ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Thermal, mechanical, and hybrid chemical energy storage systems

دانلود کتاب سیستم های ذخیره سازی انرژی شیمیایی حرارتی، مکانیکی و هیبریدی

Thermal, mechanical, and hybrid chemical energy storage systems

مشخصات کتاب

Thermal, mechanical, and hybrid chemical energy storage systems

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9780128198926, 0128198923 
ناشر: Academic Press is an Imprint of Elsevier 
سال نشر: 2021 
تعداد صفحات: 620 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 59 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Thermal, mechanical, and hybrid chemical energy storage systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سیستم های ذخیره سازی انرژی شیمیایی حرارتی، مکانیکی و هیبریدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front-Matter_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-Sy
	Front matter
Copyright_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-Syste
	Copyright
Contributors_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-Sy
	Contributors
Editors-biograp_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage
	Editors biography
Foreword_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-System
	Foreword
Acknowledgment_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-
	Acknowledgments
Nomenclature_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-Sy
	Nomenclature
Chapter-1---Introduction-to-_2021_Thermal--Mechanical--and-Hybrid-Chemical-E
	Introduction to energy storage
		Chapter outline
		Motivation for energy storage
			Worldwide power generation mix and trends
			Renewable variability and demand mismatch
			Opportunities and challenges for energy storage
		Basic thermodynamics of energy storage
			First law of thermodynamics
			Second law of thermodynamics
				Materials for energy storage
			Thermal energy storage materials
				Sensible heat storage materials
				Phase change materials
				Sorption heat storage materials
				Chemical reaction materials (without sorption)
			Chemical energy storage materials
		Introduction to energy storage technologies
		References
Chapter-2---Mass-grid-storage-with-_2021_Thermal--Mechanical--and-Hybrid-Che
	Mass grid storage with reversible Brayton engines
		Chapter outline
		Introduction
		The grid storage problem
			World energy budget
			Renewable load leveling
			Pricing
			Safety
		Digression: Flow batteries
			Thermodynamic reversibility
			Membrane cost constraint
			Electrode entropy creation
				Loss component: Viscous flow resistance
				Loss component: Electrical resistance
				Irrelevant losses
			Battery as thermal engine
		The Brayton battery
			Molten nitrate salt technology
			Entropy metric
			Turbomachinery entropy generation
			Heat exchanger entropy generation
				Loss component: Viscous flow resistance
				Loss component: Approach temperature
				Loss component: Thermal leak
				Heat exchanger optimization
		Steam technology precedents
			High pressure and power
			Motor/generator speed limitation
			Bearings and seals
			Cooling
		Reversible turbomachinery
			Stage loading
			Velocity triangles
				Minimal-loss condition
				Euler turbine equation
				Half-reaction condition
				Prototype values
		Summary
		References
Chapter-3---Thermal-energ_2021_Thermal--Mechanical--and-Hybrid-Chemical-Ener
	Thermal energy storage
		Chapter outline
		Sensible heat liquid thermal energy storage
			Liquid thermal energy storage
			Two-tank TES in CSP
			Single-tank TES for district heating
			TES with nuclear power
		Solid thermal energy storage
			Solid TES overview
				Solid TES materials and structure
				Tube-in-concrete
					Description
					Advantages and disadvantages
					Technical challenges
				Technology status
			Packed beds
				Technology description
				Applications
				Technical challenges
				Alternative packed bed designs
				Stacked bricks
					Technology description
				Applications
			Analysis Methods
				Governing equations
				3D/2D simulation
				1D simulation
				Packed bed 1D model example
				Simplified calculation method
			Design considerations
				Temperature gradient effects
				Direct vs. indirect heat exchange
				2-Phase working fluids
		Thermocline dual-media thermal energy storage
			Motivation for using dual-media thermocline thermal energy storage
			Dual-media thermocline thermal storage design considerations
			A solution to thermocline degradation: Terrafores TerraKlineTM technology
			Packed-bed solid and fluid thermocline calculations
		Low-temperature cool thermal storage
			Overview of cool thermal storage applications
				Building air conditioning
				Building space conditioning
				Turbine inlet air cooling
			Cool thermal storage technologies
				Sensible energy change
				Latent energy change
					Static ice internal-melt
					Static ice external-melt
				Encapsulated ice and PCMs
