دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Abraham George. G. Ramana Murthy
سری:
ISBN (شابک) : 9781032438306, 9781003369028
ناشر: CRC Press
سال نشر: 2024
تعداد صفحات: 253
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Towards Wireless Heterogeneity in 6G Networks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب به سوی ناهمگونی بی سیم در شبکه های 6G نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Contents Contributors Chapter 1: 6G: Opportunities and challenges 1.1 INTRODUCTION 1.1.1 Wireless communications 1.1.2 Types of wireless communication systems 1.1.3 Generations of wireless communication 1.2 5G TECHNOLOGIES 1.2.1 Application areas of 5G 1.2.2 Performance of 5G 1.2.2.1 Speed 1.2.2.2 Latency 1.2.2.3 Error rate 1.3 6G TECHNOLOGIES 1.3.1 Vision and application areas of 6G technologies 1.3.1.1 Immersive cloud XR: A broad virtual space 1.3.1.2 Holographic communications: Extremely immersive experience 1.3.1.3 Sensory interconnection: Fusion of all senses 1.3.1.4 Intelligent interaction: Interactions of feelings and thoughts 1.3.2 6G applications 1.4 MOVING TOWARDS INDUSTRY 5.0 1.5 CHALLENGES AND FUTURE RESEARCH DIRECTIONS 1.6 CONCLUSION References Chapter 2: Disruptive technology directions for 6G 2.1 INTRODUCTION 2.2 6G\'s SUPPORT FOR EMERGING APPLICATION 2.2.1 Virtual reality 2.2.2 Autonomous vehicles 2.2.3 Smart cities 2.3 CHALLENGES FOR SUPPORTING NEW APPLICATIONS 2.4 TECHNOLOGICAL DIRECTIONS FOR 6G 2.4.1 Artificial intelligence 2.4.2 Blockchain technology 2.4.3 Quantum communications 2.4.4 Unmanned aerial vehicles 2.4.5 3D networking 2.4.6 THz communications 2.4.7 Big data analytics 2.4.8 Holographic beamforming 2.5 THE ONGOING 6G PROJECTS 2.5.1 Hexa-x 2.5.2 RISE 6G 2.5.3 New 6G 2.5.4 Next G alliance References Chapter 3: Ultra-dense deployments in next-generation networks and metaverse 3.1 INTRODUCTION 3.2 ULTRA-DENSE DEPLOYMENTS IN 6G 3.3 KEY CHARACTERISTICS OF NETWORK DENSIFICATION 3.3.1 BS densification\'s key network properties 3.3.1.1 Significant impact of antenna height 3.3.1.2 Multi-layer network architecture 3.3.1.3 Dynamics of Interference 3.3.1.4 Wireless and wired fronthaul coexistence 3.3.2 Significant network properties from ED densification 3.3.2.1 Intermittent transmission of devices 3.3.2.2 Coexistence of various sorts of traffic 3.3.2.3 Environment with a spatial correlation between EDs 3.4 FACING THE DENSIFICATION OF NETWORKS 3.4.1 Facing BS densification 3.4.2 Facing ED densification 3.4.2.1 Issues with pilot contamination and user activity monitoring 3.4.2.2 Fronthaul capacity dependent on available BS association 3.5 POSSIBILITIES PRESENTED BY NETWORK DENSIFICATION 3.5.1 Making BSs functional for different services 3.5.1.1 BSs with computing abilities 3.5.1.2 BSs with cache functionality 3.5.1.3 Aerial device-oriented BSs 3.5.2 Utilizing geographical correlation between communication lines to assign pilots 3.5.3 Developing an intellectual buffer method to reduce the fronthaul limit 3.6 METAVERSE 3.6.1 Emergence of the metaverse 3.6.1.1 Contributions and related works 3.6.2 Architecture and tools of the metaverse 3.6.2.1 Definition and architecture 3.6.2.2 