ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Water Systems Analysis, Design, and Planning: Urban Infrastructure

دانلود کتاب تجزیه و تحلیل، طراحی و برنامه ریزی سیستم های آب: زیرساخت شهری

Water Systems Analysis, Design, and Planning: Urban Infrastructure

مشخصات کتاب

Water Systems Analysis, Design, and Planning: Urban Infrastructure

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0367528452, 9780367528454 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 904
[959] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 Mb 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Water Systems Analysis, Design, and Planning: Urban Infrastructure به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل، طراحی و برنامه ریزی سیستم های آب: زیرساخت شهری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل، طراحی و برنامه ریزی سیستم های آب: زیرساخت شهری




توضیحاتی درمورد کتاب به خارجی

\"Increasing demand for water, higher standards of living, depletion of resources of acceptable quality, and excessive water pollution due to urban, agricultural, and industrial expansions have caused intense environmental, social, economic, and political predicaments. More frequent and severe floods and droughts have changed the resiliency and ability of water infrastructure systems to operate and provide services to the public. These concerns and issues have also changed the way we plan and manage our surface and groundwater resources\"--



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
Author
Chapter 1 Introduction
	1.1 Introduction
	1.2 Urban Water Cycle
		1.2.1 Components
		1.2.2 Interdependencies
		1.2.3 Impact of Urbanization
	1.3 Interaction of Climatic, Hydrologic, Cultural and Esthetic Aspects
		1.3.1 Climatic Effects - Rainfall Type
		1.3.2 Hydrologic Effects
		1.3.3 Urban Heat Islands
		1.3.4 Cultural and Esthetic Aspects
	1.4 Urban Water Infrastructure Management
		1.4.1 Life Cycle Assessment
		1.4.2 Environmental, Economic, and Social Performances
		1.4.3 Urban Landscape Architecture
	1.5 Systems Approach
		1.5.1 General Systems’ Characteristics
		1.5.2 System Properties
	1.6 Hydrologic Variability
		1.6.1 Hydrologic Variables and Parameters
	1.7 Representations, Statistical, and Simulation Models
	1.8 Extreme Values, Vulnerability, Risk, and Uncertainty
	1.9 Tools and Techniques
		1.9.1 Systems Modeling
		1.9.2 Model Resolution
	1.10 The Hierarchy of Water for Life and Total Systems Approach
		1.10.1 The Biosphere
		1.10.2 System-Based Thinking
		1.10.3 Natural Systems
		1.10.4 Human and Institutional Systems
		1.10.5 Built Environment—Infrastructure
		1.10.6 Disasters and Interdependencies
	1.11 People’s Perception—Public Awareness
		1.11.1 Integrated Water Cycle Management
	1.12 Economics of Water
	1.13 Clean Water Act
		1.13.1 The Basis of State Water Laws in the United States
	1.14 Concluding Remarks and Book’s Organization
	Problems
	References
Chapter 2 Urban Water Cycle and Interactions
	2.1 Introduction
	2.2 Urban Water Cycle
		2.2.1 Components - Water Movements
		2.2.2 Impact of Urbanization - Water Distribution, Waste Collection
	2.3 Interactions on Urban Components
		2.3.1 Climatic Effects - Different Climates
		2.3.2 Hydrologic Effects
		2.3.3 Qualitative Aspects
		2.3.4 Greenhouse Effect
		2.3.5 Urban Heat Islands - Mitigation
		2.3.6 Cultural Aspects
	2.4 Remotely Sensed and Satellite Data
	2.5 Water Balance Elements
		2.5.1 Precipitation
			2.5.1.1 Measurement by Standard Gauges
			2.5.1.2 Various Types of Rain Gauges
			2.5.1.3 Measurement by Weather Radar
			2.5.1.4 Measurement by Satellite
			2.5.1.5 The PERSIANN System
			2.5.1.6 Estimation of Missing Rainfall Data
			2.5.1.7 Station Average Method
			2.5.1.8 Snowmelt Estimation
		2.5.2 Evaporation and Evapotranspiration
			2.5.2.1 Evaporation Evaluation
			2.5.2.2 Water Budget Method
			2.5.2.3 Mass Transfer Method
			2.5.2.4 Pan Evaporation
			2.5.2.5 Measurement of Evapotranspiration
			2.5.2.6 Thornthwaite Method
	2.6 Interception Storage and Depression Storage
	2.7 Infiltration
	2.8 Palmer Drought Severity Index (PDSI)
