ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Waste Recycling Technologies for Nanomaterials Manufacturing

دانلود کتاب فن آوری های بازیافت زباله برای تولید نانومواد

Waste Recycling Technologies for Nanomaterials Manufacturing

مشخصات کتاب

Waste Recycling Technologies for Nanomaterials Manufacturing

دسته بندی: فن آوری
ویرایش:  
نویسندگان:   
سری: Topics in Mining, Metallurgy and Materials Engineering 
ISBN (شابک) : 3030680304, 9783030680305 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 870 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 33 مگابایت 

قیمت کتاب (تومان) : 47,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Waste Recycling Technologies for Nanomaterials Manufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فن آوری های بازیافت زباله برای تولید نانومواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب فن آوری های بازیافت زباله برای تولید نانومواد


این کتاب پیشرفت‌های اخیر در فن‌آوری‌های بازیافت زباله را برای ارائه راه‌های کم‌هزینه و جایگزین برای تولید نانومواد مورد بحث قرار می‌دهد. این نشان می دهد که چگونه می توان نانومواد کربن را از منابع مختلف زباله مانند الیاف موز، پوسته دانه آرگان (Argania spinosa)، دانه های ذرت، پوسته کاملیا اولیفرا، باگاس نیشکر، روغن نخل (دسته ها و برگ های میوه خالی) و پوسته هسته خرما سنتز کرد. چندین اکسید فلزی نانوساختار (MnO2، Co3O4،….) را می توان از طریق بازیافت باتری های مصرف شده سنتز کرد. نانومواد بازیابی شده را می توان در بسیاری از کاربردها از جمله: انرژی (ابر خازن ها، سلول های خورشیدی و غیره) تصفیه آب (حذف یون های فلزات سنگین و رنگ ها) و سایر کاربردها استفاده کرد. باتری های مصرف شده و زباله های کشاورزی به ترتیب پیش سازهای غنی برای فلزات و کربن هستند. این کتاب همچنین به بررسی تکنیک‌های مختلف بازیافت، بازیافت زباله‌های کشاورزی، بازیافت باتری‌ها و کاربردهای مختلف مواد بازیافتی می‌پردازد.

توضیحاتی درمورد کتاب به خارجی

This book discusses the recent advances in the wastes recycling technologies to provide low-cost and alternative ways for nanomaterials production. It shows how carbon nanomaterials can be synthesized from different waste sources such as banana fibers, argan (Argania spinosa) seed shells, corn grains, camellia oleifera shell, sugar cane bagasse, oil palm (empty fruit bunches and leaves) and palm kernel shells. Several nanostructured metal oxides (MnO2, Co3O4,….) can be synthesized via recycling of spent batteries. The recovered nanomaterials can be applied in many applications including: Energy (supercapacitors, solar cells, etc.) water treatments (heavy metal ions and dyes removal) and other applications. Spent battery and agriculture waste are rich precursors for metals and carbon, respectively. The book also explores the various recycling techniques, agriculture waste recycling, batteries recycling, and different applications of the recycled materials. 


فهرست مطالب

Preface
Contents
Editors and Contributors
Fundamentals, Current Prospects, and Future Trends
1 Fundamentals of Waste Recycling for Nanomaterial Manufacturing
	Abstract
	1 Fundamentals of Nanomaterials Manufacturing
		1.1 Nanoscience and Nanotechnology
		1.2 Types of Nanomaterials
		1.3 Nanosized Structures
	2 Synthesis of Nanomaterials
		2.1 Vapor State Processing Routes
			2.1.1 Physical Vapor Deposition
			2.1.2 Chemical Vapor Deposition
			2.1.3 Spray Conversion Processing
		2.2 Liquid State Processing Routes
			2.2.1 Sol–Gel Method
			2.2.2 Citrate-Gel-Pechini Process
			2.2.3 Wet Chemical Synthesis
		2.3 Solid-State Processing Routes
			2.3.1 Mechanical Milling
			2.3.2 Mechanochemical Preparation
	3 Properties of Nanomaterials
		3.1 Surface Area and Catalytic Activity
		3.2 Electrical Properties
		3.3 Energy Gap and Optical Properties
		3.4 Mechanical Strength
		3.5 Melting Temperature and Thermodynamic Properties
		3.6 Color
	4 Applications of Nanomaterials
		4.1 Energy Applications
