ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب The Fourth Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and Systems

دانلود کتاب پایانه چهارم: مزایای تکنیک های بایاس بدنه برای مدارها و سیستم های FDSOI

The Fourth Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and Systems

مشخصات کتاب

The Fourth Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and Systems

دسته بندی: الکترونیک: VLSI
ویرایش:  
نویسندگان: , ,   
سری: Integrated Circuits and Systems 
ISBN (شابک) : 3030394956, 9783030394950 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 433 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب The Fourth Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پایانه چهارم: مزایای تکنیک های بایاس بدنه برای مدارها و سیستم های FDSOI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پایانه چهارم: مزایای تکنیک های بایاس بدنه برای مدارها و سیستم های FDSOI

این کتاب مزایا و چالش‌های Body-Biasing برای مدارها و سیستم‌های مجتمع، همراه با استقرار زیرساخت‌های طراحی مورد نیاز برای تولید این ولتاژ Body-Bias را مورد بحث قرار می‌دهد. این راه‌حل‌های طراحی جدید، بهره‌وری انرژی و انعطاف‌پذیری سیستم را برای آخرین برنامه‌ها، مانند اینترنت اشیا و ارتباطات 5G، امکان‌پذیر می‌سازد. مرجع تک منبعی به تکنیک های بایاس بدن برای مدارها و سیستم های FDSOI در اختیار خوانندگان قرار می دهد. تکنیک‌های طراحی مدار مجتمع مخصوص بدنه فوق‌العاده نازک زیر میکرونی عمیق و سیلیکون کاملاً تخلیه‌شده جعبه در فناوری CMOS عایق را شرح می‌دهد. اولین مجموعه منسجم از تکنیک های طراحی خاص FDSOI را برای کاربردهای مختلف از طراحی آنالوگ، RF، mmW تا طراحی SRAM، مدیریت توان جاسازی شده و طراحی دیجیتال کارآمد ارائه می کند.


توضیحاتی درمورد کتاب به خارجی

This book discusses the advantages and challenges of Body-Biasing for integrated circuits and systems, together with the deployment of the design infrastructure needed to generate this Body-Bias voltage. These new design solutions enable state of the art energy efficiency and system flexibility for the latest applications, such as Internet of Things and 5G communications. Provides readers with a single-source reference to Body-Biasing Techniques for FDSOI Circuits and Systems Describes integrated circuit design techniques specific to deep submicron Ultra Thin Body and Box Fully-Depleted Silicon on Insulator CMOS technology Presents the first coherent collection of FDSOI specific design techniques, for applications ranging from analog, RF, mmW to SRAM design, embedded power management and energy efficient digital design