		2.8.1 Agricultural Drought Indicators
		2.8.2 Potential Climatic Values
		2.8.3 Coefficients of Water Balance Parameters
		2.8.4 Precipitation for Climatically Appropriate for Existing ˆ Condition, P[sup(i)]
		2.8.5 Drought Severity Index
	2.9 Groundwater
	2.10 Reservoirs and Lakes
	2.11 Water Balance
		2.11.1 Thomas Model (abcd Model)
		2.11.2 A Case Study: Water Balanced-Based Sustainability
	2.12 Interactions between the Urban Water Cycle and Urban Infrastructure Components
		2.12.1 Interactions with the Wastewater Treatment System
		2.12.2 Interactions between Water and Wastewater Treatment Systems
		2.12.3 Interactions between Water Supply and Wastewater Collection Systems
		2.12.4 Interactions between Urban Drainage Systems and Wastewater Treatment Systems
		2.12.5 Interactions between Urban Drainage Systems and Solid Waste Management
		2.12.6 Interactions between Urban Water Infrastructure and Urban Transportation Infrastructures
	2.13 Livable Cities of the Future
		2.13.1 Daniel Loucks View Points
			2.13.1.1 Urban Water in the Larger Water Nexus
			2.13.1.2 Gray Infrastructure
			2.13.1.3 Green Infrastructure
			2.13.1.4 Challenges of Future
		2.13.2 David Miller’s View Points
			2.13.2.1 Setting the Stage
			2.13.2.2 Cities Around the World Lead the Way
			2.13.2.3 A Closer Look at Toronto’s Strategies for Sustainability
		2.13.3 Craig S. Ivey’s View Points
			2.13.3.1 Facts and Figures
			2.13.3.2 Challenges
			2.13.3.3 Solutions
	2.14 Concluding Remarks
	Problems
	References
Chapter 3 Urban Water Hydrology
	3.1 Introduction
	3.2 Urban Watersheds
	3.3 Watershed Geomorphology
	3.4 Land Use and Cover Impacts
		3.4.1 Urban Areas
		3.4.2 Wetland Areas
	3.5 Rainfall–Runoff Analysis in Urban Areas
		3.5.1 Drainage Area Characteristics
		3.5.2 Rainfall Losses
	3.6 Travel Time
		3.6.1 Definitions of Time of Concentration
		3.6.2 Classifying Time Parameters
		3.6.3 Velocity Method
		3.6.4 Sheet Flow Travel Time
		3.6.5 Empirical Formulas
	3.7 Excess Rainfall Calculation
		3.7.1 Interception Storage Estimation
		3.7.2 Estimation of Infiltration
		3.7.3 Green–Ampt Model
			3.7.3.1 Ponding Time
			3.7.3.2 Horton Method
			3.7.3.3 Simple Infiltration Models
	3.8 Rainfall Measurement
		3.8.1 Intensity–Duration–Frequency Curves: Advantages and Disadvantages
			3.8.1.1 Selection of Rainfall Duration
	3.9 Estimation of Runoff Volume
		3.9.1 Rational Method
		3.9.2 SCS Method
	3.10 Unit Hydrographs
		3.10.1 UH Development
		3.10.2 SCS UH
		3.10.3 Application of the UH Method
		3.10.4 S-Hydrograph Method
	3.11 IUH–Convolution Integral–Nash Model
		3.11.1 Convolution Integral
	3.12 Instantaneous Unit Hydrographs
		3.12.1 Nash Model
		3.12.2 Laplace Transformation Model
			3.12.2.1 Basin as a Linear Reservoir
			3.12.2.2 Basin as a Channel
	3.13 Routing Methods
		3.13.1 Hydrologic Methods of River Routing
			3.13.1.1 Muskingum Method
			3.13.1.2 Determination of Storage Constants
	3.14 Revisiting Flood Records
		3.14.1 Urban Effects on Peak Discharge
		3.14.2 Flood Record Adjusting
	3.15 Test of the Significance of the Urban Effect
		3.15.1 Spearman Test
		3.15.2 Spearman–Conley Test
	3.16 Time Series Analysis
		3.16.1 ARMA(p, q) Model Identification
			3.16.1.1 Autocorrelation Function
			3.16.1.2 Partial Autocorrelation Function (PACF)
		3.16.2 Autoregressive (AR) Models
		3.16.3 Moving Average Process
		3.16.4 Autoregressive Moving Average Modeling
		3.16.5 Akaike’s Information Criterion (AIC)
		3.16.6 ARIMA Models Considerations
	3.17 Concluding Remarks
	Problems
	References
Chapter 4 Urban Water Hydraulics
	4.1 Introduction
	4.2 Channel Geomorphology
		4.2.1 Length of a Channel
		4.2.2 Slope of a Channel
		4.2.3 Law of Stream Slopes
		4.2.4 Channel Cross Section
		4.2.5 Channel Roughness
		4.2.6 Urban Morphology Challenges
	4.3 Travel Time
	4.4 Open-Channel Flow in Urban Watersheds
		4.4.1 Open-Channel Flow
			4.4.1.1 Open-Channel Flow Classification
			4.4.1.2 Hydraulic Analysis of Open-Channel Flow
		4.4.2 Overland Flow
			4.4.2.1 Overland Flow on Impervious Surfaces
			4.4.2.2 Overland Flow on Pervious Surfaces
		4.4.3 Urban Channel Routing