		4.2 Catalytic Applications
		4.3 Environmental Applications
		4.4 Sensing Applications
	5 Waste Recycling Technologies
		5.1 Waste Classification
			5.1.1 Agricultural Waste
			5.1.2 Industrial Waste
			5.1.3 Electronic Waste
		5.2 Recycling Techniques
			5.2.1 Pyrolysis Recycling
			5.2.2 Electrochemical Recycling
			5.2.3 Chemical Recycling
	6 Conclusion
	References
2 Recycling, Management, and Valorization of Industrial Solid Wastes
	Abstract
	1 Introduction
	2 Categorization of Industrial Solid Waste
	3 The Concept for Treatment of Solid Waste
	4 Solid Waste Management
	5 Valorization of Solid Waste
	6 Environmental Inducements for Industrial Waste Recycling
	7 Traditional Methods of Industrial Waste Recycling
		7.1 Pyrometallurgical Methods
		7.2 Hydrometallurgical Methods
	8 Examples of Recycling Particular Types of Waste
		8.1 Spent Hydroprocessing Catalyst Waste
		8.2 Electronic Waste
			8.2.1 Waste Pre-treatment
			8.2.2 Recovery of Metals
			8.2.3 Industrial-Scale Recycling
		8.3 Lithium-Ion Batteries
			8.3.1 Physical Methods
			8.3.2 Thermal Methods
			8.3.3 Chemical Methods
		8.4 Industrial-Scale Recycling Practices
		8.5 Present Status and Economic Considerations
	9 Conclusions
	10 Future Perspectives
	References
3 Environmental Susceptibility and Nanowaste
	Abstract
	1 Introduction
	2 Types of Nanomaterials and Their Uses
	3 Risk Description of Nanowaste
	4 Present Treatment Techniques of Nanowaste Products
	5 Nanomaterial in Pollution Control and Recycling
	6 Toxicity of Nanowaste to the Environment
	7 Nanowaste Identification and Characterization of Analytical Tools
	8 Fate and the Environmental Behavior of Nanomaterials
		8.1 Air
		8.2 Water
		8.3 Soil
	9 Risk Assessment and Approaches
		9.1 Identification of Risk and Hazard
		9.2 Exposure and Hazard Assessment
		9.3 Characterization of Risk
	10 Environmental Processes Which Can Affect the NMs Properties
	11 The Positive Nanotechnology Impact
	12 Restriction of the New Nanowaste Management Regulatory System
	13 Conclusion
	14 Future Perspectives
	References
Electronics Waste Recycling Technologies
4 Recycling of Cobalt Oxides Electrodes from Spent Lithium-Ion Batteries by Electrochemical Method
	Abstract
	1 Introduction
	2 Electrochemical Energy Storage
		2.1 Electrical Double-Layer Capacitors
		2.2 Redox-Based Capacitors (Pseudocapacitors)
	3 Pseudocapacitors Electrode Materials
		3.1 Transition Metal Oxides
		3.2 Transition Metal Sulfides
		3.3 Metal Nitrides
		3.4 Layered Double Hydroxides
		3.5 Conducting Polymers
	4 Lithium-Ion Batteries as a Source of Cobalt Oxide
		4.1 Cobalt Production
			4.1.1 Cobalt Production Processes
			4.1.2 Cobalt Production Drawbacks
		4.2 Approaches to Recover Cobalt from Lithium-Ion Batteries
			4.2.1 Physical Processes
				Mechanical Separation Processes
				Mechanochemical Process
				Thermal Treatment
				Dissolution Process
			4.2.2 Chemical Processes
				Acid Leaching
				Bioleaching
				Solvent Extraction
				Chemical Precipitation
				Electrochemical Process
			4.2.3 Magnetic Electrodeposition
			4.2.4 Approaches in Magnetic Electrodeposition
		4.3 Advantages of Magnetic Electrodeposition of Cobalt from Lithium-Ion Batteries
	5 Conclusions
	6 Future Perspectives
	References
5 Recovery of Nanomaterials for Battery Applications
	Abstract
	1 Introduction
	2 A Brief Overview of Battery Technology
	3 Recovery of Nanomaterials for Alkali Metal Ion Batteries
		3.1 Recovery of Graphite
		3.2 Recovery of Silicon
		3.3 Recovery of Valuable Chemical Elements
	4 Recovery of Nanomaterials for Conventional Secondary Batteries
		4.1 Recovery of Nanomaterials for Ni–Cd and Ni–MH Batteries
		4.2 Recovery of Nanomaterials for Lead–Acid Batteries
	5 Recovery of Nanomaterials for Alkaline Batteries
		5.1 Recovery of Nanomaterials for Rechargeable Zn//MnO2 Batteries
