دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: الکترونیک: VLSI ویرایش: نویسندگان: Sylvain Clerc, Thierry Di Gilio, Andreia Cathelin سری: Integrated Circuits and Systems ISBN (شابک) : 3030394956, 9783030394950 ناشر: Springer سال نشر: 2020 تعداد صفحات: 433 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب The Fourth Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پایانه چهارم: مزایای تکنیک های بایاس بدنه برای مدارها و سیستم های FDSOI نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مزایا و چالشهای Body-Biasing برای مدارها و سیستمهای مجتمع، همراه با استقرار زیرساختهای طراحی مورد نیاز برای تولید این ولتاژ Body-Bias را مورد بحث قرار میدهد. این راهحلهای طراحی جدید، بهرهوری انرژی و انعطافپذیری سیستم را برای آخرین برنامهها، مانند اینترنت اشیا و ارتباطات 5G، امکانپذیر میسازد. مرجع تک منبعی به تکنیک های بایاس بدن برای مدارها و سیستم های FDSOI در اختیار خوانندگان قرار می دهد. تکنیکهای طراحی مدار مجتمع مخصوص بدنه فوقالعاده نازک زیر میکرونی عمیق و سیلیکون کاملاً تخلیهشده جعبه در فناوری CMOS عایق را شرح میدهد. اولین مجموعه منسجم از تکنیک های طراحی خاص FDSOI را برای کاربردهای مختلف از طراحی آنالوگ، RF، mmW تا طراحی SRAM، مدیریت توان جاسازی شده و طراحی دیجیتال کارآمد ارائه می کند.
This book discusses the advantages and challenges of Body-Biasing for integrated circuits and systems, together with the deployment of the design infrastructure needed to generate this Body-Bias voltage. These new design solutions enable state of the art energy efficiency and system flexibility for the latest applications, such as Internet of Things and 5G communications. Provides readers with a single-source reference to Body-Biasing Techniques for FDSOI Circuits and Systems Describes integrated circuit design techniques specific to deep submicron Ultra Thin Body and Box Fully-Depleted Silicon on Insulator CMOS technology Presents the first coherent collection of FDSOI specific design techniques, for applications ranging from analog, RF, mmW to SRAM design, embedded power management and energy efficient digital design
Foreword Acknowledgements Contents Acronyms 1 Introduction 1.1 Foreword 1.2 Analog Design Aspects 1.3 Digital Design Aspects 1.4 Book Overview References Part I Device Level and General Studies for Analog and Digital 2 FD-SOI Technology 2.1 Introduction 2.2 FD-SOI Technology Description and Basic Equations 2.3 Transistor Parameters and Body-Bias 2.4 Transistor Variability 2.5 Digital Performance Enhancement with FBB 2.6 Analog Performance Enhancement with FBB 2.7 SRAM Bit-Cell 2.8 Body-Bias Impact on Device Reliability 2.8.1 Case of Gate Oxide Breakdown 2.8.2 Case of NBTI 2.8.3 Case of HCI 2.9 Conclusion References 3 Body-Bias for Digital Designs 3.1 Body-Bias for Digital Designs: Introduction 3.1.1 Body-Bias and the Digital Design Space 3.1.2 Logic Performance Benchmark Method 3.2 Digital Compensation Toolbox 3.2.1 Temperature Compensation 3.2.2 Voltage Compensation or Body-Bias Modulation with Voltage 3.2.3 Process Compensation 3.2.4 Ageing Compensation 3.2.5 Asymmetric Body-Bias 3.2.6 Compensation Costs and Gains 3.2.6.1 Body-Bias Leakage Reduction 3.2.6.2 Body-Bias Dynamic Power Gains 3.2.6.3 Yield or Minimum Operational Voltage Gain 3.2.6.4 Body-Bias Engineering and Deployment Costs 3.2.7 