ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Robotic Urologic Surgery

دانلود کتاب جراحی اورولوژی رباتیک

Robotic Urologic Surgery

مشخصات کتاب

Robotic Urologic Surgery

ویرایش: [3 ed.] 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 3031003624, 9783031003622 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 871
[872] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 70 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Robotic Urologic Surgery به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جراحی اورولوژی رباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب جراحی اورولوژی رباتیک



این ویرایش سوم به شدت اصلاح شده یک کتاب درسی ضروری ارائه می دهد که راهنمای جامعی برای تکنیک های جراحی رباتیک در اورولوژی ارائه می دهد. فصل‌هایی که به‌طور گسترده به‌روزرسانی شده‌اند، جنبه‌های کلی جراحی مانند جنبه‌های آماده‌سازی اتاق عمل و بیهوشی را پوشش می‌دهند. دستورالعمل هایی در مورد نحوه استفاده از انواع جدیدترین تکنیک ها برای روش های مرتبط با کلیه، پروستات، مثانه و بیضه پوشش داده شده است. اطلاعات دقیق در مورد چگونگی بهبود نتایج، اجتناب از عوارض و مشکلات احتمالی نیز ارائه شده است. کلیپ‌های ویدیویی آموزنده به خواننده کمک می‌کند تا بتواند نحوه بهبود روش‌های خود را بیشتر تجسم کند.

جراحی اورولوژی رباتیک است. یک منبع دقیق و به روز که شامل کمک های جراحان اورولوژی روباتیک پیشرو از سراسر جهان است. این به خوانندگان در اصلاح تکنیک جراحی و بهبود مراقبت از بیمار کمک می کند. بنابراین، این یک منبع حیاتی برای تمام پزشکان شاغل و کارآموز درگیر در مراقبت از این بیماران است.

 


توضیحاتی درمورد کتاب به خارجی

This heavily revised third edition gives an essential textbook which provides a comprehensive guide to robotic surgical techniques in urology. Extensively updated chapters cover general aspects of surgery such as aspects of operating room preparation and anesthesia. Instructions on how to use a variety of the latest techniques for procedures associated with the kidney, prostate, bladder and testicle are covered. Detailed information on how to improve outcomes, avoid potential complications and pitfalls is also provided. Instructive video clips assist the reader in being able to visualize how to enhance their methodologies further.

Robotic Urologic Surgery is a detailed up-to-date resource that includes contributions from leading robotic urologic surgeons from around the world.  It assists readers in refining their surgical technique and improving their patient care. Therefore, it is a critical resource for all practicing and trainee physicians involved in the care of these patients.

 