		5.2 Recovery of Nanomaterials for Primary Zinc–Carbon Batteries
	6 Conclusions
	7 Future Perspectives
	Acknowledgements
	References
6 Cost-Effective Nanomaterials Fabricated by Recycling Spent Batteries
	Abstract
	1 Introduction
	2 Overview of Batteries, Its Components, and Their Harmful Effects
		2.1 Nanomaterials Used as Cathodes in Lithium-Ion Batteries
		2.2 Nanomaterials Used as Anodes in Lithium-Ion Batteries
		2.3 Electrolytes in Lithium-Ion Batteries
	3 Effect of Lithium-Ion Batteries Development on the Environment
	4 Recycling Nanomaterials from Lithium-Ion Batteries
		4.1 Recycled Nanomaterials from Lithium-Ion Batteries
		4.2 Recycled Nanomaterials from Other Battery Cathodes
	5 Quantitative Analysis of Recycling Various Lithium-Ion Batteries Electrodes
	6 Conclusion
	7 Future Perspective
	References
7 Recycled Nanomaterials for Energy Storage (Supercapacitor) Applications
	Abstract
	1 Introduction
	2 Supercapacitors, Batteries, and Fuel Cells
	3 Supercapacitors Applications
	4 Energy Storage Mechanisms
	5 Supercapacitors Components
		5.1 Electrode Materials
			5.1.1 Metal Oxides
			5.1.2 Carbon-Based Materials
			5.1.3 Polymeric Materials
			5.1.4 Hybrid Materials
		5.2 Electrolytes
		5.3 Separators
		5.4 Supercapacitors Cell Assembly
		5.5 Cells Setup
	6 Supercapacitors Electrodes by Waste Recycling
		6.1 Recycled Metal Oxides
			6.1.1 MnO2 by Recycling Spent Zinc–Carbon Batteries
			6.1.2 Co3O4 by Recycling Spent Lithium–Ion Batteries
		6.2 Recycled Carbon Materials
			6.2.1 Carbon Materials from Agriculture Waste
			6.2.2 Carbon Materials from Other Waste
	7 Conclusions
	8 Future Prospectives
	References
8 Recovery of Metal Oxide Nanomaterials from Electronic Waste Materials
	Abstract
	1 Introduction
	2 Recent Categories and Strategies of Metal Oxide Recovery
		2.1 Hydrometallurgical Approach Pathway
		2.2 Pyrometallurgical Approach Pathway
		2.3 Physical Separation Approach
	3 Recovery of Ferrites
	4 Recovery of Zinc Oxide
	5 Recovery of Indium Tin Oxide
	6 Conclusions
	7 Future Prospective
	References
9 Nanosensors and Nanobiosensors for Monitoring the Environmental Pollutants
	Abstract
	1 Introduction
	2 Recent Preparation Techniques of Recycled Nanomaterials
	3 Applications of Nanosensors/Nanobiosensors for Environmental Monitoring
		3.1 Nanosensors for Detecting Organic Pollutants
		3.2 Nanosensors for Detecting Inorganic Pollutants
	4 Other Applications of Nanobiosensors
	5 Statistics for Environmental Nanobiosensors
	6 Conclusions
	7 Future Perspectives
	Acknowledgements
	References
10 Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications
	Abstract
	1 Introduction
	2 Electrochemical Water Splitting
		2.1 Electrocatalytic Reaction
			2.1.1 The Overpotential
			2.1.2 Exchange Current Density
			2.1.3 Tafel Equation and Tafel Slope
		2.2 Recovered Nanomaterials for Hydrogen Evolution Reaction
		2.3 Recovered Nanomaterials for Oxygen Evolution Reaction
		2.4 Recovered Nanomaterials for Electrocatalytic Overall Water Splitting
	3 Oxygen Reduction Reaction
		3.1 Thermodynamic Electrode Potentials of ORR
		3.2 Waste-Recovered Nanomaterials for ORR in Fuel Cells
		3.3 Waste-Recovered Nanomaterials for Metal–Air Battery
	4 Dye-Sensitized Solar Cells
		4.1 WasteRecovered Nanomaterials as Catalyst for Dye-Sensitized Solar Cell
	5 Conclusions
	6 Future Perspectives
	References
Agriculture Waste Recycling Technologies
11 Recycling of Nanosilica Powder from Bamboo Leaves and Rice Husks for Forensic Applications
	Abstract
	1 Introduction
	2 Methodology
		2.1 Materials and Reagents
		2.2 Synthesis of Nanosilica from Bamboo Leave and Rice Husk
		2.3 Washing and Acid Treatment
		2.4 Thermal Treatment
		2.5 Extraction of Silica
		2.6 Synthesis of Nanosilica
		2.7 Characterization of Nanosilica Synthesized from Bamboo Leave and Rice Husk