			Unitary air conditioning systems
			Dynamic ice storage
		References
Chapter-4---Mechanical-ene_2021_Thermal--Mechanical--and-Hybrid-Chemical-Ene
	Mechanical energy storage
		Chapter outline
		Pumped hydroelectric storage
			Overview and basics design parameters
				Working principle and basic design parameters
				Types of pumped storage plants
				Historical development and types of pumped storage units
				Power unit concepts and their main operation modes
					Reversible power units
					Reversible power units with variable speed
					Ternary power units with fixed speed
					Comparisons of reversible with ternary power units
				Application objectives and business opportunities for pumped storage
		Flywheel energy storage
			Background
				Application areas
				Comparison to other energy storage technologies
				Technology projections
			Mechanical design
				Steel flywheels
					Geometry and construction
					Material properties
						Yield strength
						Annular flywheel versus shaftless flywheel
						Fatigue strength
						Conclusion
					Steel versus composite flywheels
				Composite flywheels
					Background
					Comparison with various energy storage systems
					Material selection and geometrical design of FESS
					Optimal composite flywheel design for enhanced energy density
						Flywheel stress analysis
						Flywheel stress analysis-Single-ring flywheels
						Flywheel stress analysis-Multiring flywheels
						Future trends for composite flywheels
						Nanomaterials
						Additive manufacturing
				Bearings and rotordynamics
					Bearings
					Contact-type bearings
					Magnetic bearings
					Rotordynamics
			Electrical design
				Conventional motor/generator design
					Motor types and function
					Motor/generator control
					Magnetic bearing control
					Bearingless motors for flywheel energy storage
						Introduction
						Principle of operation
					Bearingless motor sizing laws
						Operation of bearingless motors
			Auxiliary components
				Vacuum systems
					Support structure
					Containment
					Auxiliary bearings
			Loss mechanisms
				Windage loss
				Bearing losses
				Motor/generator losses
		Gravity and buoyancy-based energy storage systems
			Gravity energy storage (GES)
			Buoyancy energy storage (BES)
		Acknowledgments
		References
		Further reading
Chapter-5---Chemical-energ_2021_Thermal--Mechanical--and-Hybrid-Chemical-Ene
	Chemical energy storage
		Chapter outline
		Introduction
			Hydrogen storage
				Reversible solid-state hydrogen storage materials
					Advances in chemisorption materials
					Advances in physisorption materials
					Benchmarks for low-density, ultra-high surface area storage materials
				Thermochemical energy storage concepts by reaction type
					Redox reactions
					Pure metal oxides redox systems
						BaO2/BaO
						CuO/Cu2O
						Fe2O3/Fe3O4
						Mn2O3/Mn3O4
						Co3O4/CoO
					Mixed metal oxides redox systems
						Doping Co3O4/CoO redox couple
						Doping Mn2O3/Mn3O4 redox couple
						Perovskites
						Spinels/monoxide
						Hydration reactions
					Carbonation reactions
					Alkaline earth carbonates (CaCO3, SrCO3, BaCO3)
					Other reactions
						Closed-loop reversible reactions
					Multistep reactions for hydrogen production
					Hybrid processes
		References
		Further reading
Chapter-6---Heat-engine-based-_2021_Thermal--Mechanical--and-Hybrid-Chemical
	Heat engine-based storage systems
		Chapter outline
		Thermodynamic cycles and systems
			Heat engines and heat pumps
			Carnot and reverse Carnot cycle
			Round-trip efficiency
			Exergy
			Working fluids
			Working temperature range
			Pressure range
			Heat transfer properties
			Safety/environmental impact
			Power density
			Cost
			Degradation and material compatibility
		Cryogenic energy storage
			Background
			LAES system description
			Charging system
			Discharging system
			Pilot plant
			Performance
			Scale
			Engineering considerations
			Alternative working fluids
			Advanced concepts
		Pumped heat
			Introduction
			The basic ideal gas cycle
				Charging cycle
				Discharging cycle
			The ideal gas cycle with recuperation
			The ideal gas overlap cycle
			Influencing factors on ideal gas cycles
				Influence of pressure
				Influence of temperatures
				Heat rejection
			Inventory control in ideal gas cycles
			Parametric sensitivity for the recuperated cycle
			Options regarding the point of heat rejection
			Trans-critical CO2 cycle
			Options regarding the thermal stores
			Heat exchanger service integration
			Equipment sharing between charging and discharging cycles
		Hydrogen storage
			Introduction
			Gas turbine combustion systems
				Flame speed
				Flame temperature
				Combustion stability
				Flammability range (lower explosion limit-LEL, upper explosion limit-UEL)
				Gas group and maximum experimental safe gap (MESG)
				Hydrogen diffusivity