فهرست مطالب

Preface
Contents
Part I: Robotic Surgery Book
	History of Robotic Surgery
		1	 Introduction
		2	 Origins of Modern Robotics
			2.1	 Probot® System for TURP
			2.2	 ROBODOC
				2.2.1	 Stanford Research Institute and National Aeronautics and Space Administration
				2.2.2	 Defence Advanced Research Projects Agency
		3	 First Telerobotic Commercial Systems
			3.1	 AESOP (Automated Endoscopic System for Optical Positioning)
			3.2	 ZEUS System
			3.3	 Computer Motion vs. Intuitive Surgical
		4	 Intuitive Surgical: Mona to DaVinci (FDA Approved 2000)
		5	 Current Status of New Platforms and Future
		6	 Conclusion
		References
	Current and Upcoming Robotic Surgery Platforms and Adjunctive Technologies
		1	 Introduction
		2	 Robotic Platforms
			2.1	 da Vinci Surgical System
			2.2	 Senhance
			2.3	 Revo-I
			2.4	 Versius
			2.5	 Avatera
			2.6	 Hinotori
			2.7	 Future Robotic Surgical Systems
			2.8	 Other Robotic Systems in Urology
		3	 Adjunct Technologies for Robotic Surgical Systems
			3.1	 Instruments
				3.1.1	 Robotic Staplers and Sealers
				3.1.2	 Magnetic Retraction System
			3.2	 3-Dimensional Pre-operative Planning
			3.3	 Virtual and Augmented Reality and Artificial Intelligence
			3.4	 Image-Guided Surgery
				3.4.1	 USS Guidance
				3.4.2	 Fluorescent Dyes
				3.4.3	 Gamma Probes and Sentinel Lymph Nodes
			3.5	 Intra-operative Pathological Processing
				3.5.1	 NeuroSAFE
				3.5.2	 Confocal Microscopy
		4	 Future Directions
			4.1	 Connectivity
			4.2	 Surgical Data Science
			4.3	 Precision and Soft Robotics
		5	 Discussion
		References
	Robot-Assisted Radical Prostatectomy: Development of Nerve-Sparing Techniques at Vattikuti Urology Institute
		1	 Introduction
		2	 Historical Perspective
		3	 Indications/Contraindications
		4	 Nerve-Sparing Approaches
			4.1	 Standard Nerve-Sparing Technique
			4.2	 Nerve-Sparing Technique: The “Veil of Aphrodite”
			4.3	 Antegrade vs Retrograde Dissection
			4.4	 Athermal vs Thermal Dissection
			4.5	 Puboprostatic Ligament Preservation/Super Veil Technique
			4.6	 Menon Precision Prostatectomy
		5	 Future Strategies
		6	 Conclusions
		References
	Robotic Training, Certification, and Ongoing Evaluation of Robotic Skills
		1	 Introduction
		2	 Current Status
		3	 Future Trends
		4	 Certification
		5	 Conclusions
		References
	Preparation of the Operating Room, Back Table, and Surgical Team
		1	 Introduction
		2	 Preparation of the Operating Room
		3	 Preparation of the Back Table
		4	 Troubleshooting
		5	 The Surgical Team
		6	 Training of the Surgical Team
		7	 Conclusion
		References
	The Role of Bedside Assistant in Robotic Urological Surgery
		1	 Introduction
		2	 Preoperative Preparation
			2.1	 Room Setup
			2.2	 Patient Positioning
		3	 Intraoperative Role with Console Surgeon
			3.1	 Starting the Surgery
				3.1.1	 Trocar Placement
				3.1.2	 Docking the Robot
			3.2	 Robotic Assisting Techniques
				3.2.1	 Substitution of Robotic Instruments
				3.2.2	 Exposure and Countertraction
				3.2.3	 Introduction and Extraction of the Needle
				3.2.4	 Hem-o-lok Positioning
				3.2.5	 Catheter Management
			3.3	 Team Interaction During Surgery: Verbal and Nonverbal Communication
			3.4	 Closing the Surgery: Undocking and Port Removal
		4	 The Impact of Bedside Assistant on Surgical Outcomes
			4.1	 Impact on Operative Time (OT)
			4.2	 Impact on Perioperative Outcomes and Complications
			4.3	 Impact on Oncological Outcomes