		2.8 Development of Latent Fingermarks from Bamboo Leave and Rice Husk
			2.8.1 Materials and Surfaces
			2.8.2 Depletion Studies of Split Fingermarks
	3 Results and Discussion
		3.1 Optimization Methods for the Synthesis of Nanosilica
			3.1.1 Images of Bamboo Leave and Rice Husk in Different Conditions
			3.1.2 FESEM of Bamboo Leave and Rice Husk (with and Without Acid Leaching)
			3.1.3 Yield Percentage of Nanosilica from Bamboo Leave and Rice Husk
			3.1.4 Nanosilica Synthesized from Bamboo Leave and Rice Husk
			3.1.5 EDX Analysis of Bamboo Leave and Rice Husk Nanosilica
			3.1.6 FTIR Analysis of Bamboo Leave and Rice Husk Nanosilica
			3.1.7 ICP-MS Analysis of Bamboo Leave and Rice Husk Without and with Acid Leaching
		3.2 Development of Fresh Latent Fingermarks Using Nanosilica
	4 Conclusions
	5 Future Perspectives
	References
12 Recycling of Nanosilica from Agricultural, Electronic, and Industrial Wastes for Wastewater Treatment
	Abstract
	1 Introduction
	2 Sources of Water Pollution
		2.1 Organic Pollutants
		2.2 Inorganic Pollutants
	3 Waste as a Secondary Source of Nanosilica
		3.1 Agriculture Waste
		3.2 Electronic Waste
		3.3 Industrial Waste
	4 The Strategy of Synthesis of Nanosilica from Different Solid Wastes
		4.1 Nanosilica Recovered from Agricultural Waste
		4.2 Nanosilica Recovered from Electronic Waste
		4.3 Nanosilica Recovered from Industrial Waste
	5 Treatment of Wastewater Using Nanosilica
	6 Effect of Nanosilica’s Surface Area and Porosity on the Wastewater Treatment Efficiency
	7 Effect of Nanosilica’s Morphology on the Treatment Behavior
	8 Inorganic Pollutants Adsorption Using Nanosilica
	9 Organic Pollutants Adsorption Using Nanosilica
	10 Conclusion
	11 Future Prospective
	References
13 Extraction of Silica and Lignin-Based Nanocomposite Materials from Agricultural Waste for Wastewater Treatment Using Photocatalysis Technique
	Abstract
	1 Introduction
	2 Preparation of Silica from Rice Husk Waste
		2.1 Strong Acid Leaching Treatment Method
			2.1.1 Porous Silica
			2.1.2 Silica Aerogel
			2.1.3 Spheroid Silica
			2.1.4 Nanodisks Silica
		2.2 Organic Acid Leaching Treatment Method
	3 Photocatalytic Activity of RHA-Silica
	4 Preparation of Lignin
		4.1 Preparation of Lignin from Wood
		4.2 Preparation of Lignin from Rice Husk
			4.2.1 Alkaline Hydrogen Peroxide Method
			4.2.2 Chemical Pretreatment by Microwave Irradiation for Delignification
			4.2.3 Reflux Conditions (Organosolv Lignin)
	5 Types of Lignin According to the Preparation Method
		5.1 Kraft Lignin
		5.2 Hard Lignin
		5.3 Lignin Alkali
		5.4 Lignosulphonates
		5.5 Organosolv Lignin
	6 Photocatalytic Composite Based on Lignin
	7 Conclusions
	8 Future Perspectives
	References
14 Recovery of Nanomaterials from Agricultural and Industrial Wastes for Water Treatment Applications
	Abstract
	1 Introduction
	2 Water Pollutants
		2.1 Dyes as Organic Pollutants
		2.2 Heavy Metals as Inorganic Pollutants
	3 Agricultural Waste-Based Materials
		3.1 Activated Carbon from Wastes
		3.2 Rice Husk-Based Materials
		3.3 Peels-Based Materials
		3.4 Miscellaneous Agricultural Waste-Based Materials
	4 Industrial Waste-Based Materials
		4.1 Eggshells-Based Materials
		4.2 Electronic Waste-Based Materials
		4.3 Blast Furnace Dust-Based Materials
		4.4 Miscellaneous Industrial Wastes-Based Materials
	5 Conclusion
	6 Future Perspectives
	References
15 Carbon Nanomaterials Synthesis-Based Recycling
	Abstract
	1 Introduction
	2 Recycling of Carbonic Nanomaterials Using Various Pyrolysis Systems
		2.1 Fixed-Bed Class of Pyrolysis Using Water Vapor
		2.2 Fixed-Bed Pyrolysis Using Microwave
		2.3 Chemical Vapor Deposition
	3 Resources for Carbon Materials Recycling
		3.1 Reformation Using Sawdust
		3.2 Multi-hierarchical Carbonic Materials as Representative Recycling of Waste