			4.4.3.1 Muskingum Method
	4.5 Hydraulics of Water Distribution Systems
		4.5.1 Energy Equation of Pipe Flow
		4.5.2 Evaluation of Head Loss Due to Friction
			4.5.2.1 Darcy–Weisbach Equation
			4.5.2.2 Hazen–Williams Equation for the Friction Head Loss
			4.5.2.3 Minor Head Loss
			4.5.2.4 Pipes in Series
			4.5.2.5 Pipes in Parallel
			4.5.2.6 Pipe Networks
	4.6 Concluding Remarks
	Problems
	References
Chapter 5 Urban Stormwater Drainage Systems
	5.1 Introduction
	5.2 Urban Planning and Stormwater Drainage
		5.2.1 Land Use Planning
			5.2.1.1 Dynamic Strategy Planning for Sustainable Urban Land Use Management
			5.2.1.2 Identification of System’s Components
			5.2.1.3 Identification of the Dynamic Relationships among the Components
			5.2.1.4 DSR Dynamic Strategy Planning Procedure
		5.2.2 Best Management Practices
			5.2.2.1 Sediment Basins
			5.2.2.2 Retention Pond
			5.2.2.3 Bioretention Swales
			5.2.2.4 Bioretention Basins
			5.2.2.5 Sand Filters
			5.2.2.6 Swales and Buffer Strips
			5.2.2.7 Constructed Wetlands
			5.2.2.8 Extended Detention Basin (EDB)
			5.2.2.9 Ponds and Lakes
			5.2.2.10 Infiltration Systems
			5.2.2.11 Grass Buffer
			5.2.2.12 Aquifer Storage and Recovery
			5.2.2.13 Porous Pavement
	5.3 Drainage in Urban Watersheds
		5.3.1 Overland Flow
		5.3.2 Channel Flow
	5.4 Components of Urban Stormwater Drainage System
		5.4.1 General Design Considerations
		5.4.2 Flow in Gutters
			5.4.2.1 Gutter Hydraulic Capacity
		5.4.3 Pavement Drainage Inlets
			5.4.3.1 Inlet Locations
		5.4.4 Surface Sewer Systems
		5.4.5 Drainage Channel Design
			5.4.5.1 Design of Unlined Channels
			5.4.5.2 Grass-Lined Channel Design
	5.5 Combined Sewer Overflow
		5.5.1 Reduce Combined Sewer Overflows with Green Infrastructure
		5.5.2 Reduce Combined Sewer Overflows with High-Level Storm Sewers Citywide
	5.6 Culverts
		5.6.1 Sizing of Culverts
		5.6.2 Protection Downstream of Culverts
	5.7 Design Flow of Surface Drainage Channels
		5.7.1 Probabilistic Description of Rainfall
			5.7.1.1 Return Period and Hydrological Risk
			5.7.1.2 Frequency Analysis
		5.7.2 Design Rainfall
			5.7.2.1 Selecting Design Rainfall and Runoff
		5.7.3 Design Return Period
		5.7.4 Design Storm Duration and Depth
		5.7.5 Spatial and Temporal Distribution of Design Rainfall
	5.8 Stormwater Storage Facilities
		5.8.1 Sizing of Storage Volumes
	5.9 Risk Issues in Urban Drainage
		5.9.1 Flooding of Urban Drainage Systems
			5.9.1.1 Case Study: Improvement of Urban Drainage System Performance under Climate Change Impact
		5.9.2 DO Depletion in Streams—Discharge of Combined Sewage Effects
		5.9.3 Discharge of Chemicals
	5.10 Urban Floods
		5.10.1 Urban Flood Control Principles
	5.11 Overland Flow Models
		5.11.1 StormNET: Stormwater and Wastewater Modeling
		5.11.2 GSSHA
		5.11.3 LISFLOOD-FP
	5.12 Stormwater Infrastructure of Selected Cities
		5.12.1 Philadelphia, USA
			5.12.1.1 Characteristics of the system
			5.12.1.2 Improvement and Future Plans
			5.12.1.3 Recommendations
		5.12.2 Los Angeles, California
			5.12.2.1 Characteristics of the System
			5.12.2.2 Improvement and Future Plans
			5.12.2.3 Recommendations
		5.12.3 Chongqing, China
			5.12.3.1 Characteristics of the System
			5.12.3.2 Improvement and Future Plans
			5.12.3.3 Recommendations
		5.12.4 London, England
			5.12.4.1 Characteristics of the System
			5.12.4.2 Improvement and Future Plans
		5.12.5 Amsterdam, Netherlands
			5.12.5.1 Characteristics of the System
			5.12.5.2 Improvement and Future Plans
			5.12.5.3 Recommendations
		5.12.6 Stockholm, Sweden
			5.12.6.1 Characteristics of the System
			5.12.6.2 Improvement and Future Plans
			5.12.6.3 Recommendations
	5.13 Concluding Remarks
	Problems
	References
Chapter 6 Urban Water Supply Infrastructures
	6.1 Introduction
		6.1.1 History of Water Supply Development
		6.1.2 Water Availability
		6.1.3 Water Development and Share of Water Users
		6.1.4 Natural Resources for Water Supply
		6.1.5 Supplementary Sources of Water
	6.2 Water Supply Infrastructures
		6.2.1 Reservoirs and Water Supply Storage Facilities
		6.2.2 Water Storage
