دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Jie Zheng. Matthew C. Trudeau
سری:
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 488
[489]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 228 Mb
در صورت تبدیل فایل کتاب Textbook of Ion Channels Volume II: Properties, Function, and Pharmacology of the Superfamilies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب درسی کانال های یونی جلد دوم: خواص ، عملکرد و فارماکولوژی خانواده های فوق العاده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Taxonomy and Evolution of Ion Channels 1.1 How Should We Approach Ion Channel Taxonomy? 1.2 Ion Channel Superfamilies Have Independent Evolutionary Origins 1.3 Structural Diversification of the Voltage-Gated Cation Channel (VGIC) Superfamily 1.4 Ion Channel Families and Subfamilies 1.5 Evolutionary History of Ion Channels: Ancient Structures and Dynamic Gene Sets 1.6 Much of the Genetic Diversity of Ion Channels Remains Unexplored Suggested Reading Chapter 2 Voltage-Gated Sodium Channels 2.1 Functional Roles of Voltage-Gated Sodium Channels 2.1.1 Action Potential Generation and Propagation 2.1.2 Activation, Conductance and Two Phases of Inactivation 2.1.3 Persistent and Resurgent Sodium Currents 2.2 Discovery and Biochemical Properties of the Sodium Channel Protein 2.2.1 Identification, Purification and Reconstitution of Sodium Channels 2.2.2 Primary Structures of Sodium Channel Subunits 2.2.3 Mapping the Molecular Components Required for Sodium Channel Function 2.3 Three-Dimensional Structure of the Sodium Channel 2.3.1 Structure of Bacterial Sodium Channels 2.3.2 The Pore Contains a High-Field-Strength Carboxyl Site and Two Carbonyl Sites 2.3.3 Voltage-Sensor Structure 2.3.4 Voltage-Dependent Activation Involves a Sliding-Helix Mechanism 2.3.5 An Iris-Like Movement Opens the Pore 2.4 The Pore Collapses during Slow Inactivation 2.5 Drugs Block the Pores of Sodium Channels 2.6 Evolutionary Additions to Mammalian Sodium Channels 2.7 Sodium Channel Diversity Suggested Reading Chapter 3 Voltage-Gated Calcium Channels 3.1 Introduction 3.2 VGCC Diversity, Nomenclature and Structural Organization 3.3 Physiological Roles of VGCCs 3.4 Gating of VGCCs 3.5 Ion Permeability of VGCCs 3.6 Pharmacology of VGCCs 3.7 Regulation of VGCCs 3.8 Biogenesis, Trafficking and Turnover of VGCCs 3.9 VGCC Channelopathies and Disease 3.10 Conclusion Suggested Reading Chapter 4 Voltage-Gated Potassium Channels 4.1 Introduction 4.2 Structure of Kv Channels 4.3 The Pore Domain 4.4 Ionic Selectivity and Permeation 4.5 Voltage-Sensor Domains and the Mechanism of Voltage Gating 4.6 N-Type and C-Type Inactivation 4.7 Kv Channel Families 4.7.1 The Kv1 Family 4.7.2 The Kv2 Family 4.7.3 The Kv3 Family 4.7.4 The Kv4 Family 4.7.5 Kv5, Kv6, Kv8 and Kv 4.8 Pharmacology of Kv Channels 4.9 Kv Channel Accessory Proteins 4.10 Biogenesis of Kv Channels 4.11 Unresolved Questions and Research Directions Acknowledgments Suggested Reading Chapter 5 ERG Family of Potassium Channels 5.1 Introduction 5.2 Physiological Roles 5.3 Subunit Diversity and Basic Structural Organization 5.4 Channel Physiology and Gating Mechanisms 