فهرست مطالب

Foreword
Acknowledgements
Contents
Acronyms
1 Introduction
	1.1 Foreword
	1.2 Analog Design Aspects
	1.3 Digital Design Aspects
	1.4 Book Overview
	References
Part I Device Level and General Studies for Analog and Digital
	2 FD-SOI Technology
		2.1 Introduction
		2.2 FD-SOI Technology Description and Basic Equations
		2.3 Transistor Parameters and Body-Bias
		2.4 Transistor Variability
		2.5 Digital Performance Enhancement with FBB
		2.6 Analog Performance Enhancement with FBB
		2.7 SRAM Bit-Cell
		2.8 Body-Bias Impact on Device Reliability
			2.8.1 Case of Gate Oxide Breakdown
			2.8.2 Case of NBTI
			2.8.3 Case of HCI
		2.9 Conclusion
		References
	3 Body-Bias for Digital Designs
		3.1 Body-Bias for Digital Designs: Introduction
			3.1.1 Body-Bias and the Digital Design Space
			3.1.2 Logic Performance Benchmark Method
		3.2 Digital Compensation Toolbox
			3.2.1 Temperature Compensation
			3.2.2 Voltage Compensation or Body-Bias Modulation with Voltage
			3.2.3 Process Compensation
			3.2.4 Ageing Compensation
			3.2.5 Asymmetric Body-Bias
			3.2.6 Compensation Costs and Gains
				3.2.6.1 Body-Bias Leakage Reduction
				3.2.6.2 Body-Bias Dynamic Power Gains
				3.2.6.3 Yield or Minimum Operational Voltage Gain
				3.2.6.4 Body-Bias Engineering and Deployment Costs
			3.2.7 Open Loop Bias Law
		3.3 Body-Bias Design Limits
			3.3.1 The Design Leakage Ceiling
			3.3.2 Thermal Bound
			3.3.3 The Unbiased Parts Timing Ceiling
			3.3.4 Biasing the Other Way
		3.4 Digital Performance Boost
		3.5 Ultra-Low Voltage Designs
		3.6 Body-Bias for Digital Designs: Conclusion
		References
	4 Body-Biasing in FD-SOI for Analog, RF, and Millimeter-Wave Designs
		4.1 Introduction
		4.2 On the Usage of Variable Body-Biasing Voltage on Chip
		4.3 On the Usage of Fixed Body-Bias Voltage on Chip
		References
	5 SRAM Bitcell Functionality Under Body-Bias
		5.1 Silicon Product Yield in a Highly Competitive Market
		5.2 The SRAM Expand-and-Shrink Trend
		5.3 Should We Measure or Calculate the SRAM Yield?
		5.4 The SRAM Circuit
		5.5 Can SRAM Spice Models Predict Yield?
		5.6 Supported Operating Voltage Range: The Vmin Paradigm
		5.7 From Margins to Failure Rate: Validity of a LF Gaussian Model Across Temperatures
		5.8 Body-Bias Effects to SRAM
		5.9 Understanding HF Effects
		5.10 Switching to the Nmax Paradigm to Support Body-Bias
		5.11 HF Body-Bias Effects and Future SRAM Compensation Applications
		5.12 Conclusions
		References
Part II Design Examples: From Analog RF and mmW to Digital. From Building Blocks and Circuits to SoCs
	6 Coarse/Fine Delay Element Design in 28nm FD-SOI
		6.1 Delay Elements Review
			6.1.1 Cascaded Inverters
			6.1.2 Capacitive Shunting
			6.1.3 The Semi-static Approach
			6.1.4 Current Starving
			6.1.5 Thyristor Delay Elements
			6.1.6 Choosing a Delay Element
		6.2 Coarse/Fine-Tuning Delay Element and Line Using Gate and Body-Biasing in 28nm FD-SOI
			6.2.1 Delay Element Design
			6.2.2 Delay Line Architecture
			6.2.3 Delay Line Measurement Results
		References
	7 Millimeter-Wave Distributed Oscillators in 28nm FD-SOI Technology
		7.1 Introduction
		7.2 Distributed Oscillator Theory for Operation Frequencies Close to fmax
		7.3 Amplification Stage Design
		7.4 Transmission Line Design
		7.5 Circuits Measurements
			7.5.1 Standalone Transistor Measurements
			7.5.2 Measurement Setup
			7.5.3 Measurement Results
			7.5.4 On-Wafer Mapping Measurement for Variability Study
			7.5.5 Phase Noise Optimization Through Body-Bias Control
		7.6 State-of-the-Art Comparison and Conclusion
		References
	8 Millimeter-Wave Power Amplifiers for 5G Applications in 28nm FD-SOI Technology
		8.1 Introduction
			8.1.1 Design Flow for Integrated mmW PA Design
			8.1.2 Power Amplifier Configurability Discussion in the Context of FD-SOI Technologies
		8.2 Reconfigurable Balanced mmW PA Implementation in 28nm FD-SOI Technology
			8.2.1 Active Devices
				8.2.1.1 Dimensioning