			6.2.2.1 Types of Dams
		6.2.3 Planning Issues
			6.2.3.1 Cascade Reservoirs
		6.2.4 Parallel Reservoir
		6.2.5 Reservoir Operation
		6.2.6 Flood Control
		6.2.7 Creative Thinking Examples of Supply Expansion
			6.2.7.1 Curing a Dam—Bookan Reservoir: Increasing the Operational Efficiency
			6.2.7.2 Curing Lar Dam in Iran (Karamouz et al., 2003b)
		6.2.8 Groundwater Storage
			6.2.8.1 Well Hydraulics
			6.2.8.2 Confined Flow
			6.2.8.3 Unconfined Flow
		6.2.9 Urban Storage Reservoirs and Tanks
		6.2.10 Water Transfers and Conveyance Tunnels
	6.3 Water Treatment Plants
		6.3.1 Water Treatment Infrastructure
		6.3.2 Unit Operations of Water Treatment
			6.3.2.1 Coagulation/Flocculation
			6.3.2.2 Sedimentation
			6.3.2.3 Filtration
			6.3.2.4 Disinfection
	6.4 Water Distribution System
		6.4.1 System’s Components
		6.4.2 Hydraulics of Water Distribution Systems
		6.4.3 Wáter Supply System Challenges
	6.5 Urban Water Demand Management
		6.5.1 Basic Definitions of Water Use
		6.5.2 Water Supply Quantity Standards in Urban Areas
		6.5.3 Water Demand Forecasting
		6.5.4 Water Quality Modeling in a Water Distribution Network
			6.5.4.1 Water Quality Standards
			6.5.4.2 Water Quality Model Development
			6.5.4.3 Chlorine Decay
		6.5.5 Water Demand and Price Elasticity
	6.6 Hydraulic Simulation of Water Networks
		6.6.1 EPANET
	6.7 Assessing the Environmental Performance of Urban Water Infrastructure
	6.8 Life Cycle Assessment
	6.9 Sustainable Development of Urban Water Infrastructures
		6.9.1 Selection of Technologies
			6.9.1.1 Further Development of Large- Scale Centralized Systems
			6.9.1.2 Separation for Recycling and Reuse
			6.9.1.3 Natural Treatment Systems
			6.9.1.4 Combining Treatment Systems
			6.9.1.5 Changing Public Perspectives
	6.10 Leakage Management
		6.10.1 Acceptable Pressure Range
		6.10.2 Economic Leakage Index
	6.11 Nondestructive Testing (NDT)
	6.12 Water Supply Infrastructure of Selected Cities
		6.12.1 Case 1: Philadelphia, USA
		6.12.2 Case 2: Los Angeles
		6.12.3 Case 3: Copenhagen, Denmark
		6.12.4 Case 4: Amsterdam, Netherland
		6.12.5 Case 5: ACCRA, Ghana
		6.12.6 Case 6: Stockholm, Sweden
	6.13 Concluding Remarks
	Problems
	References
Chapter 7 Wastewater Infrastructure
	7.1 Introduction
	7.2 The Importance of Wastewater Systems
	7.3 Wastewater Management
	7.4 Wastewater Treatment
		7.4.1 Primary Treatment
		7.4.2 Secondary (Biological) Treatment
			7.4.2.1 Biological Treatment Processes
			7.4.2.2 Aerobic Treatment
			7.4.2.3 Anaerobic Treatment
			7.4.2.4 Activated Sludge
			7.4.2.5 Suspended Growth
		7.4.3 Advanced Treatment
		7.4.4 Technologies for Developing Region
		7.4.5 Wetlands as a Solution
	7.5 Satellite Wastewater Management
		7.5.1 Satellite Wastewater Treatment Systems
		7.5.2 Interception Type
		7.5.3 Extraction type
		7.5.4 Upstream Type
		7.5.5 Decentralized Systems
		7.5.6 Infrastructure Requirements
	7.6 Collection System Alternatives
		7.6.1 Conventional Gravity Sewers
		7.6.2 Septic Tank Effluent Gravity (STEG)
		7.6.3 Septic tank Effluent Pumps (STEP)
		7.6.4 Pressure Sewers with Grinder Pumps
		7.6.5 Vacuum Sewers
	7.7 Wastewater Package Plants
	7.8 Examples of Wastewater Treatment Development
		7.8.1 Caribbean Wastewater Treatment
		7.8.2 The Lodz Combined Sewerage System
			7.8.2.1 Upgrading the Old Sewerage System
	7.9 Case Studies
		7.9.1 Case Study 1: Reliability Assessment of Wastewater Treatment Plants Under Coastal Flooding
		7.9.2 Case Study 2: Uncertainty Based Budget Allocation of Wastewater Infrastructures’ Flood Resiliency
		7.9.3 Case Study 3: Margin of Safety-Based Flood Reliability Evaluation of Wastewater Treatment Plants
	7.10 Wastewater Collection and Treatment of Selected Cities
		7.10.1 Amsterdam, Netherlands
			7.10.1.1 Characteristics of the System
			7.10.1.2 Improvement and Future Plans
		7.10.2 Stockholm, Sweden
			7.10.2.1 Characteristics of the System
			7.10.2.2 Improvement and Future Plans
		7.10.3 Philadelphia, USA
			7.10.3.1 Characteristics of the System
		7.10.4 Zaragoza, Spain
			7.10.4.1 Characteristics of the System
		7.10.5 Paris, France