5.4.1 Physiology 5.4.1.1 ERG 5.4.1.2 EAG 5.4.1.3 ELK 5.4.2 Gating Mechanisms 5.4.2.1 ERG 5.4.2.2 EAG 5.4.2.3 ELK 5.5 Ion Permeability 5.6 Regulation 5.7 Cell Biology (Biogenesis, Trafficking, Turnover) 5.8 Channelopathies and Disease 5.9 Pharmacology 5.9.1 hERG, IKr and Acquired LQTS 5.10 Conclusion Suggested Reading Chapter 6 KCNQ Channels 6.1 Introduction 6.2 Physiological Roles 6.3 Channel Diversity/Structural Organization 6.4 Gating 6.5 Ion Permeability 6.6 Pharmacology 6.7 Regulation 6.8 Cell Biology (Biogenesis and Trafficking) 6.9 Channelopathies 6.10 Conclusions Suggested Reading Chapter 7 BK channels 7.1 Functional Properties of BK Channels 7.2 Physiological Roles of BK Channels 7.3 BK Channel Structure 7.4 Allosteric Mechanisms of BK Channel Activation 7.5 Structural Basis of BK Channel Function 7.5.1 Large Single-Channel Conductance 7.5.2 Voltage- and Ca2+-Dependent Activation 7.5.3 Activation by Other Intracellular Ions 7.6 β and γ Subunits Modulate BK Channel Function 7.7 Pharmacology of BK Channels 7.8 Concluding Remarks Acknowledgments Suggested Reading Chapter 8 Small-Conductance Calcium-Activated Potassium (SK) Channels 8.1 Introduction 8.2 Physiological Function 8.3 Subunit Diversity and Structure 8.4 Gating and Ion Permeability 8.5 Pharmacology 8.6 Regulation 8.7 Cell Biology (Biogenesis, Trafficking, Turnover) 8.8 Channelopathies and Disease 8.9 Conclusions Suggested Reading Chapter 9 Inward Rectifier Potassium Channels 9.1 Introduction 9.2 Physiological Roles 9.3 Subunit Diversity and Basic Structural Organization 9.4 Gating of Kir Channels 9.4.1 Regulators of Kir Channel Gating 9.4.2 Conformational Changes during Kir Channel Gating 9.5 Ion Selectivity and Conduction 9.6 Pharmacology 9.6.1 Peptide Toxins 9.7 Regulation 9.8 Cell Biology: Biogenesis, Trafficking, Subcellular Targeting 9.9 Kir Channelopathies 9.10 Conclusion Acknowledgments Suggested Reading Chapter 10 Two-Pore-Domain Potassium Channels 10.1 Introduction to the Physiology of K2P Channels 10.2 Structural Organization and Subunit Diversity 10.3 Gating K2P Channels 10.4 The Regulation and Cell Biology of the K2P Channels 10.4.1 K2P1, K2P6 and K2P7 Channels 10.4.2 K2P2, K2P4 and K2P10 Channels: Polymodal Rheostats 10.4.3 The Acid-Sensitive Channels: K2P3 and K2P 10.4.4 Alkaline-Activated Channels: K2P5, K2P16 and K2P17 10.4.5 K2P12 and K2P13 Channels 10.4.6 K2P18 Channels and the Pathophysiology of Pain 10.5 Pharmacology and Emerging Perspectives on the Role of K2P Channels in Pathophysiology 10.6 Conclusions Suggested Reading Chapter 11 Cyclic Nucleotide-Gated Channels 11.1 Introduction 11.2 Physiological Roles of CNG Channels 11.3 CNG Channel Subunit Diversity and Structural Organization 11.4 Gating of CNG Channels 11.4.1 Ligand Binding at CNBD 11.4.2 Gating Conformational Changes through C-Linker Module to Pore Gate of CNG Channels 11.4.3 CNG Channel Activation Schemes and Subunit Contributions 11.5 Pore Properties of CNG Channels 11.6 Pharmacology of CNG Channels 11.7 Regulation of CNG Channels 11.8 CNG Channel Cell Biology 11.9 CNG Channel Disease Mechanisms 11.10 Conclusions Suggested