Tools, platforms, and frameworks 3.6.3 Communication and ultra-dense networking 3.6.3.1 Rate-reliability-latency 3D multimedia networks 3.6.3.2 Human-in-the-loop communication 3.6.3.3 Real-time physical-virtual synchronization 3.6.4 Computation 3.6.4.1 The paradigm of cloud-edge end computing 3.6.4.2 Effective cloud-edge end rendering for AR and VR 3.6.5 Directions for future research in the metaverse 3.7 CONCLUSIONS 3.7.1 Ultra-densification of networks 3.7.2 Metaverse References Chapter 4: Cognitive radios 4.1 COGNITIVE RADIOS 4.2 COGNITIVE RADIOS AND SPECTRUM SENSING 4.3 THE COGNITIVE CYCLE 4.3.1 Underlay 4.3.2 Overlay 4.3.3 Interweave 4.4 TEMPERATURE INTERFERENCE IN CR 4.5 DYNAMIC ALLOCATION 4.6 REASONING 4.7 ADAPTATION 4.8 SPECTRUM SENSING IN COGNITIVE RADIOS 4.9 COGNITIVE RADIOS AND SPECTRUM DATABASE 4.10 COGNITIVE RADIO AND 6G NETWORK 4.11 CONCLUSION References Chapter 5: A novel energy-efficient optimization technique for intelligent transportation systems 5.1 INTRODUCTION 5.1.1 History 5.1.2 Performance of wireless networks by using IRS 5.1.3 Role of IRS in healthcare 5.2 ENERGY EFFICIENCY OPTIMIZATION WITH IRS 5.2.1 Conventional methods to optimize the EE 5.2.2 Optimization techniques 5.2.3 Relaxation and projection 5.2.4 Majorization-minimization (MM) 5.2.5 DL/ML-based techniques for IRS-aided networks 5.3 SYSTEM MODEL AND PROBLEM DESIGN 5.3.1 Channel estimation 5.3.2 Design and analysis of EE 5.3.3 IRS phase optimization by using clustering 5.3.4 Passive beamforming for the end user based on location 5.4 NUMERICAL RESULTS 5.5 IMPLEMENTATION OF IRS: CHALLENGES AND RESEARCH DIRECTIONS 5.6 CURRENT CHALLENGES AND RESEARCH DIRECTIONS 5.7 CONCLUSION References Chapter 6: AI applications at the scheduling and resource allocation schemes in web medium 6.1 INTRODUCTION 6.1.1 The first level: Basic 6.1.2 Second: Managed 6.1.3 Predictive at the third level 6.1.4 The fourth level: Flexible 6.1.5 Fifth level: Autonomic 6.2 RELATED WORK 6.3 OBJECTIVES OF THE STUDY AND STRATEGIES 6.3.1 Algorithm for load balancing methods using priority ordering 6.3.2 Coverage-based cell selection algorithm 6.3.3 Cell degree-based resource allocation (CBRA) 6.3.4 Distributed routing and scheduling techniques 6.4 THE PROPOSED MODELS IN RESOURCE ALLOCATION 6.4.1 Load balancing as a resolution for fog computing 6.4.1.1 Reducing energy consumption and violation of SLA 6.4.1.2 Delay-aware scheduling and load balancing: The solution in a four-tier architecture 6.4.1.3 Task allocation and secure deduplication: Assistance from fog computing 6.4.1.4 Data migration over cloud or fog based on applications 6.4.1.5 Fog environment issues of load balancing and delay-aware scheduling 6.5 PROPOSED MODEL IN SCHEDULING 6.6 CONCLUSION References Chapter 7: 6G vision on edge artificial intelligence 7.1 INTRODUCTION 7.1.1 Emerging technologies in 6G wireless network 7.1.1.1 Optical-free technology 7.1.1.2 Quantum technology 7.1.1.3 Native network slicing 7.1.1.4 Integrated access backhaul networks 7.1.1.5 Holographic beam forming 7.2 EFFECTIVE TRAINING MODELS 7.2.1 Edge AI learning models 7.2.1.1 Federated learning 7.2.1.2 Decentralized learning 7.2.1.3 Split learning 