ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Uav Communications for 5G and Beyond

دانلود کتاب ارتباطات UAV برای 5G و فراتر از آن

Uav Communications for 5G and Beyond

مشخصات کتاب

Uav Communications for 5G and Beyond

ویرایش:  
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 1119575699, 9781119575696 
ناشر: Wiley-IEEE Press 
سال نشر: 2021 
تعداد صفحات: 650
[452] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 Mb 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Uav Communications for 5G and Beyond به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ارتباطات UAV برای 5G و فراتر از آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ارتباطات UAV برای 5G و فراتر از آن

برای برنامه ریزی و طراحی سودمند برای افزایش انفجاری در آینده نزدیک در تعداد وسایل نقلیه هوایی بدون سرنشین (پهپادها) و کاربردهای سخت آنها، ادغام پهپادها در سیستم های ارتباط سلولی مورد توجه فزاینده ای قرار گرفته است. این کتاب مروری به موقع و جامع از تلاش های تحقیقاتی اخیر و نتایج ارتباطات شبکه سلولی یکپارچه با وسایل نقلیه هوایی بدون سرنشین (UAVs) ارائه می دهد. هدف این کتاب ارائه پوششی جامع از کاربردهای بالقوه، معماری‌های شبکه، آخرین یافته‌های تحقیقاتی و فن‌آوری‌های کلیدی، نتایج اندازه‌گیری تجربی، و همچنین استانداردهای به‌روز صنعت برای ارتباطات پهپاد در سیستم‌های سلولی، از جمله LTE موجود و همچنین سیستم های آینده 5G و فراتر از آن.


توضیحاتی درمورد کتاب به خارجی

To advantageously plan and design for the explosive near-future increase in the number of unmanned aerial vehicles (UAVs) and their demanding applications, integration of UAVs into cellular communication systems has seen increasing interest. This book provides a timely and comprehensive overview of the recent research efforts and results of unmanned aerial vehicles (UAVs)-integrated cellular network communications. The aim of the book is to provide a comprehensive coverage of the potential applications, networking architectures, latest research findings and key enabling technologies, experimental measurement results, as well as up-to-date industry standardizations for UAV communications in cellular systems, including the existing LTE as well as the future 5G-and-beyond systems.