			7.10.5.1 Characteristics of the System
		7.10.6 Copenhagen, Denmark
			7.10.6.1 Characteristics of the System
			7.10.6.2 Infrastructures Sustainability
			7.10.6.3 Improvement and Future Plans
	7.11 Standards and Planning Considerations
		7.11.1 Standards on Water and Wastewater Services
	7.12 Concluding Remarks
	Problems
	References
Chapter 8 Urban Water Economics—Asset Management
	8.1 Introduction
	8.2 Urban Water Systems Economics—Basics
		8.2.1 Economic Analysis of Multiple Alternatives
		8.2.2 Economic Evaluation of Projects Using Benefit -Cost Ratio Method
		8.2.3 Economic Models
		8.2.4 Financial Statement
			8.2.4.1 Balance Sheet
			8.2.4.2 Financial Analysis
	8.3 Asset Management
		8.3.1 Attributes of Asset Management
		8.3.2 Asset Management Drivers
		8.3.4 The Objectives in Asset Management
		8.3.3 Asset Management Steps
			8.3.3.1 Status and Condition
			8.3.3.2 Level of Service
			8.3.3.3 Risk Management
			8.3.3.4 Life Cycle Cost Analysis
			8.3.3.5 Case Study 1: Reliability-Based Assessment of Life Cycle Cost of Urban Water Distribution Infrastructures
		8.3.4 Sustainable Service Delivery
		8.3.5 Select AM Tools and Practices for Municipalities
			8.3.5.1 Asset Management Strategic
			8.3.5.2 Condition Assessment
			8.3.5.3 Defining Levels of Service (LoS)
			8.3.5.4 Software Trends
			8.3.5.5 Conclusion for Municipalities
	8.4 Performance Measures
	8.5 Developing Asset Management Plans for Water and Sewer Utilities
		8.5.1 Water Infrastructure Asset Management
			8.5.1.1 Stages in Water System’s Asset Management
		8.5.2 Asset Management for Water Supply Infrastructures (Dams and Reservoirs)
		8.5.3 Infrastructure for the Water Distribution System
			8.5.3.1 Water Treatment and Water Mains
			8.5.3.2 Design and Construction of the Water Main System
		8.5.4 Asset Management Programs for Stormwater and Wastewater Systems
			8.5.4.1 Scoring Assets
			8.5.4.2 Costs of Wastewater Infrastructures
			8.5.4.3 Cost of Stormwater Infrastructures
			8.5.4.4 Wastewater Program Funding
			8.5.4.5 Case Study 2: Asset Management-Based Flood Resiliency of Water Infrastructures
			8.5.4.6 Stormwater Program Funding
		8.5.5 Tools for Inspecting Water and Wastewater Linear Assets
			8.5.5.1 Underground Infrastructure
			8.5.5.2 Check-Up Program for Small Systems (CUPSS)
			8.5.5.3 Benefits of Using CUPSS
	8.6 Financing Methods for Infrastructure Development
		8.6.1 Tax-Funded System
		8.6.2 Service Charge-Funded System
		8.6.3 Exactions and Impact Fee-Funded Systems
		8.6.4 Special Assessment Districts
	8.7 Assessing the Environmental Performance of Urban Water Infrastructure
	8.8 Critical Infrastructure Interdependencies
		8.8.1 Restoration of Interdependent Assets
	8.9 Concluding Remarks
	Problems
	References
Chapter 9 Urban Water Systems Analysis and Conflict Resolution
	9.1 Introduction
		9.1.1 System Representation and Domains
		9.1.2 Water Systems Analysis
	9.2 Data Preparation Techniques
		9.2.1 Regionalizing Hydrologic Data
			9.2.1.1 Theoretical Semivariogram Models
			9.2.1.2 Kriging System
			9.2.1.3 Fitting Variogram
			9.2.1.4 Cross-Validation
		9.2.2 Multicriteria Decision-Making
			9.2.2.1 Deterministic MCDM
			9.2.2.2 Probabilistic MCDM
		9.2.3 Fuzzy Sets and Parameter Imprecision
		9.2.4 Fuzzy Inference System
	9.3 Simulation Techniques
		9.3.1 Probabilistic Distribution of the System’s Characteristics
		9.3.2 Stochastic Processes
		9.3.3 Artificial Neural Networks “Data-Driven Modeling”
			9.3.3.1 The Multilayer Perceptron Network (Static Network)
			9.3.3.2 Temporal Neural Networks
		9.3.4 Monte Carlo Simulation
			9.3.4.1 Sequential Gaussian Simulation
		9.3.5 Mathematics of Growth
			9.3.5.1 Exponential Growth
			9.3.5.2 Logistic Growth
			9.3.5.3 Limits to Growth
			9.3.5.4 Environmental Limits
			9.3.5.5 Social Limits to Growth
		9.3.6 System Dynamics
			9.3.6.1 Modeling Dynamics of a System
			9.3.6.2 Time Paths of a Dynamic System
	9.4 Optimization Techniques
		9.4.1 Linear Method
			9.4.1.1 Simplex Method
		9.4.2 Nonlinear Methods
		9.4.3 Dynamic Programming
			9.4.3.1 Stochastic DP
			9.4.3.2 Markov Chains