		5	 Conclusions
		References
	Anesthetics in Robotics
		1	 Introduction
		2	 Pre-operative Considerations
		3	 Intraoperative considerations
			3.1	 Airway and Ventilation
			3.2	 Pneumoperitoneum
			3.3	 Monitoring
			3.4	 Trendelenburg
			3.5	 Fluid Balance
			3.6	 Neuropraxia
			3.7	 Pressure Injuries and Compartment Syndrome
			3.8	 Emergency Undocking
			3.9	 Enhanced Recovery After Surgery (ERAS)
			3.10	 VTE Prophylaxis
			3.11	 Analgesia
		References
	The Role of Virtual Reality, Telesurgery, and Teleproctoring in Robotic Surgery
		1	 Introduction
		2	 Virtual and Augmented Reality in Robotic Surgery
		3	 Telesurgery
		4	 Telementoring/Teleproctoring
		5	 Global Dissemination of Basic Techniques
		6	 Targeted Expansion of Specialized Interventions
		References
	The Role of Artificial Intelligence and Machine Learning in Surgery
		1	 Introduction
		2	 Artificial Intelligence for Surgeons
		3	 AI in Surgical Candidate Selection
		4	 AI in Intelligent Intraoperative Assistance
		5	 AI in Autonomous Surgery
			5.1	 Autonomy
			5.2	 Sense
			5.3	 Think
			5.4	 Act
			5.5	 Training AI Model
		6	 AI in Surgical Outcome Prediction
		7	 AI in Surgical Education
			7.1	 Video Segmentation
			7.2	 Automated Surgical Skills Assessment
			7.3	 Automated Training Feedback
		8	 Challenges and Future Directions
		9	 Conclusions
		References
Part II: Prostate
	Robotic Simple Prostatectomy
		1	 Background
		2	 Preoperative Patient Selection
		3	 Patient Positioning and Port Placement (Standard Transperitoneal Approach)
		4	 Surgical Technique
			4.1	 Transperitoneal
			4.2	 Transvesical
			4.3	 Extraperitoneal
		5	 Commentary
			5.1	 Concomitant Pelvic Pathologies
			5.2	 Prostate Adenocarcinoma
			5.3	 Single-Port Platform Approach to Simple Prostatectomy
			5.4	 Conclusion
		References
	Prostate Cancer Screening and Biopsy
		1	 Introduction
		2	 Screening for Prostate Cancer
			2.1	 Digital Rectal Examination
			2.2	 Prostrate-Specific Antigen
			2.3	 Free to Total Ratio
			2.4	 Prostate Cancer Antigen 3
			2.5	 4K Test
		3	 Biopsy of the Prostate Cancer
			3.1	 TRUS-Guided Prostate Biopsy
				3.1.1	 Pre-operative Preparation
				3.1.2	 Prostate Biopsy and Anticoagulation
				3.1.3	 Antibiotic Prophylaxis
				3.1.4	 Non-antibiotic Strategies to Reduce Post-biopsy Infections
			3.2	 Biopsy Technique
				3.2.1	 Equipment
				3.2.2	 Patient Positioning and Imaging the Prostate
				3.2.3	 Anesthesia
				3.2.4	 Biopsy Technique
				3.2.5	 Number of Cores
			3.3	 Repeat and Saturation Biopsy
		4	 Magnetic Resonance Imaging-Guided Biopsy
			4.1	 Multiparametric MRI (MP-MRI)
			4.2	 MRI-TB
			4.3	 Transperineal Biopsy
			4.4	 Cost Implications of MRI-TB [115]
		5	 Complications
			5.1	 Bleeding
			5.2	 Post-biopsy Infection
			5.3	 Post-operative Urinary Retention
		6	 Take-Home Message
		References
	Current Imaging Modalities to Assess Prostate Cancer
		1	 Ultrasound in Prostate Cancer Diagnosis
			1.1	 Introduction
				1.1.1	 High-Resolution Micro-Ultrasound
			1.2	 Color-Doppler Ultrasound
			1.3	 Contrast-Enhanced Ultrasound (CEUS)
			1.4	 Prostate TRUS Elastography
			1.5	 Multiparametric Ultrasound (mpUS)
		2	 Role of Computed Tomography (CT) in Prostate Cancer
		3	 Bone Scan in Prostate Cancer
		4	 Magnetic Resonance Imaging (MRI) to Assess Prostate Cancer
			4.1	 Introduction
			4.2	 General Principles of Prostate MRI
				4.2.1	 Sequences on Prostate MRI