		3.3 Carbon Nanospheres from Trash Tires Pyrolysis Overtop Ferrocene Synergist
		3.4 Reuse of Rubbish Rubber Particles by Mechano-Chemical Alteration
		3.5 Catalytic Reformation of Solid Plastics to Precious Carbon Nanotubes
		3.6 Chemical Reuse and Recycle of Carbon Fibers Reinforced Epoxy Resin
			3.6.1 Honeycomb Activated Carbon Producer from Agriculture Waste
			3.6.2 Green Approach for Carbon Nanospheres Production
			3.6.3 Synthesis of Carbon Nanospheres by Pyrolysis from Biowaste Sago Bark
			3.6.4 Nanocarbons Developed Utilizing Biowaste Oil Palm Sheets as a Precursor
			3.6.5 Exchange of Allium Cepa Peels to Energy Storage Arrangement-Based Carbon Nanospheres
	4 Conclusions
	5 Future Perspectives
	References
16 Recent Trends of Recycled Carbon-Based Nanomaterials and Their Applications
	Abstract
	1 Introduction
		1.1 Overview of Nanomaterials
		1.2 Origin of Nanomaterials
	2 Recycled Nanomaterials
	3 Classification of Recycled Nanomaterials
		3.1 Carbon Nanomaterials from Banana Fibers
		3.2 Carbon Nanomaterials from Argania Spinosa Seeds
		3.3 Carbon Nanomaterials from Corn Grains, Sugarcane Fibers, and Oil Palm Shells
	4 Applications of the Recycled Nanomaterials
	5 Conclusions
	6 Future Perspectives
	References
17 Heteroatoms Doped Porous Carbon Nanostructures Recovered from Agriculture Waste for Energy Conversion and Storage
	Abstract
	1 Introduction
	2 Synthetic Strategies of Carbon from Biomass Precursors
		2.1 Hydrothermal Carbonization
		2.2 Pyrolysis Method
		2.3 Microwave Method
		2.4 Template-Directed Synthesis
		2.5 Ionothermal Carbonization
	3 Activation Processes
		3.1 Chemical Activation
		3.2 Physical Activation
		3.3 Self-Activation
	4 Heteroatom Doped Porous Carbon Matrix
	5 Synergistic Effect of Macro/Meso/Micropores for Applications
		5.1 CO2 Storage Materials
		5.2 Fuel Cells and Electrocatalysis
		5.3 Water Splitting
		5.4 Lithium-ion batteries
	6 Conclusions, Challenges and Future Prospectives
	References
18 Recycled Activated Carbon-Based Materials for the Removal of Organic Pollutants from Wastewater
	Abstract
	1 Introduction
		1.1 Types of Pollutants
		1.2 Water and Wastewater Treatment
		1.3 Industrial Wastewater Treatment
			1.3.1 Chemical Methods
			1.3.2 Biological Methods
			1.3.3 Physical Methods
	2 Activated Carbon
	3 Preparation of Activated Carbon
	4 Effects of Carbonization Temperature on Activated Carbon
		4.1 Effect of Carbonization Time on Activated Carbon
		4.2 Activated Carbon Physical and Chemical Properties
	5 Improving the Physical and Chemical Properties of Activated Carbon
	6 Adsorption
		6.1 Adsorption Capacity and Isotherms Contaminant
		6.2 Kinetic of Adsorption
			6.2.1 Pseudo-First-Order
			6.2.2 Pseudo-Second Order
			6.2.3 Intraparticle Diffusion
		6.3 Contaminant Removal of Activated Carbon Adsorbents from Aqueous Solutions
	7 Activated Carbon Recycling and Reactivation
	8 Conclusion
	9 Future Perspectives
	References
19 Rice Husk-Derived Nanomaterials for Potential Applications
	Abstract
	1 Introduction
	2 Rice Husk and Rice Husk Ash
		2.1 Rice Husk Composition
		2.2 Rice Husk Ash Composition
	3 Synthesis and Application of Nanosilica from Rice Husk and Rice Husk Ash-Based Resources
		3.1 Synthesis of Nanosilica
			3.1.1 Thermal Techniques
			3.1.2 Chemical Method
				Alkaline Extraction
				Acid Extraction
		3.2 Potential Applications of Nanosilica
			3.2.1 Biomedical Applications of Nanosilica
				Bioimaging and Biosensing
				Drug Delivery Systems
			3.2.2 Application of Nanosilica in the Agricultural Field
			3.2.3 Use of Nanosilica in Environmental Remediation
			3.2.4 Use of Nanosilica in Water Decontamination
			3.2.5 Application of Nanosilica in Solar Cells
			3.2.6 Application of Nanosilica in Batteries
	4 Nanocarbon from Rice Husk
		4.1 Activated Carbon
			4.1.1 Methods of Preparing Activated Carbon from Rice Husk