		9.4.4 Evolutionary Algorithms
			9.4.4.1 Genetic Algorithms
			9.4.4.2 Simulation Annealing
			9.4.4.3 Ant Colony
			9.4.4.4 Tabu Search
		9.4.5 Multiobjective Optimization
	9.5 Conflict Resolution
		9.5.1 Conflict Resolution Process
		9.5.2 A System Approach to Conflict Resolution
		9.5.3 Conflict Resolution Models
	9.6 Game Theory and Agent Based Modelling
		9.6.1 Application of Game Theory in Multi-Objective Water Management
			9.6.1.1 Non-Cooperative Stability Definitions
		9.6.2 Agent Based Modelling
			9.6.2.1 Agent Based Modelling for Water Management
			9.6.2.2 Agents and Their Characteristics
	9.7 Case Study
		9.7.1 Reliability Evaluation of Wastewater Treatment Plants Using MCDM Approach and Margin of Safety Method
			9.7.1.1 Probabilistic Load and Resistance Reliability
			9.7.1.2 Margin of Safety (MOS) Method
	9.8 Concluding Remarks
	Problems
	References
Chapter 10 Risk and Reliability
	10.1 Introduction
	10.2 Design by Reliability
	10.3 Probabilistic Treatment of Hydrologic Data
		10.3.1 Discrete and Continuous Random Variables
		10.3.2 Moments of Distribution
		10.3.3 Flood Probability Analysis
	10.4 Common Probabilistic Models
		10.4.1 The Binomial Distribution
		10.4.2 Normal Distribution
		10.4.3 The Exponential Distribution
		10.4.4 The Gamma Distribution
		10.4.5 The Log Pearson Type 3 Distribution
	10.5 Return Period or Recurrence Interval
	10.6 Classical Risk Estimation
	10.7 Reliability
		10.7.1 Reliability Assessment
			10.7.1.1 State Enumeration Method
			10.7.1.2 Path Enumeration Method
		10.7.2 Reliability Analysis—Load-Resistance Concept
		10.7.3 Direct Integration Method
		10.7.4 Margin of Safety
		10.7.5 Factor of Safety
	10.8 Water Supply Reliability Indicators and Metrics
		10.8.1 Risk Analysis Methods and Tools
		10.8.2 Event Tree of Risk Assessment
		10.8.3 Environmental Risk Analysis
	10.9 Vulnerability
		10.9.1 Vulnerability Estimation
			10.9.1.1 Vulnerability Assessment Tools
		10.9.2 Risk Reduction through Reducing Vulnerability
	10.10 Resiliency
	10.11 Sustainability Index
		10.11.1 Case Study 1: Uncertainty Analysis of the Water Supply and Demand Indicators
	10.12 Uncertainty Analysis
		10.12.1 Implications of Uncertainty
		10.12.2 Uncertainty of Hydrological Forecasting
		10.12.3 Measures of Uncertainty
			10.12.3.1 Uncertain Soil Moisture (SM) Estimation
			10.12.3.2 Flood Inundation Maps, Machine Learning (Kalman Filter), and SMAP Soil Moisture
			10.12.3.3 Inundation Probability Map
			10.12.3.4 Load and Resistance Concept and Probabilistic Multicriteria Decision-Making
	10.13 Entropy Theory
	10.14 Probability Theory—Bayes’ Theorem
	10.15 Concluding Remarks
	Problems
	Appendix
	References
Chapter 11 Urban Water Disaster Management
	11.1 Introduction
	11.2 Sources and Kinds of Disasters
		11.2.1 Drought
		11.2.2 Floods
			11.2.2.1 Principles of Urban Flood Control Management
		11.2.3 Widespread Contamination
		11.2.4 System Failure
		11.2.5 Earthquakes
	11.3 What Is UWDM?
		11.3.1 Policy, Legal, and Institutional Framework
	11.4 Societal Responsibilities
	11.5 Planning Process for UWDM
		11.5.1 Taking a Strategic Approach
		11.5.2 Scope of the Strategy Decisions
		11.5.3 UWDM as a Component of a Comprehensive DM
		11.5.4 Planning Cycle
	11.6 Water Disaster Management Strategies
		11.6.1 Disaster Management—Governance Perspective
		11.6.2 Initiation
			11.6.2.1 Political and Governmental Commitment
			11.6.2.2 Policy Implications for Disaster Preparedness
			11.6.2.3 Public Participation
			11.6.2.4 Lessons on Community Activities
		11.6.3 Steps in Drought Disaster Management
		11.6.4 Drought Management Case—Georgia, USA
		11.6.5 Flood Management Case—Northern California, USA
			11.6.5.1 Flood Characteristics
			11.6.5.2 Response
	11.7 Situation Analysis
		11.7.1 Steps in the Development of Situation Analysis
			11.7.1.1 Approach
			11.7.1.2 Objectives
			11.7.1.3 Data Collection
		11.7.2 Urban Disasters Situation Analysis
	11.8 Disaster Indices
		11.8.1 Reliability
			11.8.1.1 Reliability Indices
			11.8.1.2 Mean Value First-Order Second Moment (MFOSM) Method
			11.8.1.3 AFOSM Method