7.2.1.4 Distributed reinforcement learning 7.2.1.5 Trustworthy learning 7.2.2 Wireless technique edge training 7.2.2.1 Over-the-air computation 7.2.2.2 Massive MIMO 7.2.2.3 Reconfigurable intelligence surface 7.3 EFFECTIVE EDGE INFERENCE 7.3.1 Horizontal edge inference 7.3.1.1 ED distributed inference 7.3.1.2 ES cooperative inference 7.3.2 Vertical edge inference 7.3.2.1 ED-ES co-inference 7.3.2.2 Low latency and ultra-reliable communication 7.3.2.3 Task-oriented communication 7.4 ARCHITECTURE FOR EDGE AI IN 6G WIRELESS NETWORK 7.4.1 Centralized architecture 7.4.2 Decentralized architecture 7.4.3 Hybrid architecture 7.4.4 Self-learning architecture 7.4.5 End-to-end architecture 7.4.6 Data governance 7.4.6.1 Independent data plane 7.4.6.2 Multiplayer and multi-domain roles 7.4.6.3 Management and orchestration of edge AI 7.5 EDGE AI APPLICATION TOWARDS 6G 7.5.1 Characteristics of metaverse 7.5.1.1 Immersive 7.5.1.2 Multi-technology 7.5.1.3 Interoperability 7.5.1.4 Sociability 7.5.1.5 Longevity 7.5.2 Edge AI-based metaverse architecture 7.5.2.1 Edge cloud metaverse (ECM) architecture 7.5.2.2 Mobile ECM architecture 7.5.2.3 Decentralized metaverse architecture 7.6 CHALLENGES AND APPLICATIONS OF EDGE AI IN 6G 7.6.1 Challenges of edge AI 7.6.1.1 Adversarial learning and adaptation 7.6.1.2 Interpretable AI 7.6.1.3 Quality of experience 7.6.1.4 Interactive AI 7.6.1.5 Detecting and predicting human intention 7.6.1.6 Intelligent human-to-machine communications 7.6.2 Some more futuristic applications of edge AI in 6G 7.6.2.1 Industrial Internet of Things (IIoT) 7.6.2.2 Healthcare 7.6.2.3 Autonomous driving vehicles 7.6.2.4 Security and privacy 7.6.2.5 Education 7.7 CONCLUSION References Chapter 8: Artificial intelligence-based energy efficiency models in green communications towards 6G 8.1 INTRODUCTION 8.2 REVIEW ANALYSIS ISSUES TOWARDS GREEN 6G 8.2.1 Existing polls 8.2.2 6G research concerns towards 6G 8.3 PARADIGMS OVERVIEW OF 6G AND ARTIFICIAL INTELLIGENCE METHODS FOR EFFECTIVE ENERGY COMMUNICATIONS 8.3.1 Several 6G paradigms 8.3.1.1 Terahertz communications 8.3.1.2 Space-air-ground integrated networks 8.3.1.3 Energy harvesting 8.3.1.4 AI-based communications 8.3.2 Classical AI algorithms 8.3.2.1 Heuristic algorithms 8.3.2.1.1 Optimization of particle swarms 8.3.2.1.2 Optimization of ant colonies 8.3.2.1.3 Genetic algorithm 8.3.2.2 Traditional machine learning 8.3.2.2.1 Regression analysis 8.3.2.2.2 Support vector machine 8.3.2.2.3 Clustering with K-means 8.3.3 Deep learning 8.3.3.1 Development of deep learning models 8.3.3.2 Deep reinforcement learning 8.3.4 New training strategies 8.3.4.1 Learning transfer 8.3.4.2 Collaborative learning 8.3.4.2.1 Summary 8.4 OPEN RESEARCH PROBLEMS 8.4.1 Green BS management for 6 GNet 8.4.2 Low-energy space-air-ground integrated networks 8.4.3 AI-based energy-efficient transmissions 8.4.4 Artificial intelligence-enhanced energy harvesting and sharing 8.4.5 AI-enabled network security 8.4.6 Design of a lightweight AI model and hardware 8.5 SOLUTION FOR RESEARCH PROBLEMS 8.6 CONCLUSION References Chapter 9: Centralized traffic engineering 9.1 INTRODUCTION 9.2 TRAFFIC ENGINEERING IN A SOFTWARE-DEFINED