Reading Chapter 12 HCN Channels 12.1 Introduction 12.2 Basic Structural Organization and Subunit Diversity 12.3 Gating 12.4 Ion Permeability 12.5 Regulation and Cell Biology 12.6 Pharmacology 12.7 Physiological Roles 12.7.1 Cardiac Pacemaking 12.7.2 HCN Channel Function in the Nervous System 12.8 Channelopathies, Disease, and Therapeutic Opportunities 12.9 Conclusions Suggested Reading Chapter 13 CLC Chloride Channels and Transporters 13.1 Introduction 13.2 Physiological Roles 13.2.1 CLC Channels 13.2.2 CLC Transporters 13.3 Subunit Diversity and Basic Structural Organization 13.4 Gating 13.4.1 CLC Channels 13.4.2 CLC Transporters 13.5 Ion Permeability 13.6 Pharmacology 13.7 Regulation 13.8 Cell Biology 13.9 Channelopathies and Disease 13.10 Conclusions Acknowledgments Suggested Reading Chapter 14 Calcium-Activated Cl– Channels 14.1 Introduction 14.2 Physiological Roles 14.3 Tmem16/Anoctamin Channels 14.3.1 Physiological Roles 14.3.2 Subunit Diversity and Basic Structural Organization 14.3.3 Gating 14.3.4 Ion Permeability 14.3.5 Pharmacology 14.3.6 Regulation 14.3.7 Cell Biology (Biogenesis, Trafficking, Turnover) 14.4 Bestrophins 14.4.1 Physiological Roles 14.4.2 Subunit Diversity and Basic Structural Organization 14.4.3 Gating 14.4.4 Ion Permeability 14.4.5 Pharmacology 14.4.6 Regulation 14.4.7 Cell Biology 14.5 Channelopathies and Disease 14.5.1 TMEM16A and Cancer 14.5.2 TMEM16A Genetic Diseases 14.5.3 BEST1-Linked Diseases 14.6 Conclusions Suggested Reading Chapter 15 Acetylcholine Receptors 15.1 Introduction 15.2 Subunit Diversity and Cell Distribution 15.3 Physiological Roles 15.4 Structural Organization 15.4.1 Extracellular Domain (ECD) and Neurotransmitter Binding Sites 15.4.2 Transmembrane Domain (TMD) and Ion Permeation Pathway 15.4.3 Intracellular Domain (ICD) 15.4.4 Structural Changes for Activation 15.5 Molecular Function and Channel Gating 15.6 Pharmacology and Drug Modulation 15.6.1 Orthosteric Ligands 15.6.2 Allosteric Ligands 15.7 Channelopathies and Disease 15.7.1 Muscle and Ganglionic Diseases 15.7.2 Neurological and Neurodegenerative Disorders 15.7.3 Nicotine Dependence 15.7.4 Cancer and Inflammatory Disorders 15.8 Cell Biology and Regulation 15.9 Conclusions Suggested Reading Chapter 16 Ionotropic Glutamate Receptors 16.1 Introduction 16.2 Subunit Diversity; Genes/Paralogs/Orthologs/Subtypes; Alternative Splicing; Evolutionary Relationships 16.2.1 Splice Variation and RNA Editing 16.3 Structure/Organization 16.4 Physiological Roles; Expression Pattern 16.4.1 Basal Synaptic Transmission 16.4.2 Control of Vesicle Release 16.4.3 Synaptogenesis 16.4.4 Synaptic Plasticity: LTP and LTD 16.4.5 Short-Term Plasticity 16.4.6 Homeostasis 16.4.7 Expression Outside the Brain 16.5 Pore Properties (Selectivity, Permeation, Gate) 16.6 Pharmacology/Blockers 16.6.1 Competitive Antagonists 16.6.2 Noncompetitive Antagonists and Allosteric Modulators 16.6.3 Pore Blockers 16.6.4 Optical Methods 16.7 Gating Mechanisms, Agonist Selectivity, Subunit Contributions and Interactions 16.7.1 LBD Closure as the Driving Force of Channel Activation 16.7.2 Kinetics of Activation 16.7.3 Channel