				Hydrogen embrittlement
			Application for industrial gas turbines
				Gas turbines configured with diffusion flame combustors
					Combustion system
					Package and balance of plant impacts
				Gas turbines configured with lean premixed (DLE and DLN) combustion systems
					Lean premixed combustion systems
			Package impacts
			CO2 emissions reduction
			Pipeline transportation
				Hydrogen gas properties relevant for pipeline transport
		Compressed air energy storage (CAES)
			Introduction
			Types of CAES cycles
				Simple-cycle CAES
				Recuperated cycle CAES
				Adiabatic CAES
				Isothermal CAES
				Gas turbine integrated CAES
			Current CAES power plants
			Rotating equipment requirements
			Heat exchanger requirements
		References
Chapter-7---Energy-storage_2021_Thermal--Mechanical--and-Hybrid-Chemical-Ene
	Energy storage services
		Chapter outline
		Wholesale energy time-shifting and arbitrage
			Capacity
			Ancillary services
				Background
				Frequency regulation
					Spinning and nonspinning reserves
					Primary response and inertia
				Voltage support
				Black start
			Behind the meter and renewable integration
				Output firming of PV/wind farms for IPPs
				Demand management
				Backup power and micro grids
		Examples of energy storage operation on the market
		References
Chapter-8---Applications-of-_2021_Thermal--Mechanical--and-Hybrid-Chemical-E
	Applications of energy storage
		Chapter outline
		Introduction
		Fossil fuel power plants
			Description
			Principles of operation
				Steam turbine power plants
				Gas turbine power plants
			Storage options for fossil fuel power plants
				Compressed air energy storage
					Adiabatic compressed air energy storage
					Diabatic-compressed air energy storage
				Thermal energy storage
					Thermal energy storage for conventional power plants
					Thermal energy storage for combined cycle power plants
		Thermal energy storage for nuclear energy systems
			Challenges facing base load producing nuclear power
			Possible solutions
			Energy storage methods
			Energy storage integration
			Sensible heat storage
			Exergy recovery and efficiency
			Energy density
		Concentrating solar power
			Thermal energy storage
			Heat transfer fluids
			Thermal energy storage and turbine T
			Potential system designs and current research
				Solar salt molten salt power tower
				High-temperature tower with direct TES
				High-temperature tower with indirect TES
				High-temperature tower with PCM
		Testing
			Phases of testing
				Testing standards and procedures
			Types of tests and performance metrics
				Testing facilities
		Energy storage codes and standards
			Safety standards and certification by type
		References
Chapter-9---Path-to-commer_2021_Thermal--Mechanical--and-Hybrid-Chemical-Ene
	Path to commercialization
		Chapter Outline
		Market place
			Conditions
			Financial benefits
				Energy arbitrage
				Capacity payments
				Ancillary services
				Frequency regulation
					Spinning reserve
					Nonspinning reserve
					Black start
					Voltage support
				Other grid benefits
				Behind-the-meter applications and small-scale grids
			Opportunities and scale
				Utility scale
				Industrial scale
				Commercial scale
				Residential scale
		Economic considerations
			Market modeling
			Levelized cost methods
			Risk and financing
				Capital
				Commodity
				Regulatory
				Environmental
		Technology considerations
			Installed (capital) costs
			Operational and maintenance (O&M) costs
				Battery energy storage systems (BESS)
				Pumped hydro
				Thermal storage
				Compressed air energy storage
				Flywheel
				Ultracapacitor
			Efficiency
			Storage duration
			Sizing and siting
			Operational (part load) flexibility
		Dispatch modeling and revenue production
			Energy markets and energy price variation
				Day-ahead vs real-time markets
				Frequency regulation
			Price array sorting method
			Stored resource valuation method
			Formal mathematical optimization
				Adding ancillary service cooptimization
		References
Chapter-10---Advanced-c_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy
	Advanced concepts
		Chapter outline
		Introduction
		Thermal energy storage
			Sensible storage research/facilities
			Latent heat research
		Mechanical energy storage
			Advanced constant pressure CAES
			Poly-generation with CAES
			Distributed CAES
			Supercritical CAES
			Porous media CAES with a cushion gas
		Flywheels
			Introduction
			Flywheel energy system
			Bearing development
			Flywheel material development
			Power quality and hybrid renewable energy systems
		Electrical energy storage
			Supercapacitor
		Superconducting magnetic energy storage
		Hybrid energy concepts
			Thermal-chemical with mechanical
			Other hybrid concepts
		References
Index_2021_Thermal--Mechanical--and-Hybrid-Chemical-Energy-Storage-Systems
	Index




نظرات کاربران