فهرست مطالب

Cover
Title Page
Copyright
Contents
List of Contributors
Acronyms
Part I Fundamentals of UAV Communications
	Chapter 1 Overview
		1.1 UAV Definitions, Classes, and Global Trend
		1.2 UAV Communication and Spectrum Requirement
		1.3 Potential Existing Technologies for UAV Communications
			1.3.1 Direct Link
			1.3.2 Satellite
			1.3.3 Ad‐Hoc Network
			1.3.4 Cellular Network
		1.4 Two Paradigms in Cellular UAV Communications
			1.4.1 Cellular‐Connected UAVs
			1.4.2 UAV‐Assisted Wireless Communications
		1.5 New Opportunities and Challenges
			1.5.1 High Altitude
			1.5.2 High LoS Probability
			1.5.3 High 3D Mobility
			1.5.4 SWAP Constraints
		1.6 Chapter Summary and Main Organization of the Book
		References
	Chapter 2 A Survey of Air‐to‐Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
		2.1 Introduction
		2.2 Literature Review
			2.2.1 Literature Review on Aerial Propagation
			2.2.2 Existing Surveys on UAV AG Propagation
		2.3 UAV AG Propagation Characteristics
			2.3.1 Comparison of UAV AG and Terrestrial Propagation
			2.3.2 Frequency Bands for UAV AG Propagation
			2.3.3 Scattering Characteristics for AG Propagation
			2.3.4 Antenna Configurations for AG Propagation
			2.3.5 Doppler Effects
		2.4 AG Channel Measurements: Configurations, Challenges, Scenarios, and Waveforms
			2.4.1 Channel Measurement Configurations
			2.4.2 Challenges in AG Channel Measurements
			2.4.3 AG Propagation Scenarios
				2.4.3.1 Open Space
				2.4.3.2 Hilly/Mountainous
				2.4.3.3 Forest
				2.4.3.4 Water/Sea
			2.4.4 Elevation Angle Effects
		2.5 UAV AG Propagation Measurement and Simulation Results in the Literature
			2.5.1 Path Loss/Shadowing
			2.5.2 Delay Dispersion
			2.5.3 Narrowband Fading and Ricean K‐factor
			2.5.4 Doppler Spread
			2.5.5 Effects of UAV AG Measurement Environment
				2.5.5.1 Urban/Suburban
				2.5.5.2 Rural/Open Field
				2.5.5.3 Mountains/Hilly, Over Sea, Forest
			2.5.6 Simulations for Channel Characterization
		2.6 UAV AG Propagation Models
			2.6.1 AG Propagation Channel Model Types
			2.6.2 Path‐Loss and Large‐Scale Fading Models
				2.6.2.1 Free‐Space Path‐Loss Model
				2.6.2.2 Floating‐Intercept Path‐Loss Model
				2.6.2.3 Dual‐Slope Path‐Loss Model
				2.6.2.4 Log‐Distance Path‐Loss Model
				2.6.2.5 Modified FSPL Model
				2.6.2.6 Two‐Ray PL Model
				2.6.2.7 Log‐Distance FI Model
				2.6.2.8 LOS/NLOS Mixture Path‐Loss Model
			2.6.3 Airframe Shadowing
			2.6.4 Small‐Scale Fading Models
			2.6.5 Intermittent MPCs
			2.6.6 Effect of Frequency Bands on Channel Models
			2.6.7 MIMO AG Propagation Channel Models
			2.6.8 Comparison of Different AG Channel Models
				2.6.8.1 Large‐Scale Fading Models
				2.6.8.2 Small‐Scale Fading Models
			2.6.9 Comparison of Traditional Channel Models with UAV AG Propagation Channel Models
			2.6.10 Ray Tracing Simulations
			2.6.11 3GPP Channel Models for UAVs
		2.7 Conclusions
		References
	Chapter 3 UAV Detection and Identification
		3.1 Introduction
		3.2 RF‐Based UAV Detection Techniques
			3.2.1 RF Fingerprinting Technique
			3.2.2 WiFi Fingerprinting Technique
		3.3 Multistage UAV RF Signal Detection
			3.3.1 Preprocessing Step: Multiresolution Analysis
			3.3.2 The Naive Bayesian Decision Mechanism for RF Signal Detection
			3.3.3 Detection of WiFi and Bluetooth Interference
		3.4 UAV Classification Using RF Fingerprints
			3.4.1 Feature Selection Using Neighborhood Components Analysis (NCA)
		3.5 Experimental Results
			3.5.1 Experimental Setup