			4.1.2 Preparation of Carbon Nanotube from Rice Husk
			4.1.3 Preparation of Graphene from Rice Husk
		4.2 Potential Applications of Nanocarbon
			4.2.1 Ecological Uses of Nanocarbon
			4.2.2 Nanoencapsulation and Intelligent Delivery Methods
			4.2.3 Antifungal and Antibacterial Agents
			4.2.4 Medical Applications of Nanocarbon
			4.2.5 Application of Nanocarbon in Water Purification
	5 Nanozeolite
		5.1 Preparation of Nanozeolite from Risk Husk
		5.2 Potential Applications of Nanozeolite
			5.2.1 Usage of Nanozeolite in Water Remediation
			5.2.2 Application of Nanozeolite in Biomedical
	6 Conclusion
	7 Future Prospective
	References
20 Recycle Strategies to Deal with Metal Nanomaterials by Using Aquatic Plants Through Phytoremediation Technique
	Abstract
	1 Introduction
	2 Phytoremediation
		2.1 Types of Phytoremediation
			2.1.1 Phytostabilization
			2.1.2 Phytostimulation
			2.1.3 Phytotransformation
			2.1.4 Phytofiltration
			2.1.5 Phytoextraction
		2.2 Pros and Cons of Phytoremediation
	3 The Future of Phytoremediation
	4 Metal Nanoparticles
		4.1 Application of Nanoparticles
		4.2 Different Types of Nanoparticles
		4.3 Strategies Used to Synthesize Nanoparticles
		4.4 Synthesis of Nanoparticles
	5 Obtrusive Aquatic Plants Utilized in Phytoremediation
		5.1 Varieties of Macrophytes
	6 Role of Different Aquatic Macrophytes in Metal Nanoparticle Removal
		6.1 Role of Water Hyacinth—(Eichhornia crassipis)
		6.2 Role of Mosquito Fern—(Azolla caroliniana) and Mustard Green—(Brassica juncea)
		6.3 Role of Water Lettuce—(Pistia stratiotes) and Duckweeds—(Lemnoideae)
		6.4 Role of Hydrilla—(Hydrilla verticillata) and Duckweed—(Spirodela intermedia)
		6.5 Role of Giant Bulrush—(Schoenoplectus californicus); Ricciaceae—(Ricciocarpus natans); Hydrocharitaceae—(Vallisneria spiralis)
	7 Metal Nanoparticle Recycling and Removal Through Different Types of Phytoremediation
		7.1 Mechanism of Phytostabilization
		7.2 Mechanism of Rhizofiltration
		7.3 Mechanism of Phytotransformation
		7.4 Mechanism of Phytovolatilization
	8 Recycling of Metal Nanoparticles
	9 Nanoparticle Waste Treatment
	10 Removal and Reusing of Items Containing Nanotechnology
	11 Conclusion
	12 Future Prospective
	Acknowledgements
	References
21 Advanced Waste Recycling Technologies for Manufacturing of Nanomaterials for Green Energy Applications
	Abstract
	1 Introduction
	2 Carbon and Carbon-Based Nanomaterials
	3 Waste Materials as Carbon Sources to produce Carbon-based Materials
		3.1 The Meaning of Waste
		3.2 Classification and Types of Waste
		3.3 Solid Waste
		3.4 Liquid Waste
	4 Environmental and Health Impacts of Waste
	5 Waste Management
		5.1 Importance of Waste Management
		5.2 Solid Waste Management
			5.2.1 Principal Phases of Solid Waste Management
			5.2.2 Maintainable Technique for Solid Waste Management
				Sustainable Methodology for Solid Waste Management
		5.3 Liquid Waste Management
	6 Green Approach Toward the Acquisition of Carbon-Based Nanomaterial
		6.1 Activated Carbon-Supported Materials
			6.1.1 Origin and Source of Activated Carbon
			6.1.2 Activated Carbon Preparation
				Activated Carbon from Agricultural Wastes
				Activated Carbon from Biological Wastes
				Activated Carbon from Fruit Wastes
				Activated Carbon from Plastic Wastes
				Activated Carbon from Electronic Wastes
				Activated Carbon from Vegetable Wastes
		6.2 Using Vegetable Wastes to Prepare AC and Their Application for Fabrication of Biodiesel from Waste Cooking Oils
			6.2.1 Activated Carbon Preparation
				Processing of Peach Seeds
			6.2.2 Conversion of Preserved Mixture to Activated Carbon
			6.2.3 Activated Carbon Doped by Transition Metals
			6.2.4 Waste Cooking Oil Cracking by Prepared Catalyst
				Specification of Waste Cooking Oils
				Biofuel Physical Specification