Gating 16.7.4 Intersubunit Interactions 16.7.5 Subunit Gating 16.8 Regulation (Second Messengers, Mechanisms, Related Physiology) 16.8.1 Phosphorylation 16.8.2 Other Posttranslational Modifications 16.8.3 Glutamate Receptor Action without Ion Flux 16.9 Cell Biology (Assembly, Trafficking, Associated Proteins) 16.9.1 Assembly 16.9.2 Transmembrane AMPA Receptor-Associated Proteins (TARPs) 16.9.3 Neto 16.9.4 Synaptic Trapping and Auxiliary Proteins 16.10 Channelopathies and Disease Mechanisms Suggested Reading Chapter 17 5-HT3 Receptors 17.1 Introduction 17.2 Subunit Diversity 17.3 Structure 17.3.1 The Extracellular Domain 17.3.2 The Transmembrane Domain 17.3.3 The Intracellular Domain 17.4 Physiological Roles and Expression 17.5 Biophysical Properties 17.5.1 Receptor Activation 17.5.2 Ions and Ionic Selectivity 17.5.3 Single-Channel Conductance 17.5.4 The Channel Gate 17.6 Pharmacology 17.6.1 5-HT3 Receptor Agonists 17.6.2 5-HT3 Receptor Antagonists 17.6.3 5-HT3 Receptor Modulators 17.7 Regulation 17.8 Cell Biology 17.9 Channelopathies and Therapeutic Potential Suggested Reading Chapter 18 GABAA Receptors 18.1 Introduction 18.2 Receptor Subunit Diversity and Structure 18.3 Receptor Trafficking and Clustering 18.4 Receptor Activation and GABA Binding Sites 18.5 Ion Channel Domain: Conductance and Ion Selection 18.6 Biophysical Properties of GABAARs: Influence of Subunit Composition 18.7 Modulation of GABAARs 18.7.1 ECD Interfacial Binding Sites: Agonists 18.7.2 Interfacial Binding Sites: Antagonists 18.7.3 Interfacial Binding Sites: Positive Allosteric Modulators 18.7.4 Interfacial Binding Sites: The Non-GABA Binding Interface 18.7.5 Transmembrane Domain Binding Sites: Intrasubunit and Interfacial 18.7.6 Transmembrane Binding Sites: The Ion Channel Pore 18.8 Conclusions Suggested Reading Chapter 19 Glycine Receptors 19.1 Introduction 19.2 Subunit Diversity and Basic Structural Organization 19.2.1 Structural Organization 19.3 Physiological Roles 19.4 Gating 19.5 Ion Permeability and Conductance 19.6 Pharmacology 19.7 Trafficking, Clustering and Regulation 19.8 Channelopathies and Disease 19.9 Conclusions Suggested Reading Chapter 20 Acid-Sensing Ion Channels 20.1 Introduction 20.2 Tissue Distribution 20.3 Function 20.4 Agonists, Modulators and Inhibitors 20.4.1 Agonists and Modulators 20.4.2 Inhibitors 20.5 Biophysical Properties 20.5.1 Structure and Gating 20.5.2 Desensitization 20.5.3 Ion Selectivity 20.6 Perspectives Suggested Reading Chapter 21 ENaC Channels 21.1 Introduction 21.2 Physiological Roles 21.2.1 ENaC in Epithelial Cells 21.2.2 ENaC in Non-Epithelial Tissues and Cells 21.3 Subunit Diversity and Basic Structural Organization 21.4 Gating 21.5 Ion Permeability 21.6 Pharmacology of ENaC 21.7 Regulation of ENaC 21.8 Cell Biology of ENaC: Biogenesis, Trafficking and Turnover 21.9 Channelopathies and Disease 21.10 Conclusion Suggested Reading Chapter 22 TRPC Channels 22.1 Introduction 22.2 Physiological Roles 22.3 Subunit Diversity and Basic Structural Organization 22.4 Gating 22.5 Ion Permeability 22.6 Pharmacology 22.7 Regulation 22.8 Channelopathies and Disease 22.9 