			3.5.2 Detection Results
			3.5.3 UAV Classification Results
		3.6 Conclusion
		Acknowledgments
		References
Part II Cellular‐Connected UAV Communications
	Chapter 4 Performance Analysis for Cellular‐Connected UAVs
		4.1 Introduction
			4.1.1 Motivation
			4.1.2 Related Works
			4.1.3 Contributions and Chapter Structure
		4.2 Modelling Preliminaries
			4.2.1 Stochastic Geometry
			4.2.2 Network Architecture
			4.2.3 Channel Model
			4.2.4 Blockage Modeling and LoS Probability
			4.2.5 User Association Strategy and Link SINR
		4.3 Performance Analysis
			4.3.1 Exact Coverage Probability
			4.3.2 Approximations for UAV Coverage Probability
				4.3.2.1 Discarding NLoS and Noise Effects
				4.3.2.2 Moment Matching
			4.3.3 Achievable Throughput and Area Spectral Efficiency Analysis
		4.4 System Design: Study Cases and Discussion
			4.4.1 Analysis of Accuracy
			4.4.2 Design Parameters
				4.4.2.1 Impact of UAV Altitude
				4.4.2.2 Impact of UAV Antenna Beamwidth
				4.4.2.3 Impact of UAV Antenna Tilt
				4.4.2.4 Impact of Different Types of Environment
			4.4.3 Heterogeneous Networks – Tier Selection
			4.4.4 Network Densification
		4.5 Conclusion
		References
	Chapter 5 Performance Enhancements for LTE‐Connected UAVs: Experiments and Simulations
		5.1 Introduction
		5.2 LTE Live Network Measurements
			5.2.1 Downlink Experiments
			5.2.2 Path‐Loss Model Characterization
			5.2.3 Uplink Experiments
		5.3 Performance in LTE Networks
		5.4 Reliability Enhancements
			5.4.1 Interference Cancellation
			5.4.2 Inter‐Cell Interference Control
			5.4.3 CoMP
			5.4.4 Antenna Beam Selection
			5.4.5 Dual LTE Access
			5.4.6 Dedicated Spectrum
			5.4.7 Discussion
		5.5 Summary and Outlook
		References
	Chapter 6 3GPP Standardization for Cellular‐Supported UAVs
		6.1 Short Introduction to LTE and NR
			6.1.1 LTE Physical Layer and MIMO
			6.1.2 NR Physical Layer and MIMO
		6.2 Drones Served by Mobile Networks
			6.2.1 Interference Detection and Mitigation
			6.2.2 Mobility for Drones
			6.2.3 Need for Drone Identification and Authorization
		6.3 3GPP Standardization Support for UAVs
			6.3.1 Measurement Reporting Based on RSRP Level of Multiple Cells
			6.3.2 Height, Speed, and Location Reporting
			6.3.3 Uplink Power Control Enhancement
			6.3.4 Flight Path Signalling
			6.3.5 Drone Authorization and Identification
		6.4 Flying Mode Detection in Cellular Networks
		References
	Chapter 7 Enhanced Cellular Support for UAVs with Massive MIMO
		7.1 Introduction
		7.2 System Model
			7.2.1 Cellular Network Topology
			7.2.2 System Model
			7.2.3 Massive MIMO Channel Estimation
			7.2.4 Massive MIMO Spatial Multiplexing
		7.3 Single‐User Downlink Performance
			7.3.1 UAV Downlink C&C Channel
		7.4 Massive MIMO Downlink Performance
			7.4.1 UAV Downlink C&C Channel
			7.4.2 UAV–GUE Downlink Interplay
		7.5 Enhanced Downlink Performance
			7.5.1 UAV Downlink C&C Channel
			7.5.2 UAV–GUE Downlink Interplay
		7.6 Uplink Performance
			7.6.1 UAV Uplink C&C Channel and Data Streaming
			7.6.2 UAV–GUE Uplink Interplay
		7.7 Conclusions
		References
	Chapter 8 High‐Capacity Millimeter Wave UAV Communications
		8.1 Motivation
		8.2 UAV Roles and Use Cases Enabled by Millimeter Wave Communication
			8.2.1 UAV Roles in Cellular Networks
			8.2.2 UAV Use Cases Enabled by High‐Capacity Cellular Networks
		8.3 Aerial Channel Models at Millimeter Wave Frequencies
			8.3.1 Propagation Considerations for Aerial Channels
				8.3.1.1 Atmospheric Considerations