				4.2.2	 Prostate Imaging-Reporting and Data System (PI-RADS)
			4.3	 Structure and Function of the Prostate and Seminal Vesicles on MRI
			4.4	 Classification Systems for Prostatic Areas
				4.4.1	 Zonal Anatomy of the Prostate on MRI (McNeal)
			4.5	 Assessment and Reporting on Prostate MRI
			4.6	 Role of MRI in Active Surveillance
			4.7	 Staging Before Local Therapy
				4.7.1	 Tumor Staging
				4.7.2	 Lymph Nodes Staging
				4.7.3	 Metastasis Staging
			4.8	 Detection After Local Therapy
				4.8.1	 Imaging in Patients with PSA Persistence After Radical Prostatectomy
				4.8.2	 Imaging in Patients with PSA-Only Recurrence
					Assessment of Metastases
					Assessment of Local Recurrence after Radical Prostatectomy
					Assessment of Local Recurrence After Radiation Therapy
					Prostate Magnetic Resonance Imaging for Local Recurrence Reporting (PI-RR)
			4.9	 Conclusion
		5	 PET Scan in Prostate Cancer
			5.1	 Introduction
			5.2	 18F-FDG PET/CT
			5.3	 11C- and 18F-Choline-PET/CT
			5.4	 18F-Fluciclovine PET/CT
			5.5	 68Gallium Prostate-Specific Membrane Antigen PET/CT
			5.6	 PSMA Targeting Agents
				5.6.1	 Introduction
				5.6.2	 Physiologic Biodistribution of 68Ga-PSMA
				5.6.3	 68Ga-PSMA in Localization and Primary Staging of Prostate Cancer
				5.6.4	 68Ga-PSMA in the Restaging of Prostate Cancer
				5.6.5	 68Ga-PSMA PET/CT Versus Conventional Imaging
				5.6.6	 68Ga-PSMA PET/CT Versus Other PET/CT
			5.7	 18F-DCFPyL PET/CT
		Bibliography
			Ultrasound
			Computed Tomography Scan
			Bone Scan
			Magnetic Resonance Imaging
			Positron Emission Tomography CT
	Pelvic Anatomy and Its Relationship to Radical Prostatectomy Urinary Continence Outcomes
		References
	Prostate Neurovascular Anatomy and Its Impact on Nerve-Sparing RALP
		1	 Introduction
		2	 Fascia
		3	 Neuroanatomy
		4	 Vascular Anatomy
		5	 Application of Anatomical Principles for Optimization of Functional Outcomes
		6	 Conclusion
		References
	Techniques and Potency Outcomes for Nerve-Sparing RARP
		1	 Introduction
		2	 Anatomical Considerations of NS-RARP
		3	 Degrees of Nerve Sparing
			3.1	 Intrafascial Dissection
			3.2	 Interfascial Dissection
			3.3	 Extrafascial Dissection
		4	 Techniques for Neurovascular Bundle Preservation
			4.1	 Anterograde NVB Dissection
			4.2	 Retrograde NVB Dissection
			4.3	 Veil of Aphrodite
			4.4	 Other Techniques
		5	 Technology Applications to Optimize NS Surgery
			5.1	 Indocyanine Green (ICG)
			5.2	 Biological Membranes (BM) for NVB Recovery
			5.3	 Magnetic Resonance Imaging (MRI) for NS Preservation
			5.4	 NeuroSAFE Approach
			5.5	 Augmented Reality (AR)
		6	 Comparing Different Techniques
		7	 Conclusion
		References
	Pneumoperitoneum Physiology
		1	 Introduction
		2	 Insufflation Agents
			2.1	 Carbon Dioxide
			2.2	 Helium
			2.3	 Nitrous Oxide
		3	 Insufflation Pressure Effects on Organ Systems
			3.1	 Cardiovascular Effects
			3.2	 Renal Effects
			3.3	 Gastrointestinal Effects
			3.4	 Intracranial Pressure Effects
			3.5	 Respiratory Effects
		4	 Physiology of Carbon Dioxide Absorption
			4.1	 Acid–Base Effects of CO2 Absorption
			4.2	 Hemodynamic and Pulmonary Influences of CO2 Absorption
		5	 Pneumoperitoneum Effects with Patient Positioning
		6	 Hormone and Immunologic Considerations of Pneumoperitoneum
		7	 Pneumoperitoneum Complications
			7.1	 AIRSEAL® Insufflation Mechanism: A New Generation of Valveless Trocar—How AirSeal® Works