Open Loop Bias Law 3.3 Body-Bias Design Limits 3.3.1 The Design Leakage Ceiling 3.3.2 Thermal Bound 3.3.3 The Unbiased Parts Timing Ceiling 3.3.4 Biasing the Other Way 3.4 Digital Performance Boost 3.5 Ultra-Low Voltage Designs 3.6 Body-Bias for Digital Designs: Conclusion References 4 Body-Biasing in FD-SOI for Analog, RF, and Millimeter-Wave Designs 4.1 Introduction 4.2 On the Usage of Variable Body-Biasing Voltage on Chip 4.3 On the Usage of Fixed Body-Bias Voltage on Chip References 5 SRAM Bitcell Functionality Under Body-Bias 5.1 Silicon Product Yield in a Highly Competitive Market 5.2 The SRAM Expand-and-Shrink Trend 5.3 Should We Measure or Calculate the SRAM Yield? 5.4 The SRAM Circuit 5.5 Can SRAM Spice Models Predict Yield? 5.6 Supported Operating Voltage Range: The Vmin Paradigm 5.7 From Margins to Failure Rate: Validity of a LF Gaussian Model Across Temperatures 5.8 Body-Bias Effects to SRAM 5.9 Understanding HF Effects 5.10 Switching to the Nmax Paradigm to Support Body-Bias 5.11 HF Body-Bias Effects and Future SRAM Compensation Applications 5.12 Conclusions References Part II Design Examples: From Analog RF and mmW to Digital. From Building Blocks and Circuits to SoCs 6 Coarse/Fine Delay Element Design in 28nm FD-SOI 6.1 Delay Elements Review 6.1.1 Cascaded Inverters 6.1.2 Capacitive Shunting 6.1.3 The Semi-static Approach 6.1.4 Current Starving 6.1.5 Thyristor Delay Elements 6.1.6 Choosing a Delay Element 6.2 Coarse/Fine-Tuning Delay Element and Line Using Gate and Body-Biasing in 28nm FD-SOI 6.2.1 Delay Element Design 6.2.2 Delay Line Architecture 6.2.3 Delay Line Measurement Results References 7 Millimeter-Wave Distributed Oscillators in 28nm FD-SOI Technology 7.1 Introduction 7.2 Distributed Oscillator Theory for Operation Frequencies Close to fmax 7.3 Amplification Stage Design 7.4 Transmission Line Design 7.5 Circuits Measurements 7.5.1 Standalone Transistor Measurements 7.5.2 Measurement Setup 7.5.3 Measurement Results 7.5.4 On-Wafer Mapping Measurement for Variability Study 7.5.5 Phase Noise Optimization Through Body-Bias Control 7.6 State-of-the-Art Comparison and Conclusion References 8 Millimeter-Wave Power Amplifiers for 5G Applications in 28nm FD-SOI Technology 8.1 Introduction 8.1.1 Design Flow for Integrated mmW PA Design 8.1.2 Power Amplifier Configurability Discussion in the Context of FD-SOI Technologies 8.2 Reconfigurable Balanced mmW PA Implementation in 28nm FD-SOI Technology 8.2.1 Active Devices 8.2.1.1 Dimensioning 8.2.1.2 Layout Optimization Strategy 8.2.2 Power Amplifier Topology 8.2.2.1 Choice of Overall Topology 8.2.2.2 Balanced Topology Implementation 8.2.3 Power Stages Design 8.2.3.1 Design and Implementation of S2 Power Amplification Stage 8.2.3.2 Design and Implementation of S1 Power Amplification Stage 8.2.4 Impedance Matching Network Implementation 8.2.4.1 Output Matching Network Optimization Strategy 8.2.4.2 Inter-Stage and Input Matching 8.2.5 Robust Integration and Reliability 8.2.5.1 ESD Protection 8.2.5.2 Electromigration 8.2.5.3 Safe Operating Area 8.2.5.4 Ground Return Path Optimization 8.3 mmW Power Amplifier Measurement Results 8.3.1 Measurements at Optimal Operating Point 8.3.2 Small-Signal Measurements with Body-Biasing Tuning 8.3.3 