				The Mechanism of Catalytic Cracking of Waste Cooking Oil
		6.3 Activated Carbon from Petroleum Residue
			6.3.1 Using Oil Sands Coke to Prepare Activated Carbon
			6.3.2 Using Asphalt and Heavy Oil Fly Ash to Prepare Activated Carbon
			6.3.3 Using Spent Lubricating Oil to Prepare Activated Carbon
	7 Conclusions
	8 Future Perspectives
	References
22 Nanoformulated Materials from Citrus Wastes
	Abstract
	1 Introduction
	2 Nanoinsecticides Formulated from Citrus Essential Oils
		2.1 Nanoemulsions of Essential Oils
			2.1.1 Formulation of the Nanoemulsion
				Low-Energy Approaches
				High-Energy Approaches
			2.1.2 Preparation of Essential Oils Nanoparticles
		2.2 Control of Harmful Insects Using Nanoinsecticides Derived from Citrus Wastes
			2.2.1 Control of Disease-Vector Mosquito Culex pipiens Using Citrus Essential Oils Nanoemulsion
			2.2.2 Control of the German Cockroach Pest
			2.2.3 Control of Stored Grains Pests
			2.2.4 Control of Tomato Crop Pest
	3 Application of Nanomaterials of Citrus Wastes in the Food Industry
		3.1 Preservation of Fish Products
		3.2 Increasing the Shelf Life of the Cake
		3.3 Processed Cheese Supplemented with Nanoliposomes
		3.4 Mechanism of Antimicrobial Activity of the Essential Oils Nanoformulations
	4 Nanocellulose Derived from Citrus Wastes
		4.1 Water Treatment Using Nanocellulose Derived from Citrus Wastes
		4.2 Materials Prepared from Nanocellulose for Production of Composite Materials
	5 Conclusion
	6 Future Perspectives
	References
23 Bottom-Up Approach Through Microbial Green Biosynthesis of Nanoparticles from Waste
	Abstract
	1 Introduction
	2 Green Chemistry and Its Basic Principles
	3 Different Approaches for the Production of Nanoparticles
		3.1 Top-Down Approach
		3.2 Bottom-Up Approach
			3.2.1 Chemical Reduction Method
			3.2.2 Electrochemical Reduction Method
			3.2.3 Microwave Method
			3.2.4 Reverse Micelle Method
			3.2.5 Laser Ablation
			3.2.6 Green Biological Method
	4 Microorganisms Used for Nanoparticles Synthesis
	5 Mechanism of Microbial Synthesis of Nanoparticles
	6 Reaction Parameters Affecting the Biogenic Synthesis of Nanoparticles
	7 Microorganisms Used for the Synthesis of Nanoparticles from Wastewaters
		7.1 Cupriavidus metallidurans for Pd Nanoparticles Synthesis
		7.2 Desulfovibrio desulfuricans and Pd Nanoparticles Synthesis
		7.3 Rhodopseudomonas palustris and Recovery of Ruthenium
		7.4 Pseudomonas mendocina for Reduction of Tellurium
		7.5 Raotella sp and Echirechia sp for Te Nanorods Production
	8 Microorganisms Used for the Synthesis of Nanoparticles from Solid Waste
		8.1 Chromobacterium violaceum and Delftia acidovorans for Gold Recovery
	9 Applications and Advantages of Nanoparticles Produced by Microbes Using Waste
	10 Limitations of Microbial Biologic Method for Nanoparticles Synthesis
	11 Conclusions
	12 Future Perspectives
	References
Plastic and Polymeric Waste Recycling Technologies
24 Recycling the Plastic Wastes to Carbon Nanotubes
	Abstract
	1 Introduction
	2 Fundamental Concepts of Carbon Nanotubes
		2.1 Overview of Carbon Nanotubes
		2.2 Growth of Carbon Nanotubes
		2.3 Progress in Carbon Nanotubes
	3 Conventional Pathways for Synthesizing Carbon Nanotubes
	4 Synthesis Techniques of Carbon Nanotubes from Plastic Waste
		4.1 One-Step Processes
		4.2 Multistep Processes
	5 Conclusions
	6 Future Prospectives
	References
25 Conversion of Waste Cheap Petroleum Paraffinic Wax By-Products to Expensive Valuable Multiple Carbon Nanomaterials
	Abstract
	1 Introduction
	2 Petroleum Waxes
	3 Composition of Petroleum Waxes
	4 Types of Nanocarbons
		4.1 Mesoporous Carbon
		4.2 Carbon Hierarchy
		4.3 Activated Carbons
		4.4 Graphene 2D Material
	5 Application of Nanocarbon
		5.1 Contaminant Adsorption on Graphene-Based Materials
			5.1.1 Magnetic Graphene-Based Materials
