs for international trade 11.3.8.2 Explainability methods for GNNs 11.4 Conclusion Acknowledgments References 12 Panopticon implications of ethical AI: equity, disparity, and inequality in healthcare 12.1 Introduction 12.2 Ontological perspectives 12.3 Ethics frameworks 12.4 Governance in the healthcare domain 12.5 Societal disparities in wellbeing 12.6 Conclusion References 13 Recent advances in uncertainty quantification methods for engineering problems 13.1 Introduction 13.2 Polynomial chaos method for UQ 13.3 Gaussian Process or Kriging for UQ 13.4 Polynomial chaos Kriging for UQ 13.5 Uncertainty quantification of a supersonic nozzle 13.5.1 Test case description 13.5.2 Deterministic results 13.5.3 Description of uncertainties 13.5.4 Uncertainty analysis 13.6 Conclusions Acknowledgments References 14 Socially responsible AI assurance in precision agriculture for farmers and policymakers 14.1 Introduction 14.1.1 AI in agriculture 14.1.2 Big data in agriculture 14.1.3 Political economy of PA 14.2 Current methods of AI assurance in agriculture 14.2.1 AI assurance in agricultural policy 14.2.2 AI assurance in precision agriculture 14.3 Agricultural policy 14.4 AI assurance in agriculture recommendations 14.4.1 Participatory design from the start 14.4.2 XAI for agricultural end users 14.5 Conclusion CRediT authorship contribution statement References 15 The application of artificial intelligence assurance in precision farming and agricultural economics 15.1 Introduction 15.2 AI for smart farms 15.2.1 Correlation of economic indices and various commodities 15.2.2 Causation of economic indices and various commodities 15.2.3 Scoring outlier events for the model and finding anomalies 15.2.4 Outlier classification and labeling 15.3 Insight into data driven farming 15.3.1 Kentland and dairy farm 15.3.2 Shenandoah Valley Agricultural Research and Extension Center (SVAREC) 15.3.3 Dairy complex at Virginia Tech's SmartFarms 15.4 Larger policy implications 15.5 Conclusion Acknowledgments References 16 Bringing dark data to light with AI for evidence-based policymaking 16.1 Introduction 16.1.1 Background 16.1.2 Motivation 16.1.3 The AIM pipeline 16.2 The dataset for AIM 16.2.1 Dataset paradigm 16.2.2 Metrics of interest 16.2.3 Legislation data 16.2.4 Environmental descriptors 16.3 Feature creation 16.3.1 Policies as data 16.3.2 NLP in AIM 16.3.3 Spectral clustering of laws 16.3.4 Technology usage as data 16.4 Learning the trends 16.4.1 Neural network predicting AIMs 16.4.2 Training metrics 16.4.3 Prediction results 16.5 Discussions and future directions 16.5.1 Feasible applications 16.5.2 Future directions 16.6 Ethics of AI in public policy 16.6.1 Data in the legislative process 16.6.2 AI and bias 16.6.3 AI assurance and the law References Index Back Cover