Large-Signal Measurements with Body-Biasing Tuning 8.3.4 AM–PM Measurements with Body-Biasing Tuning 8.3.5 Measurements Over Frequency Range 8.3.6 Power Amplifier Behavior for Temperature Variations 8.3.6.1 Large-Signal Measurements from 25 to 125C with Body-Biasing Tuning 8.3.6.2 Small-Signal Measurements from 25 to 125C 8.3.7 On-Wafer Variability Statistical Study 8.4 Comparison and Discussion Regarding mmW PA State of the Art References 9 An 802.15.4 IR-UWB Transmitter SoC with Adaptive-FBB-Based Channel Selection andProgrammable Pulse Shape 9.1 Introduction 9.2 Architecture of the Digital TX 9.3 Duty-Cycled Frequency Synthesis 9.4 Pulse-Shaping Digital Power Amplifier 9.5 FBB Generation and Current-Matching Loop 9.6 SoC Integration 9.7 Measurement Results 9.8 Conclusions References 10 Body-Bias Calibration Based Temperature Sensor 10.1 Introduction 10.1.1 Temperature Sensor Requirements for Modern SoCs 10.1.1.1 Need for Temperature Monitoring of Digital SoCs 10.1.1.2 Integrated Temperature Sensor Requirements 10.1.2 Current Methods for Temperature Sensors Design and Process Compensation 10.1.2.1 Analog Bandgap 10.1.2.2 Resistor-Based 10.1.2.3 Thermal Diffusivity 10.1.2.4 Digital Differential CMOS 10.1.2.5 Single-Ended Digital Temperature Sensor (SED-THS) 10.2 Body-Bias Compensated Oscillator Principle 10.2.1 Uncompensated SED-THS 10.2.1.1 Basic Principle 10.2.1.2 Simulated Performance 10.2.2 Bias-Compensated SED-THS 10.2.2.1 Use of Body-Bias Compensation 10.2.2.2 Supply-Bias Merged Oscillator 10.2.2.3 Oscillator Performance 10.3 Circuit Implementation 10.3.1 Probe Detailed Implementation 10.3.2 Digital Processing 10.3.3 Noise Analysis Methodology 10.4 Manufactured Chip 10.4.1 Sensor Layout 10.4.2 Validation of Calibration 10.4.2.1 Measured Accuracy 10.4.2.2 Example of SoC Integration 10.4.2.3 State-of-the-Art Summary 10.5 Conclusion References 11 System Integration of RISC-V Processors with FD-SOI 11.1 SoC Design in FD-SOI 11.1.1 Raven-3 11.1.2 Raven-4 11.2 RISC-V Processors 11.2.1 Rocket Chip 11.2.2 Hwacha Vector Processor 11.2.3 Z-Scale 11.3 Energy-Efficient SRAMs 11.4 DC-DC Converters 11.5 Body-Bias Generation 11.6 Clock Generation 11.6.1 DLL-Based Adaptive Clocking 11.6.2 Free-Running Adaptive Clocking 11.7 System Performance 11.7.1 Raven-3 Measurement Results 11.7.2 Raven-4 Measurement Results References Part III Body-Bias Deployment in Mixed-Signal and Digital SoCs 12 Timing-Based Closed Loop Compensation 12.1 Closed-Loop Timing Monitoring 12.1.1 Introduction 12.2 Speed Monitors 12.2.1 Ring Oscillator Based Monitors 12.2.2 Tunable Replica Circuits 12.2.2.1 Multi-Cell Type Path Composition 12.2.2.2 Single-Cell Type Path Composition 12.2.3 Endpoint Monitors 12.2.4 Critical Path Replica 12.2.5 Monitor Calibration 12.2.5.1 Timing Margin Elaboration 12.2.6 Monitor Evaluation 12.2.6.1 Ring Oscillator Based Monitors 12.2.6.2 Tunable Replica Circuits 12.2.6.3 Endpoint Monitors 12.2.6.4 Critical Path Replicas 12.3 Control Functions 12.3.1 Successive Approximation 12.3.2 Proportional Control 12.3.3 Proportional-Integral Control 12.3.4 Proportional-Derivative Control 12.4 Design Example: Process and Temperature Timing-Based Closed Loop Compensation 12.4.1 Architecture 12.4.2 Compensation Unit 12.4.3 