				8.2.1.2 Layout Optimization Strategy
			8.2.2 Power Amplifier Topology
				8.2.2.1 Choice of Overall Topology
				8.2.2.2 Balanced Topology Implementation
			8.2.3 Power Stages Design
				8.2.3.1 Design and Implementation of S2 Power Amplification Stage
				8.2.3.2 Design and Implementation of S1 Power Amplification Stage
			8.2.4 Impedance Matching Network Implementation
				8.2.4.1 Output Matching Network Optimization Strategy
				8.2.4.2 Inter-Stage and Input Matching
			8.2.5 Robust Integration and Reliability
				8.2.5.1 ESD Protection
				8.2.5.2 Electromigration
				8.2.5.3 Safe Operating Area
				8.2.5.4 Ground Return Path Optimization
		8.3 mmW Power Amplifier Measurement Results
			8.3.1 Measurements at Optimal Operating Point
			8.3.2 Small-Signal Measurements with Body-Biasing Tuning
			8.3.3 Large-Signal Measurements with Body-Biasing Tuning
			8.3.4 AM–PM Measurements with Body-Biasing Tuning
			8.3.5 Measurements Over Frequency Range
			8.3.6 Power Amplifier Behavior for Temperature Variations
				8.3.6.1 Large-Signal Measurements from 25 to 125C with Body-Biasing Tuning
				8.3.6.2 Small-Signal Measurements from 25 to 125C
			8.3.7 On-Wafer Variability Statistical Study
		8.4 Comparison and Discussion Regarding mmW PA State of the Art
		References
	9 An 802.15.4 IR-UWB Transmitter SoC with Adaptive-FBB-Based Channel Selection andProgrammable Pulse Shape
		9.1 Introduction
		9.2 Architecture of the Digital TX
		9.3 Duty-Cycled Frequency Synthesis
		9.4 Pulse-Shaping Digital Power Amplifier
		9.5 FBB Generation and Current-Matching Loop
		9.6 SoC Integration
		9.7 Measurement Results
		9.8 Conclusions
		References
	10 Body-Bias Calibration Based Temperature Sensor
		10.1 Introduction
			10.1.1 Temperature Sensor Requirements for Modern SoCs
				10.1.1.1 Need for Temperature Monitoring of Digital SoCs
				10.1.1.2 Integrated Temperature Sensor Requirements
			10.1.2 Current Methods for Temperature Sensors Design and Process Compensation
				10.1.2.1 Analog Bandgap
				10.1.2.2 Resistor-Based
				10.1.2.3 Thermal Diffusivity
				10.1.2.4 Digital Differential CMOS
				10.1.2.5 Single-Ended Digital Temperature Sensor (SED-THS)
		10.2 Body-Bias Compensated Oscillator Principle
			10.2.1 Uncompensated SED-THS
				10.2.1.1 Basic Principle
				10.2.1.2 Simulated Performance
			10.2.2 Bias-Compensated SED-THS
				10.2.2.1 Use of Body-Bias Compensation
				10.2.2.2 Supply-Bias Merged Oscillator
				10.2.2.3 Oscillator Performance
		10.3 Circuit Implementation
			10.3.1 Probe Detailed Implementation
			10.3.2 Digital Processing
			10.3.3 Noise Analysis Methodology
		10.4 Manufactured Chip
			10.4.1 Sensor Layout
			10.4.2 Validation of Calibration
				10.4.2.1 Measured Accuracy
				10.4.2.2 Example of SoC Integration
				10.4.2.3 State-of-the-Art Summary
		10.5 Conclusion
		References
	11 System Integration of RISC-V Processors with FD-SOI
		11.1 SoC Design in FD-SOI
			11.1.1 Raven-3
			11.1.2 Raven-4
		11.2 RISC-V Processors
			11.2.1 Rocket Chip
			11.2.2 Hwacha Vector Processor
			11.2.3 Z-Scale
		11.3 Energy-Efficient SRAMs
		11.4 DC-DC Converters
		11.5 Body-Bias Generation
		11.6 Clock Generation
			11.6.1 DLL-Based Adaptive Clocking
			11.6.2 Free-Running Adaptive Clocking
		11.7 System Performance
			11.7.1 Raven-3 Measurement Results
			11.7.2 Raven-4 Measurement Results
		References
Part III Body-Bias Deployment in Mixed-Signal and Digital SoCs
	12 Timing-Based Closed Loop Compensation
		12.1 Closed-Loop Timing Monitoring
			12.1.1 Introduction
		12.2 Speed Monitors
			12.2.1 Ring Oscillator Based Monitors
			12.2.2 Tunable Replica Circuits
				12.2.2.1 Multi-Cell Type Path Composition
				12.2.2.2 Single-Cell Type Path Composition
			12.2.3 Endpoint Monitors
			12.2.4 Critical Path Replica
			12.2.5 Monitor Calibration
				12.2.5.1 Timing Margin Elaboration
			12.2.6 Monitor Evaluation
				12.2.6.1 Ring Oscillator Based Monitors