				7.1.1	 Current Literature Reporting AIRSEAL Use and Outcomes
					Intraoperative Performance
					Postoperative Pain Evaluation and Morphine Analgesia
					Complication Rates
				7.1.2	 Insufflation Improvements
				7.1.3	 Overall Summary and Consideration
		8	 Conclusions
		References
	Patient Positioning, Port Placement, and Docking: Si, Xi, and SP Robots
		1	 Introduction
		2	 Traditional Docking for Prostatectomy (Multiport Robot)
		3	 Patient Positioning
		4	 Port Placement (Multiport Robot)
		5	 Single-Port (SP) Robot-Assisted Radical Prostatectomy (RARP)
		6	 Patient Positioning (SP Robot)
		7	 Da Vinci SP Port Placement
		8	 SP Intraperitoneal Access
		9	 SP Extraperitoneal Access
		10	 Conclusion
	Step-by-Step Approach to Robotic-Assisted Radical Prostatectomy
		1	 Introduction
		2	 Preoperative Routine
		3	 Da Vinci Xi Instruments Setup
		4	 Surgical Technique
			4.1	 Patient Positioning and Trocar Placement
			4.2	 Retzius Space Access and Bladder Takedown
			4.3	 Anterior Bladder Neck Incision
			4.4	 Posterior Bladder Neck and Seminal Vesicle Dissection
			4.5	 Denonvilliers’ Fascia (DF) and Posterior Neurovascular Bundle (NVB) Preservation
			4.6	 Retrograde Neurovascular Preservation
			4.7	 Apical Dissection and DVC Control
			4.8	 Urethra Division
			4.9	 Bladder Neck and Posterior Reconstruction
			4.10	 Anastomosis
			4.11	 Lymphadenectomy
		5	 Postoperative Routine
		6	 RARP Technique Variations
		7	 Conclusions
		References
	Outcomes of RALP: An Evidence-Based Approach
		1	 Introduction
			1.1	 Different Approaches to Radical Prostatectomy
			1.2	 Evidence from Randomized Controlled Trials (RCTs)
				1.2.1	 RALP Versus LRP
				1.2.2	 RALP Versus ORP
			1.3	 Evidence from Systematic Reviews and Meta-Analysis
				1.3.1	 Minimally Invasive (RALP/LRP) Versus ORP
				1.3.2	 RALP Versus ORP
				1.3.3	 RALP Versus LRP
				1.3.4	 RALP Versus LRP Versus ORP
			1.4	 Current Status
		2	 Outcomes of RALP in Special Settings
			2.1	 High-Risk PCa
			2.2	 RALP after Previous Benign Prostatic Hyperplasia Surgery
			2.3	 Salvage Prostatectomy
		3	 Techniques of Prostate Dissection and Literature Evidence
			3.1	 Surgical Access: Extra- Versus Transperitoneal
			3.2	 Bladder Detachment Vs Retzius Sparing Approach
			3.3	 Nerve-Sparing Approaches: Antegrade and Retrograde Release of NVB
			3.4	 Reconstructive Techniques
			3.5	 DCV Control and Sutures
		4	 Novelties and Complementary Tools to RALP
		5	 Conclusions
		References
	Techniques to Improve Urinary Continence Outcomes Following Robot-Assisted Radical Prostatectomy
		1	 Introduction
			1.1	 Causes and Frequency of PPI
			1.2	 Anatomical Mechanisms of Male Urinary Continence
			1.3	 Correcting PPI Based on Anatomical Understanding: Development of Surgical Techniques and Clinical Outcomes
				1.3.1	 Preservation of the Bladder Neck
				1.3.2	 Preservation of the Neurovascular Bundle
				1.3.3	 Meticulous Apical Dissection
				1.3.4	 Sparing of the External Sphincter
				1.3.5	 Posterior Reconstruction and Preservation of Supporting Structures
				1.3.6	 Urethrovesical Anastomosis: The Surgical Principle
				1.3.7	 Maximal Preservation of the Urethral Length
				1.3.8	 Watertight Urethrovesical Anastomosis
				1.3.9	 Regenerative Materials
				1.3.10	 Novel Approaches
				1.3.11	 Rehabilitative Approaches: Emphasis on Kegel Exercises
		2	 Conclusion
		References
	Nomograms and RALP Techniques for Management of ECE: Partial Nerve Sparing