NETWORKING 9.2.1 Flow setup in SDN 9.2.2 SDN and network function virtualization (NFV) 9.3 COMPUTING PARADIGMS 9.3.1 Cloud computing 9.3.2 Fog computing 9.3.3 Mist computing 9.4 INTELLIGENT TRANSPORTATION IN SMART CITIES 9.4.1 SD-IoV platform utilizing cloud and fog computing 9.4.2 SD-IoV platform utilizing mist, cloud, and fog computing 9.4.3 Topology based slicing in SD-IoV platform 9.5 OPEN ISSUES 9.6 CONCLUSION References Chapter 10: Cooperative network paradigm for device-centric nodes 10.1 INTRODUCTION 10.2 TYPES OF WIRELESS NODE COOPERATION 10.2.1 Cooperative relaying 10.2.2 Cooperative beamforming 10.2.3 Cooperative sensing 10.3 SCENARIOS FOR NODE COOPERATION 10.4 DEVICE COOPERATION 10.5 CONCLUSION References Chapter 11: Edge computing and edge intelligence 11.1 INTRODUCTION 11.2 LITERATURE SURVEY 11.3 EMERGING ARCHITECTURE 11.3.1 Near-edge layer 11.3.2 Mid-edge layer 11.3.3 Far-edge layer 11.4 HARDWARE EVOLUTION IN EC/EI 11.4.1 Data center evolution 11.5 IoT GATEWAYS/EDGE SERVERS 11.6 SMART SENSORS/END NODES 11.7 SOFTWARE EVOLUTION 11.7.1 IoT edge computing 11.8 ECN IoT GATEWAY OS AND LIGHTWEIGHT OS 11.9 CURRENT STATE-OF-THE-ART IN EDGE INTELLIGENCE 11.10 EDGE COMPUTING ARCHITECTURE FOR INDUSTRY 11.10.1 Industrial Internet Consortium architecture 11.11 MULTI-ACCESS EDGE COMPUTING ARCHITECTURE 11.12 COMPUTATION OFFLOADING IN MEC 11.12.1 Application of cybertwin for 6G networks 11.13 TIME ALLOCATION POLICY IN WIRELESS POWERED MOBILE EDGE COMPUTING 11.14 INTELLIGENT REFLECTING SURFACES FOR MEC IN 6G NETWORKS 11.15 CONCLUSION AND FUTURE SCOPE References Chapter 12: Network virtualization 12.1 INTRODUCTION 12.2 NETWORK FUNCTION VIRTUALIZATION EVOLUTION 12.2.1 Traditional network 12.2.2 NFV introduction 12.3 NETWORK VIRTUALIZATION BACKGROUND 12.3.1 Network function virtualization 12.3.2 Software-defined networking 12.3.3 Multi-access edge computing 12.3.4 Distributed management task force 12.4 NETWORK VIRTUALIZATION CHALLENGES 12.4.1 Network softwarization of SDN/NFV 12.4.2 5G and network slicing 12.4.3 Device virtualization for end users 12.4.4 Security and privacy 12.5 NETWORK VIRTUALIZATION ARCHITECTURE 12.5.1 Infrastructure layer 12.5.2 Control layer 12.5.3 Application layer 12.6 NETWORK VIRTUALIZATION IN A 5G NETWORK 12.7 NETWORK SLICING FOR VIRTUALIZATION 12.7.1 First/primary block 12.7.2 Service layer 12.7.3 Network function layer 12.7.4 Infrastructure layer 12.7.5 Second/controller block 12.8 VIRTUALIZATION IN A 6G NETWORK 12.8.1 Enhanced network slicing 12.8.1.1 Role of artificial intelligence in preparation phase 12.8.1.2 AI for planning 12.8.1.3 AI for operation 12.8.2 Edge computing and network function virtualization 12.8.3 Multi-cloud integration 12.8.3.1 Architectural challenge 12.8.3.2 On-premises integration structure maintenance 12.8.3.3 Agility 12.8.3.4 Data protection 12.8.3.5 Containers and microservices 12.8.3.6 Network automation 12.9 6G END-TO-END NETWORK AUTOMATION CHALLENGES 12.10 BENEFITS OF NETWORK VIRTUALIZATION 12.10.1 Improved resource utilization 12.10.2 Simplified network management 12.10.3 Increased security 12.10.4 Scalability 12.10.5 Flexibility 12.11 CONCLUSION References