		11.8.2 Time-to-Failure Analysis
			11.8.2.1 Failure and Repair Characteristics
			11.8.2.2 Availability and Unavailability
		11.8.3 Resiliency
		11.8.4 Vulnerability
		11.8.5 Sustainability Index
		11.8.6 Drought Early Warning Systems
	11.9 Uncertainties in Urban Water Engineering
		11.9.1 Implications and Analysis of Uncertainty
		11.9.2 Measures of Uncertainty
		11.9.3 Analysis of Uncertainties
	11.10 Risk Analysis: Composite Hydrological and Hydraulic Risk
		11.10.1 Risk Management and Vulnerability
		11.10.2 Risk-Based Design of Water Resources Systems
		11.10.3 Creating Incentives and Constituencies for Risk Reduction
	11.11 System Preparedness
		11.11.1 Evaluation of WDS Preparedness
		11.11.2 Hybrid Drought Index
		11.11.3 Disaster and Scale
		11.11.4 Disaster and Uncertainty
		11.11.5 Water Supply Reliability Indicators and Metrics
		11.11.6 Issues of Concern for the Public
	11.12 Water Resources Disaster
		11.12.1 Prevention and Mitigation of Natural and Man-Induced Disasters
		11.12.2 Disaster Management Phases
	11.13 Other attributes of Disaster Management
		11.13.1 Disaster and Technology
		11.13.2 Disaster and Training
		11.13.3 Institutional Roles in Disaster Management
	11.14 A Pattern of Analyzing System’s Preparedness
		11.14.1 A Monitoring System for the Water Supply and Distribution Networks
		11.14.2 Organization and Institutional Chart of Decision Makers in a Disaster Committee
	11.15 Concluding Remarks
	Problems
	References
Chapter 12 Urban Hydrologic and Hydrodynamic Simulation
	12.1 Introduction
	12.2 Mathematical Simulation Techniques
		12.2.1 Stochastic Simulation
		12.2.2 Stochastic Processes
		12.2.3 Markov Processes and Markov Chains
		12.2.4 Monte Carlo Technique/Simulation
	12.3 Artificial Neural Networks
		12.3.1 Probabilistic Neural Network
		12.3.2 Radial Basis Function
	12.4 Overland Flow Simulation
		12.4.1 IHACRES
		12.4.2 Hydrologic Modeling System (HEC-HMS)
			12.4.2.1 Rainfall–Runoff Simulation
			12.4.2.2 Parameters Estimation
		12.4.3 StormNET
		12.4.4 HBV
		12.4.5 Distributed Hydrological Models
			12.4.5.1 Watershed Modeling System
			12.4.5.2 GSSHA Model
			12.4.5.3 LISFLOOD Model
	12.5 Hydrodynamic (Offshore) Modeling
		12.5.1 Physical Models
		12.5.2 Numerical Modeling
			12.5.2.1 Open-Source Models
	12.6 Hydraulic-Driven Simulation Models
		12.6.1 EPANET
		12.6.2 QUALNET
		12.6.3 Event-Driven Method
	12.7 Case Studies
		12.7.1 Case Study 1: DEM Error Realizations in Hydrologic Modeling
			12.7.1.1 Methodology
			12.7.1.2 Results
		12.7.2 Case Study 2: Simulation of Ungagged Coastal Flooding— Nearshore and Inland BMPs
			12.7.2.1 Area Characteristics
			12.7.2.2 Methodology
			12.7.2.3 Results
			12.7.2.4 Concluding Remarks
		12.7.3 Case Study 3: Infrastructure Flood Risk Management—MCDM- Based Selection of BMPs and Flood Damage Assessment
			12.7.3.1 Methodology
			12.7.3.2 Results
			12.7.3.3 Case Study Concluding Remarks
	12.8 Summary and Conclusion
	Problems
	Appendix
	References
Chapter 13 Flood Resiliency of Cities
	13.1 Introduction
	13.2 Setting the Stage—Flood Types and Formations
		13.2.1 Inland and Coastal Flooding
			13.2.1.1 Inland Flooding
			13.2.1.2 Coastal Flooding
	13.3 Flood Analysis
		13.3.1 Flood Time Series
			13.3.1.1 Peaks Over Threshold Series
		13.3.2 Partial Frequency Analysis
			13.3.2.1 Stationary Analysis
			13.3.2.2 Non-stationary Analysis
			13.3.2.3 Ungagged Flood Data
		13.3.3 Testing Outliers
	13.4 Flood Recurrence Interval
	13.5 Flood Routing
		13.5.1 Storage- Based Routing
	13.6 Urban Floods
		13.6.1 Urban Flood Control Principles
	13.7 Understanding Flood Hazards
		13.7.1 Climate Change and Flooding
		13.7.2 Sea Level Rise and Storm Surge
	13.8 Evacuation Zones
	13.9 Interdependencies Role on Water Infrastructure Performance
		13.9.1 Resiliency of New York City’s Wastewater System
	13.10 Flood Damage
		13.10.1 Stage- Damage Curve
		13.10.2 Expected Damage
			13.10.2.1 Case Study 1: Coastal Flood Damage Estimator: An Alternative to FEMA’s HAZUS Platform
	13.11 Flood Risk Management
		13.11.1 Resiliency and Flood Risk Management