				8.3.1.2 Blockages
			8.3.2 Air‐to‐Air Millimeter Wave Channel Model
			8.3.3 Air‐to‐Ground Millimeter Wave Channel Model
			8.3.4 Ray Tracing as a Tool to Obtain Channel Measurements
		8.4 Key Aspects of UAV MIMO Communication at mmWave Frequencies
		8.5 Establishing Aerial mmWave MIMO Links
			8.5.1 Beam Training and Tracking for UAV Millimeter Wave Communication
			8.5.2 Channel Estimation and Tracking in Aerial Environments
			8.5.3 Design of Hybrid Precoders and Combiners
		8.6 Research Opportunities
			8.6.1 Sensing at the Tower
			8.6.2 Joint Communication and Radar
			8.6.3 Positioning and Mapping
		8.7 Conclusions
		References
Part III UAV‐Assisted Wireless Communications
	Chapter 9 Stochastic Geometry‐Based Performance Analysis of Drone Cellular Networks
		9.1 Introduction
		9.2 Overview of the System Model
			9.2.1 Spatial Model
			9.2.2 3GPP‐Inspired Mobility Model
			9.2.3 Channel Model
			9.2.4 Metrics of Interest
		9.3 Average Rate
		9.4 Handover Probability
		9.5 Results and Discussion
			9.5.1 Density of Interfering DBSs
			9.5.2 Average Rate
			9.5.3 Handover Probability
		9.6 Conclusion
		Acknowledgment
		References
	Chapter 10 UAV Placement and Aerial–Ground Interference Coordination
		10.1 Introduction
		10.2 Literature Review
		10.3 UABS Use Case for AG‐HetNets
		10.4 UABS Placement in AG‐HetNet
		10.5 AG‐HetNet Design Guidelines
			10.5.1 Path‐Loss Model
				10.5.1.1 Log‐Distance Path‐Loss Model
				10.5.1.2 Okumura–Hata Path‐Loss Model
		10.6 Inter‐Cell Interference Coordination
			10.6.1 UE Association and Scheduling
		10.7 Simulation Results
			10.7.1 5pSE with UABSs Deployed on Hexagonal Grid
				10.7.1.1 5pSE with Log‐Normal Path‐Loss Model
				10.7.1.2 5pSE with Okumura–Hata Path‐Loss Model
			10.7.2 5pSE with GA‐Based UABS Deployment Optimization
				10.7.2.1 5pSE with Log‐Normal Path‐Loss Model
				10.7.2.2 5pSE with Okumura–Hata Path‐Loss model
			10.7.3 Performance Comparison Between Fixed (Hexagonal) and Optimized UABS Deployment with eICIC and FeICIC
				10.7.3.1 Influence of LDPLM on 5pSE
				10.7.3.2 Influence of OHPLM on 5pSE
			10.7.4 Comparison of Computation Time for Different UABS Deployment Algorithms
		10.8 Concluding remarks
		References
	Chapter 11 Joint Trajectory and Resource Optimization
		11.1 General Problem Formulation
		11.2 Initial Path Planning via the Traveling Salesman and Pickup‐and‐Delivery Problems
			11.2.1 TSP without Return
			11.2.2 TSP with Given Initial and Final Locations
			11.2.3 TSP with Neighborhood
			11.2.4 Pickup‐and‐Delivery Problem
		11.3 Trajectory Discretization
			11.3.1 Time Discretization
			11.3.2 Path Discretization
		11.4 Block Coordinate Descent
		11.5 Successive Convex Approximation
		11.6 Unified Algorithm
		11.7 Summary
		References
	Chapter 12 Energy‐Efficient UAV Communications
		12.1 UAV Energy Consumption Model
			12.1.1 Fixed‐Wing Energy Model
				12.1.1.1 Forces on a UAV
				12.1.1.2 Straight and Level Flight
				12.1.1.3 Circular Flight
				12.1.1.4 Arbitrary Level Flight
				12.1.1.5 Arbitrary 3D Flight
			12.1.2 Rotary‐Wing Energy Model
		12.2 Energy Efficiency Maximization
		12.3 Energy Minimization with Communication Requirement
		12.4 UAV–Ground Energy Trade‐off
		12.5 Chapter Summary
		References
	Chapter 13 Fundamental Trade‐Offs for UAV Communications
		13.1 Introduction
		13.2 Fundamental Trade‐offs
			13.2.1 Throughput–Delay Trade‐Off
			13.2.2 Throughput–Energy Trade‐Off
			13.2.3 Delay–Energy Trade‐Off
		13.3 Throughput–Delay Trade‐Off