				12.2.6.2 Tunable Replica Circuits
				12.2.6.3 Endpoint Monitors
				12.2.6.4 Critical Path Replicas
		12.3 Control Functions
			12.3.1 Successive Approximation
			12.3.2 Proportional Control
			12.3.3 Proportional-Integral Control
			12.3.4 Proportional-Derivative Control
		12.4 Design Example: Process and Temperature Timing-Based Closed Loop Compensation
			12.4.1 Architecture
			12.4.2 Compensation Unit
			12.4.3 Speed Monitor
			12.4.4 Measurements
		References
	13 Open Loop Compensation
		13.1 Circuits Content
		13.2 Mixed ASIC Flow and Software Based Open Loop Body-Bias Controller
		13.3 Full ASIC Flow Based Open Loop Body-Bias Controller
		13.4 Open Loop Controller Solution Design Synthesis
		References
	14 Compensation and Regulation Solutions\' Synthesis
		14.1 Body-Bias and Voltage Scaling
			14.1.1 Introduction
			14.1.2 Comparison
				14.1.2.1 Variation Compensation
				14.1.2.2 Process Compensation
				14.1.2.3 Voltage Compensation
				14.1.2.4 Temperature Compensation
				14.1.2.5 Ageing
				14.1.2.6 Speed Boost
				14.1.2.7 Selective N vs P Adjustment
				14.1.2.8 Multiple Domain Adjustment
			14.1.3 Combination of the Two
		14.2 Body-Bias Control: Closed-Loop vs Open-Loop
		References
	15 Body-Bias Voltage Generation
		15.1 Introduction
		15.2 Load Model Description and Modelling
			15.2.1 Common Load Topology
			15.2.2 Currents
			15.2.3 Capacitances
			15.2.4 Load Estimation
		15.3 Specifications and Constraints for a Body-Bias Voltage Generator
			15.3.1 Timing
			15.3.2 Voltage Range
			15.3.3 Environmental Constraints
		15.4 Body-Bias Voltage Generator Design
			15.4.1 Voltage Reference
			15.4.2 Programmable Voltage Generation
			15.4.3 Output Stages
				15.4.3.1 Analogue Output Buffer
				15.4.3.2 Digital Output Buffer
				15.4.3.3 Negative Voltage Generation
				15.4.3.4 Loop Regulation for Clocked Power Stages
			15.4.4 BBGEN Architecture Examples
		15.5 Body-Bias Voltage Generator Implementation at System on Chip Level
			15.5.1 Power Integrity Concern
			15.5.2 Placement Concern
			15.5.3 Testability
		15.6 Conclusion
		References
	16 Digital Design Implementation Flow and VerificationMethodology
		Digital Flow Steps and Vocabulary
		16.1 Specification and Engineering Test Body-Bias Prerequisites
		16.2 Design Startup Caution
		16.3 Design Verification Principles and Corners Definition
			16.3.1 Design Verification Principles
			16.3.2 Design Corners Definition
				16.3.2.1 Which Corner for Setup Timing Check, for Hold Timing Check?
				16.3.2.2 Design Verification Corners Definition Step by Step Method
				16.3.2.3 Verification Corners Versus Implementation Corners
		16.4 Physical Implementation
			16.4.1 Implementation Timing Corner Selection
			16.4.2 Specific Addition to Standard Flow
			16.4.3 Low-Power Flow
A FD-SOI Process Flow
B Digital Implementation Flow and Terminology
	B.1 Digital Design Wording and Body-Bias
		B.1.1 Quality of Results
		B.1.2 Corner, Mode and Scenario
		B.1.3 Temperature Inversion, VTinv and ZTC
		B.1.4 Implementation and Sign-Off
		B.1.5 Functional Simulation and Static Timing Analysis
		B.1.6 Clock Tree and Clock Skew
		B.1.7 High Fanout Nets
		B.1.8 Convergence and Correlation
		B.1.9 Sequential Design, the Digital Sheep Shepherd Problem
	B.2 Digital Design Rules and Constraints Definition
		B.2.1 Setup Constraint
		B.2.2 Hold Constraint
		B.2.3 Clock Minimum Pulse Width Constraint
		B.2.4 Maximum Fanout Load Capacitance, Signal Transition Rules
	B.3 Flow Steps
		B.3.1 Front-End
			B.3.1.1 Synthesis
			B.3.1.2 DFT Insertion
			B.3.1.3 Formal Proof
		B.3.2 Back-End
			B.3.2.1 Floorplan
			B.3.2.2 Placement
			B.3.2.3 Clock Tree Synthesis
			B.3.2.4 Routing
			B.3.2.5 Finishing
		B.3.3 Sign-Off
			B.3.3.1 Extraction
			B.3.3.2 Static Timing Analysis
			B.3.3.3 Power and Voltage Drop Analysis
			B.3.3.4 Design Rule Check and Layout Versus Schematic
C IEEE 1801 UPF Example
	References
Index




نظرات کاربران