			5.1.2 Organic Molecules Graphene-Based Materials
			5.1.3 Thermo-Responsive Graphene-Based Materials
			5.1.4 Anionic Toxics Capture
		5.2 Photocatalysis Graphene-Based Materials
		5.3 Photodegradation Mechanism on Graphene-Based Material
	6 Conversion of Waste Paraffin to Carbon
	7 Conclusions
	8 Future Perspectives
	References
26 Recycling Polyethylene Terephthalate Waste to Magnetic Carbon/Iron Nanoadsorbent for Application in Adsorption of Diclofenac Using Statistical Experimental Design
	Abstract
	1 Introduction
	2 Materials and Methods
		2.1 Chemicals and Reagents
		2.2 Recycling PET Wastes into Magnetic Carbon
		2.3 Characterization
		2.4 Adsorption Experiment
		2.5 Box–Behnken Design and Response Surface Modeling
		2.6 Model Adequacy and Process Optimization
	3 Results and Discussion
		3.1 Characterization
		3.2 Box–Behnken Design and Response Surface Modeling
		3.3 RSM Plots for Influence of Process Parameters
		3.4 Process Optimization and Model Validation
		3.5 Adsorption Isotherms and Kinetics
		3.6 FTIR Analysis of Diclofenac Loaded Magnetic Nanoadsorbent
		3.7 Desorption Potential
	4 Conclusions
	5 Future Prospectives
	Acknowledgements
	References
27 Waste Plastic-Based Nanomaterials and Their Applications
	Abstract
	1 Introduction
	2 Types of Recovered Nanomaterials from Waste Plastic
		2.1 Nanoparticles from Waste Plastic and Their Applications
		2.2 Carbon Nanotubes from Waste Plastic and Their Applications
		2.3 Nanocomposites from Waste Plastic and Their Applications
		2.4 Graphene-Based Nanomaterials from Waste Plastic and Their Applications
		2.5 Other Nanomaterials from Waste Plastic and Their Applications
	3 Conclusion
	4 Future Perspectives
	References
28 Recycling Nanofibers from Polyethylene Terephthalate Waste Using Electrospinning Technique
	Abstract
	1 Introduction
	2 Basics of Electrospinning Technique
	3 Polyethylene Terephthalate
	4 Nanofiber Filtration Membranes
	5 Applications of Polyethylene Terephthalate Nanofibers
	6 Photocatalytic Degradation of Organic Pollutants Using Polyethylene Terephthalate Nanofibers
	7 Conclusion
	8 Future Perspectives
	Acknowledgements
	References
29 Reinforcement of Petroleum Wax By-Product Paraffins as Phase Change Materials for Thermal Energy Storage by Recycled Nanomaterials
	Abstract
	1 Introduction
	2 Classification of the Phase Change Materials
	3 Properties of Phase Change Materials
	4 Mechanism of the Phase Change Materials
	5 Paraffins (Petroleum By-Product)
		5.1 Properties of Paraffin Waxes
			5.1.1 Physical Properties
			5.1.2 Mechanical Properties
			5.1.3 Food Grade Properties
		5.2 Crystal Structure of Paraffins
			5.2.1 Macrocrystalline Waxes (Paraffins Waxes)
			5.2.2 Microcrystalline Waxes
		5.3 Manufacture of Paraffins Waxes
	6 Additives to Paraffins
		6.1 Recycled Nanomaterials
		6.2 Paraffins Containing Graphene and Carbon Nanotubes
		6.3 Paraffins Containing Nanomaterials
	7 Measurement Techniques of Latent Heat of Fusion and Melting Temperature
	8 Applications of the Phase Change Materials
		8.1 Textiles
		8.2 Thermal-Chemical Systems
		8.3 Magnetic Materials and Characterization
		8.4 Thermal Therapy
		8.5 Biomaterial Storage
	9 Conclusions
	10 Future Perspectives
	References
30 Manufacturing of Nanoalumina by Recycling of Aluminium Cans Waste
	Abstract
	1 Introduction
	2 Experimental Work
		2.1 Materials and Methods
		2.2 Synthesis of Nano γ-Al2O3
		2.3 Characterization of Nano γ-Al2O3
		2.4 Application of Nano γ-Al2O3 for POME
	3 Results and Discussion
		3.1 Characterization of Nano γ-Al2O3
			3.1.1 FTIR Analysis
			3.1.2 XRD Analysis
			3.1.3 SEM Analysis and EDX
			3.1.4 BET Analysis
		3.2 Application of Nano γ-Al2O3 as an Adsorbent in the Treatment of POME
	4 Conclusions
	5 Future Prospectives
	Acknowledgements
	References




نظرات کاربران