			13.11.1.1 Wastewater Treatment Plants of New York City
			13.11.1.2 Case Study 2: Prioritizing Investments in Improving Flood Resilience and Reliability of Wastewater Treatment Infrastructure
	13.12 Floodplain Management
		13.12.1 Structural and Nonstructural Measures
		13.12.2 BMPs and Flood Control
			13.12.2.1 Case Study 3: Integration of Inland and Coastal Storms for Flood Hazard Assessment Using a Distributed Hydrologic Model
			13.12.2.2 Case Study 4: Nonstationary- Based Framework for Performance Enhancement of Coastal Flood Mitigation Strategies
			13.12.2.3 Case Study 5: Conceptual Design Framework for Coastal Flood Best Management Practices
			13.12.2.4 Case Study 6: Improvement of Urban Drainage System Performance
		13.12.3 Watershed Flood Early Warning System
		13.12.4 Flood Insurance
	13.13 Livable Cities of the Future
		13.13.1 Mayor’s Office Point of View
		13.13.2 Infrastructure Renewal: An Agency View Point
			13.13.2.1 The Big Picture
			13.13.2.2 The Critical Role of Transportation
			13.13.2.3 Sustainable Urban Renewal
			13.13.2.4 Energy as the Core of NYC
			13.13.2.5 Using Water for Urban Renewal
		13.13.3 Fighting Climate Change—A Former Mayor View Points
		13.13.4 Urban Challenges: The Way Forward—An IT Expert View Points
			13.13.4.1 The Challenges
			13.13.4.2 The Path to Success
	13.14 Concluding Remarks
	Problems
	Appendix
	References
Chapter 14 Environmental Visualization
	14.1 Introduction
		14.1.1 Sensed Water Infrastructure
	14.2 Environmental Sensing
		14.2.1 Introduction
		14.2.2 Ubiquitous Environmental Sensor Technologies
		14.2.3 Remote Sensing and Earth Observation
		14.2.4 Soil Moisture Active Passive (SMAP)
			14.2.4.1 Step- by- Step Procedure to Download SMAP Data for a Specific Data at a Specific Location
	14.3 Pattern Recognition
		14.3.1 Introduction
		14.3.2 Parameter Estimation
			14.3.2.1 Moments Method
			14.3.2.2 Maximum Likelihood (MLE)
			14.3.2.3 Maximum Posteriori (MAP)
			14.3.2.4 Nonparametric Density Estimation—Parzen Method
		14.3.3 Feature Extraction and Selection
			14.3.3.1 Backward Elimination
			14.3.3.2 Forward Selection
		14.3.4 Discrimination Analysis
			14.3.4.1 Fisher Discriminant Analysis (FDA)
			14.3.4.2 Linear Discriminant Analysis
			14.3.4.3 Principal of Component Analysis (PCA)
		14.3.5 Supervised Classification
			14.3.5.1 Bayes Decision Theory
			14.3.5.2 Density Function Estimation
			14.3.5.3 Parametric Density Estimation
			14.3.5.4 k-Nearest Neighbor Estimation (k-NN)
			14.3.5.5 Min-Mean Distance Classicat fi ion
			14.3.5.6 Support Vector Machines (SVM)
		14.3.6 Unsupervised Classification (Clustering)
			14.3.6.1 Sequential Clustering
			14.3.6.2 Optimization Based Clustering
		14.3.7 Image Processing
			14.3.7.1 Image RGB Analysis
	14.4 Data Assimilation
		14.4.1 Kalman Filter (KF)
		14.4.2 VIC Model Application with Data Assimilation
	14.5 Environmental Visualization Attributes
		14.5.1 Intelligent Visualization and Image Analysis Systems
		14.5.2 Water- Related Environmental Visualization
		14.5.3 Visualization to Control and Reduce Flood Risk
		14.5.4 Environmental Effects and Protection—Signatures and Symbols
		14.5.5 SLP as a Mean for Wet Front/Storm Movement
	14.6 Map Resolution
		14.6.1 DEM Resolution
		14.6.2 Digital Terrain Model
		14.6.3 Quality and Accuracy of DEM/DTM
		14.6.4 Digital Surface Model (DSM)
		14.6.5 Common Uses of DEMs
		14.6.6 Effect of Map Resolution on Modeling
		14.6.7 Kriging Interpolation
		14.6.8 Variogram Modeling
		14.6.9 Resampling
		14.6.10 DEM Error
	14.7 Case Studies
		14.7.1 Case Study 1: A Satellite/Citizen Science-Based Soil Moisture Estimator
			14.7.1.1 Clustering for Soil Moisture Applications
			14.7.1.2 Data Estimation Platform—Error Analysis
			14.7.1.3 Study Area and Data Collection
			14.7.1.4 Digital Image Processing
			14.7.1.5 Cross-Validation of Citizen Science with Satellite Data
		14.7.2 Case Study 2: Data Assimilation for Flood Assessment
			14.7.2.1 Soil Moisture Estimation Results
			14.7.2.2 RVIC Model Results
	14.8 Concluding Remarks
	Problems
	References
Index




نظرات کاربران