Speed Monitor 12.4.4 Measurements References 13 Open Loop Compensation 13.1 Circuits Content 13.2 Mixed ASIC Flow and Software Based Open Loop Body-Bias Controller 13.3 Full ASIC Flow Based Open Loop Body-Bias Controller 13.4 Open Loop Controller Solution Design Synthesis References 14 Compensation and Regulation Solutions\' Synthesis 14.1 Body-Bias and Voltage Scaling 14.1.1 Introduction 14.1.2 Comparison 14.1.2.1 Variation Compensation 14.1.2.2 Process Compensation 14.1.2.3 Voltage Compensation 14.1.2.4 Temperature Compensation 14.1.2.5 Ageing 14.1.2.6 Speed Boost 14.1.2.7 Selective N vs P Adjustment 14.1.2.8 Multiple Domain Adjustment 14.1.3 Combination of the Two 14.2 Body-Bias Control: Closed-Loop vs Open-Loop References 15 Body-Bias Voltage Generation 15.1 Introduction 15.2 Load Model Description and Modelling 15.2.1 Common Load Topology 15.2.2 Currents 15.2.3 Capacitances 15.2.4 Load Estimation 15.3 Specifications and Constraints for a Body-Bias Voltage Generator 15.3.1 Timing 15.3.2 Voltage Range 15.3.3 Environmental Constraints 15.4 Body-Bias Voltage Generator Design 15.4.1 Voltage Reference 15.4.2 Programmable Voltage Generation 15.4.3 Output Stages 15.4.3.1 Analogue Output Buffer 15.4.3.2 Digital Output Buffer 15.4.3.3 Negative Voltage Generation 15.4.3.4 Loop Regulation for Clocked Power Stages 15.4.4 BBGEN Architecture Examples 15.5 Body-Bias Voltage Generator Implementation at System on Chip Level 15.5.1 Power Integrity Concern 15.5.2 Placement Concern 15.5.3 Testability 15.6 Conclusion References 16 Digital Design Implementation Flow and VerificationMethodology Digital Flow Steps and Vocabulary 16.1 Specification and Engineering Test Body-Bias Prerequisites 16.2 Design Startup Caution 16.3 Design Verification Principles and Corners Definition 16.3.1 Design Verification Principles 16.3.2 Design Corners Definition 16.3.2.1 Which Corner for Setup Timing Check, for Hold Timing Check? 16.3.2.2 Design Verification Corners Definition Step by Step Method 16.3.2.3 Verification Corners Versus Implementation Corners 16.4 Physical Implementation 16.4.1 Implementation Timing Corner Selection 16.4.2 Specific Addition to Standard Flow 16.4.3 Low-Power Flow A FD-SOI Process Flow B Digital Implementation Flow and Terminology B.1 Digital Design Wording and Body-Bias B.1.1 Quality of Results B.1.2 Corner, Mode and Scenario B.1.3 Temperature Inversion, VTinv and ZTC B.1.4 Implementation and Sign-Off B.1.5 Functional Simulation and Static Timing Analysis B.1.6 Clock Tree and Clock Skew B.1.7 High Fanout Nets B.1.8 Convergence and Correlation B.1.9 Sequential Design, the Digital Sheep Shepherd Problem B.2 Digital Design Rules and Constraints Definition B.2.1 Setup Constraint B.2.2 Hold Constraint B.2.3 Clock Minimum Pulse Width Constraint B.2.4 Maximum Fanout Load Capacitance, Signal Transition Rules B.3 Flow Steps B.3.1 Front-End B.3.1.1 Synthesis B.3.1.2 DFT Insertion B.3.1.3 Formal Proof B.3.2 Back-End B.3.2.1 Floorplan B.3.2.2 Placement B.3.2.3 Clock Tree Synthesis B.3.2.4 Routing B.3.2.5 Finishing B.3.3 Sign-Off B.3.3.1 Extraction B.3.3.2 Static Timing Analysis B.3.3.3 Power and Voltage Drop Analysis B.3.3.4 Design Rule Check and Layout Versus Schematic C IEEE 1801 UPF Example References Index