			13.3.1 Single‐UAV‐Enabled Wireless Network
			13.3.2 Multi‐UAV‐Enabled Wireless Network
		13.4 Throughput–Energy Trade‐Off
			13.4.1 UAV Propulsion Energy Consumption Model
			13.4.2 Energy‐Constrained Trajectory Optimization
		13.5 Further Discussions and Future Work
		13.6 Chapter Summary
		References
	Chapter 14 UAV–Cellular Spectrum Sharing
		14.1 Introduction
			14.1.1 Cognitive Radio
				14.1.1.1 Overlay Spectrum Sharing
				14.1.1.2 Underlay Spectrum Sharing
			14.1.2 Drone Communication
				14.1.2.1 UAV Spectrum Sharing
				14.1.2.2 UAV Spectrum Sharing with Exclusive Regions
			14.1.3 Chapter Overview
		14.2 SNR Meta‐Distribution of Drone Networks
			14.2.1 Stochastic Geometry Analysis
			14.2.2 Characteristic Function of the SNR Meta‐Distribution
			14.2.3 LOS Probability
		14.3 Spectrum Sharing of Drone Networks
			14.3.1 Spectrum Sharing in Single‐Tier DSCs
			14.3.2 Spectrum Sharing with Cellular Network
		14.4 Summary
		References
Part IV Other Advanced Technologies for UAV Communications
	Chapter 15 Non‐Orthogonal Multiple Access for UAV Communications
		15.1 Introduction
			15.1.1 Motivation
		15.2 User‐Centric Strategy for Emergency Communications
			15.2.1 System Model
				15.2.1.1 Far user case
				15.2.1.2 Near user case
			15.2.2 Coverage Probability of the User‐Centric Strategy
		15.3 UAV‐Centric Strategy for Offloading Actions
			15.3.1 SINR Analysis
			15.3.2 Coverage Probability of the UAV‐Centric Strategy
		15.4 Numerical Results
			15.4.1 User‐Centric Strategy
			15.4.2 UAV‐Centric Strategy
		15.5 Conclusions
		References
	Chapter 16 Physical Layer Security for UAV Communications
		16.1 Introduction
		16.2 Breaching Security in Wireless Networks
			16.2.1 Denial‐of‐Service Attacks
			16.2.2 Masquerade Attacks
			16.2.3 Message Modification Attacks
			16.2.4 Eavesdropping Intruders
			16.2.5 Traffic Analysis
		16.3 Wireless Network Security Requirements
			16.3.1 Authenticity
			16.3.2 Confidentiality
			16.3.3 Integrity
			16.3.4 Availability
		16.4 Physical Layer Security
			16.4.1 Physical Layer versus Upper Layers
			16.4.2 Physical Layer Security Techniques
				16.4.2.1 Artificial Noise
				16.4.2.2 Cooperative Jamming
				16.4.2.3 Protected Zone
		16.5 Physical Layer Security for UAVs
			16.5.1 UAV Trajectory Design to Enhance PLS
			16.5.2 Cooperative Jamming to Enhance PLS
			16.5.3 Spectral‐ and Energy‐Efficient PLS Techniques
		16.6 A Case Study: Secure UAV Transmission
			16.6.1 System Model
				16.6.1.1 Location Distribution and mmWave Channel Model
			16.6.2 Protected Zone Approach for Enhancing PLS
			16.6.3 Secure NOMA for UAV BS Downlink
				16.6.3.1 Secrecy Outage and Sum Secrecy Rates
				16.6.3.2 Shape Optimization for Protected Zone
				16.6.3.3 Numerical Results
				16.6.3.4 Location of the Most Detrimental Eavesdropper
				16.6.3.5 Impact of the Protected Zone Shape on Secrecy Rates
				16.6.3.6 Variation of Secrecy Rates with Altitude
		Summary
		References
	Chapter 17 UAV‐Enabled Wireless Power Transfer
		17.1 Introduction
		17.2 System Model
		17.3 Sum‐Energy Maximization
		17.4 Min‐Energy Maximization under Infinite Charging Duration
			17.4.1 Multi‐Location‐Hovering Solution
		17.5 Min‐Energy Maximization Under Finite Charging Duration
			17.5.1 Successive Hover‐and‐Fly Trajectory Design
				17.5.1.1 Flying Distance Minimization to Visit Γ Hovering Locations
				17.5.1.2 Hovering Time Allocation When T≥Tfly
				17.5.1.3 Trajectory Refinement When T




نظرات کاربران