دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: نویسندگان: Ludmila Bourchtein سری: ISBN (شابک) : 303079430X, 9783030794309 ناشر: Birkhäuser سال نشر: 2021 تعداد صفحات: 388 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Theory of Infinite Sequences and Series به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه دنباله ها و سری های بی نهایت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی اکثر مباحث سنتی دنبالهها و سریهای بینهایت را
پوشش میدهد، از همان ابتدا - تعریف و ویژگیهای ابتدایی
دنبالههای اعداد، و با نتایج پیشرفته همگرایی یکنواخت و
سریهای توانی پایان مییابد.
> این متن برای دانشجویان متخصص در ریاضیات و علوم طبیعی و
همه خوانندگان علاقه مند به دنباله ها و سریال های بی نهایت
است. این برای خواننده ای طراحی شده است که دانش کاری خوبی از
حساب دیفرانسیل و انتگرال دارد. نیازی به دانش قبلی اضافی
نیست.
متن به پنج فصل تقسیم میشود که میتوان آنها را به دو بخش
دستهبندی کرد: دو فصل اول به دنبالهها و سری اعداد مربوط
میشود، در حالی که سه فصل باقیمانده به آن اختصاص دارد. به
دنباله ها و سری از توابع، از جمله سری قدرت. در هر موضوع اصلی،
توضیح استقرایی است و با تعاریف و/یا مثالهای نسبتاً ساده شروع
میشود و با پیشرفت دوره فشردهتر و پیچیدهتر میشود. هر مفهوم
و نتیجه کلیدی با مثال هایی که به تفصیل توضیح داده شده اند
نشان داده شده است. برخی از موضوعات و نتایج پیچیدهتر به عنوان
مکمل علامتگذاری میشوند و میتوان آنها را در اولین مطالعه
حذف کرد.
متن شامل تعداد زیادی مسئله و تمرین است که آن را هم برای
استفاده در کلاس و هم برای خودآموزی مناسب میکند. بسیاری از
تمرینهای استاندارد در هر بخش گنجانده شده است تا تکنیکهای
اساسی را توسعه دهند و درک مفاهیم کلیدی را آزمایش کنند. مسائل
دیگر بیشتر جنبه نظری دارند و نکات پیچیده تری از نظریه را نشان
می دهند، یا نمونه هایی متضاد برای گزاره های نادرستی ارائه می
دهند که در نگاه اول طبیعی به نظر می رسند. راهحلهایی برای
مشکلات اضافی پیشنهاد شده در پایان هر فصل به عنوان مکمل
الکترونیکی این کتاب ارائه شده است.
This textbook covers the majority of traditional topics of
infinite sequences and series, starting from the very
beginning – the definition and elementary properties of
sequences of numbers, and ending with advanced results of
uniform convergence and power series.
The text is aimed at university students specializing in
mathematics and natural sciences, and at all the readers
interested in infinite sequences and series. It is designed
for the reader who has a good working knowledge of calculus.
No additional prior knowledge is required.
The text is divided into five chapters, which can be grouped
into two parts: the first two chapters are concerned with the
sequences and series of numbers, while the remaining three
chapters are devoted to the sequences and series of
functions, including the power series. Within each major
topic, the exposition is inductive and starts with rather
simple definitions and/or examples, becoming more compressed
and sophisticated as the course progresses. Each key notion
and result is illustrated with examples explained in detail.
Some more complicated topics and results are marked as
complements and can be omitted on a first reading.
The text includes a large number of problems and exercises,
making it suitable for both classroom use and self-study.
Many standard exercises are included in each section to
develop basic techniques and test the understanding of key
concepts. Other problems are more theoretically oriented and
illustrate more intricate points of the theory, or provide
counterexamples to false propositions which seem to be
natural at first glance. Solutions to additional problems
proposed at the end of each chapter are provided as an
electronic supplement to this book.
Preface Contents 1 Sequences of Numbers 1 Convergence and Introductory Examples 1.1 Definition of a Sequence and Trivial (Pre-limit) Properties 1.2 Convergence of a Sequence 2 Common Properties of Convergent Sequences 2.1 Uniqueness of the Limit 2.2 Comparison Properties 2.3 Arithmetic and Analytic Properties 3 Special Properties of Convergent Sequences 3.1 Convergence of Function and Corresponding Sequence 3.2 Relationship Between Convergence and Boundedness 3.3 Subsequences and Their Convergence. Bolzano-Weierstrass Theorem 3.4 Cauchy Criterion for Convergence 3.5 Sequences of the Arithmetic and Geometric Means 4 Indeterminate Forms and Techniques of Their Solution 4.1 Definition of Indeterminate Forms 4.2 Techniques of Solution of Indeterminate Forms 4.3 Various Indeterminate Forms and Examples Exercises 2 Series of Numbers 1 Convergence and Introductory Examples 1.1 Definition of a Series. Partial Sums and Convergence 1.2 Elementary Examples of Series of Numbers 2 Elementary Properties of Convergent Series 2.1 Arithmetic Properties Linear Combination Product of Two Series 2.2 Cauchy Criterion for Convergence 2.3 Necessary Condition of Convergence (Divergence Test) 2.4 Series and Its Remainder Convergence of the Original and Modified Series Criterion for Convergence Through Remainders 3 Convergence of Positive Series 3.1 General Criterion for Convergence 3.2 Integral Test (Cauchy-Maclauren Test) Evaluation of the Remainder in the Integral Test 3.3 The Comparison Tests Relationship Between the Comparison Tests with and Without Limit and Examples Complement: Nonexistence