Conclusions Suggested Reading Chapter 23 TRPM Channels 23.1 Introduction 23.2 TRPM 23.2.1 Molecular Structure 23.2.2 Cellular Function 23.3 TRPM 23.3.1 Molecular Structure 23.3.2 Cellular Function 23.4 TRPM 23.4.1 Molecular Structure 23.4.2 Cellular Function 23.5 TRPM 23.5.1 Molecular Structure 23.5.2 Cellular Function 23.6 TRPM 23.6.1 Molecular Structure 23.6.2 Cellular Functions 23.7 TRPM 23.7.1 Molecular Structure 23.7.2 Cellular Functions 23.8 TRPM 23.8.1 Molecular Structure 23.8.2 Cellular Function 23.9 TRPM 23.9.1 Molecular Structure 23.9.2 Cellular Function Acknowledgments Suggested Reading Chapter 24 TRPV Channels 24.1 Introduction 24.2 Physiological Roles 24.2.1 TRPV 24.2.2 TRPV 24.2.3 TRPV 24.2.4 TRPV 24.2.5 TRPV5 and TRPV 24.3 Subunit Diversity and Basic Structural Organization 24.4 Gating by Temperature and Ligands 24.5 Ion Permeability and Pharmacology 24.6 Regulation 24.7 Biogenesis, Trafficking and Turnover 24.8 Channelopathies 24.9 Conclusions Acknowledgments Suggested Reading Chapter 25 Store-Operated CRAC Channels 25.1 Introduction 25.2 Biophysical Properties of CRAC Channels 25.3 STIM1 Is the ER Ca2+ Sensor for CRAC Channel Activation 25.4 ORAI1 Is the Prototypic CRAC Channel Protein 25.5 Activation of STIM1: Oligomerization and Redistribution to ER–Plasma Membrane Junctions 25.6 STIM1 Binds Directly to ORAI 25.7 Pore Architecture and Gating 25.8 Tissue Distribution of STIM and ORAI Proteins 25.9 Physiological Functions of CRAC Channels 25.9.1 T Cells 25.9.2 Platelets 25.9.3 Skeletal Muscle 25.9.4 Nervous System 25.9.5 Cell Proliferation and Cancer 25.10 Conclusions Acknowledgments Suggested Reading Chapter 26 Piezo Channels 26.1 Introduction 26.2 Physiological Roles 26.3 Subunit Diversity and Basic Structural Organization 26.4 Gating 26.5 Ion Permeability 26.6 Pharmacology 26.7 Regulation 26.8 Cell Biology 26.9 Channelopathies and Disease 26.10 Conclusions Suggested Reading Chapter 27 Ryanodine Receptors 27.1 Introduction 27.2 Physiological Role 27.3 Subunit Diversity and Basic Structural Organization 27.4 Gating and Ion Permeability 27.5 Pharmacology 27.6 Regulation 27.7 Cell Biology (Biogenesis, Trafficking, Turnover) 27.8 Channelopathies and Disease 27.9 Conclusions Suggested Reading Chapter 28 Proton Channels 28.1 Introduction 28.2 OTOP Channel Introduction 28.2.1 Physiological Roles of OTOP1 in Vestibular and Taste Systems 28.2.2 Gene Structure, Subunit Diversity, and Structure of OTOP Channels 28.2.3 Ion Selectivity, Pharmacology, and Gating of OTOP Channels 28.2.4 OTOP Channels Distribution and Related Diseases 28.3 Hv1 Channel Introduction 28.3.1 Physiological Roles of Hv1 Channels 28.3.2 Hv1 Structure 28.3.3 Hv1 Channel Gating 28.3.4 Ion Permeation and Selectivity in Hv 28.3.5 Hv1 Pharmacology 28.3.6 Hv1 Regulation Note Suggested Reading Chapter 29 P2X Receptors 29.1 Introduction 29.2 Physiological Roles 29.3 Subunit Diversity and Basic Structural Organization 29.4 Gating 29.5 Ion Permeability 29.6 Pharmacology 29.7 Regulation 29.8 Cell Biology (Biogenesis, Trafficking, Turnover) 29.9 Channelopathies and Disease 29.10 Conclusion Suggested Reading Index