of an Universal Series for Comparison 3.4 The Cauchy Condensation Test Complement: Schlömilch's Test 3.5 D'Alembert's Tests (The Ratio Tests) Relationship Between the Tests with and Without Limit and Some Examples 3.6 Cauchy's Tests (The Root Tests) Relationship Between the Tests with and Without Limit and Some Examples 3.7 Comparison Between D'Alembert's and Cauchy's Tests 3.8 Complement: Finer Forms of D'Alembert's and Cauchy's Tests Upper and Lower Limits and Their Properties 3.9 Complement: The Kummer Chain of Tests The Kummer Tests with Upper and Lower Limits Restrictions in Application of the Kummer Hierarchy 3.10 Complement: The Cauchy Chain of Tests 4 Series of Different Types 4.1 Alternating Series 4.2 Dirichlet's and Abel's Tests 4.3 Absolute and Conditional Convergence Tests of Absolute Convergence 4.4 Product of Two Series 5 Associative and Commutative Properties of Series 5.1 Positive and Negative Parts of Series 5.2 Associative Property of Convergent Series 5.3 Commutative Property of Absolutely Convergent Series 5.4 Commutative Property of Conditionally Convergent Series 6 Complement: Double and Repeated Series Exercises 3 Sequences of Functions 1 Pointwise Convergence and Introductory Examples 2 Uniform and Non-uniform Convergence 2.1 Concept of the Uniform and Non-uniform Convergence 2.2 Arithmetic Properties of Uniform Convergence Complement: Product of Uniformly Convergent Sequences 2.3 Cauchy Criterion for Uniform Convergence 3 Dini's Theorem 4 Properties of Limit Functions Under Uniform Convergence 4.1 Boundedness of Limit Function 4.2 Limit of the Limit Function 4.3 Continuity of the Limit Function 4.4 Integrability of the Limit Function (Integration by Parameter) Complement: Improper Integral Complement: Integrability with a Stronger Formulation and More Involved Proof 4.5 Differentiability of the Limit Function (Differentiation by Parameter) Complement: Differentiation with Stronger Formulation and More Involved Proof 5 Complement: The Weierstrass Approximation Theorem Exercises 4 Series of Functions 1 Pointwise Convergence and Introductory Examples 2 Uniform and Non-uniform Convergence 2.1 Concept of Uniform and Non-uniform Convergence 2.2 Arithmetic Properties of Uniform Convergence 2.3 The Cauchy Criterion for Uniform Convergence 2.4 Uniform and Absolute Convergence 3 Sufficient Conditions for Uniform Convergence of Series 3.1 Comparison Tests 3.2 Dirihlet's and Abel's Tests 3.3 Dini's Theorem 4 Properties of the Sum of Uniformly Convergent Series 4.1 Boundedness of a Sum 4.2 Limit of a Sum 4.3 Continuity of a Sum 4.4 Integrability of a Sum (Integration Term by Term) 4.5 Differentiability of a Sum (Differentiation Term by Term) 5 Complement: The Weierstrass Function—Everywhere Continuous and Nowhere Differentiable Function Exercises 5 Power Series 1 Introduction 2 Set of Convergence of a Power Series 2.1 Convergence of a Power Series 2.2 Determining the Radius of Convergence The D'Alembert and Cauchy Formulas Complement: The Cauchy-Hadamard Formula 2.3 Convergence of the Series of Derivatives 2.4 Behavior at the Endpoints of the Interval of Convergence 3 Properties of Power Series and Their Sums 3.1 Arithmetic Properties Product of Power Series 3.2 Functional Properties Composition of Power Series Complement: Composite Series Change of the Central Point 3.3 Analytic Properties Property 3: Continuity Property 4: Integrability Property 5: Differentiability 3.4 Uniqueness of Power Series Expansion, Analytic Functions Even and Odd Functions Analytic Functions 4 Taylor Series 4.1 Taylor Coefficients and Taylor Series 4.2 Relation Between the Taylor Series and Formula 4.3 Conditions of Expansion in the Taylor Series 5 Power Series Expansion of Elementary Functions 5.1 Using Analytic Properties of Power Series 1. Function 11-x and Its Derivatives and Integrals 2. Function 11+x and Its Derivatives and Integrals 3. Function 11+x2 and Its Derivatives and Integrals 5.2 Finding the Sum of Power Series via Differential Relations 1. Function 11-x 2. Functions f(x)=(1+x)p, pN{0} 3. Function f(x)=ex 5.3 Method of the Taylor Coefficients 1. Functions f(x)=(1+x)p, pR 2. Function f(x)=11-x and Related Functions 3. Function f(x)=ex 4. Functions f(x)=sinx and f(x)=cosx 5. Functions f(x)=tanx and f(x)=cotx 5.4 Taylor Series for Various Functions 5.5 The List of the Derived Formulas of Taylor Series 6 Applications of Taylor Series 6.1 Approximation of Functions 6.2 Numerical Approximations 6.3 Finding Sums of Series of Functions 6.4 Sums of Series of Numbers 6.5 Calculation of Limits 6.6 Calculation of Integrals 6.7 Solution of Ordinary Differential Equations 6.8 Complement: The Number e Is Irrational 6.9 Complement: The Number π Is Irrational 7 Complement: Borel's Theorem 7.1 Smooth Non-analytic Function 7.2 Transition Function 7.3 Borel's Theorem Exercises Bibliography Textbooks on Calculus, Real Analysis and Infinite Series History of Analysis (Including Theory of Infinite Sequences and Series) Original Classical Sources on Real Analysis (Mentioned in the Text) Further Reading (Fourier Series, Divergent Series, Summability Methods, Multiple Series, Complex Series, Laurent Series, and More) Index