		1	 Introduction
			1.1	 Background
			1.2	 Anatomical Hints for Partial Nerve Sparing
		2	 Clinical Nomograms
			2.1	 Graefen et al. Predictive Tool
			2.2	 Ohori et al. Nomogram
			2.3	 Tsuzuki et al. Predictive Tool
			2.4	 Steuber et al. Nomogram
			2.5	 Satake et al. Nomogram
			2.6	 Sayyid et al. Nomogram
			2.7	 Patel VP, Rocco B. et al. PRECE Nomogram
		3	 Nomograms with MRI
			3.1	 Giganti et al. Nomogram
			3.2	 Chen et al. Nomogram
			3.3	 Nyarangi-Dix et al. Risk Model on Extraprostatic Extension (EPE-RM)
			3.4	 Martini et al. Nomogram
			3.5	 Soeterik et al. Nomogram
			3.6	 Wibmer et al. MRI-Inclusive Nomogram
		4	 Conclusions
		References
	Intraoperative Evaluation and Management of High-Risk Prostate Cancer during Robot-Assisted Radical Prostatectomy
		1	 Introduction
		2	 Definition of High-Risk Prostate Cancer
		3	 Treatment Options for High-Risk Prostate Cancer
		4	 Timing of Surgery
		5	 The Role of Preoperative Multiparametric MRI
		6	 Technical Aspects of Robot-Assisted Radical Prostatectomy in High-Risk Prostate Cancer
		7	 Nerve Sparing Planning/Algorithms
		8	 Retzius Sparing in High-Risk Patients
		9	 Extended Pelvic Lymph Node Dissection
		10	 Sentinel Node Biopsy and Fluorescence-Supported Lymphography
		11	 Complications
		12	 Oncological Outcomes
		13	 Functional Outcomes
		References
	Management of Challenging Cases during Robot-Assisted Laparoscopic Prostatectomy
		1	 Introduction
		2	 Challenging Scenarios
			2.1	 Obese Patients
				2.1.1	 Tips and Tricks
				2.1.2	 Surgical Outcomes
			2.2	 Median Lobe
				2.2.1	 Tips and Tricks
				2.2.2	 Surgical Outcomes
			2.3	 Large Prostates
				2.3.1	 Tips and Tricks
				2.3.2	 Surgical Outcomes
		3	 Previous Treatment for Benign Prostatic Hyperplasia
			3.1	 Tips and Tricks
			3.2	 Surgical Outcomes
			3.3	 Previous Multiple Prostate Biopsies
				3.3.1	 Tips and Tricks
				3.3.2	 Surgical Outcomes
			3.4	 Narrow Pelvis
				3.4.1	 Tips and Tricks
				3.4.2	 Surgical Outcomes
		4	 Patients with Previous Abdominal Surgery
			4.1	 Tips and Tricks
				4.1.1	 Surgical Outcomes
			4.2	 Renal Transplant Recipients
				4.2.1	 Tips and Tricks
				4.2.2	 Surgical Outcomes
		5	 Conclusion
		References
	Da Vinci SP Radical Prostatectomy
		1	 Introduction
		2	 Da Vinci SP Modifications and Challenges
			2.1	 Trocar Placement Differences
			2.2	 Different Scope Angles and Working Distances
			2.3	 Traction and Capacity of Dissection
		3	 SP-RARP Literature Summary and Outcomes
		4	 SP Radical Prostatectomy: Dr. Patel’s Step-by-Step Technique
			4.1	 Trocar Placement (Single Port Plus One)
			4.2	 Bladder Dropping and Anterior Bladder Neck Dissection
			4.3	 Posterior Bladder Neck Dissection and Seminal Vesicles Approach
			4.4	 Nerve Sparing (Posterior Access and Lateral Dissection)
			4.5	 Minimal Apical Dissection and DVC Control
			4.6	 Posterior Reconstruction and Anastomosis
			4.7	 Lymphadenectomy
			4.8	 Postoperative Care and Follow-Up
		5	 Extraperitoneal Approach to SP Radical Prostatectomy
			5.1	 Extraperitoneal Access and SP Docking
			5.2	 Postoperative Care and Follow-Up
			5.3	 Outcomes
		6	 Perineal Approach to SP Radical Prostatectomy
			6.1	 Perineal Access and SP Docking
			6.2	 Posterior Seminal Vesicles and vas Deferens Dissection
			6.3	 Vascular Pedicle and Nerve Sparing
			6.4	 Apical and Bladder Neck Dissection
			6.5	 Pelvic Lymph Node Dissection and Vesicourethral Anastomosis
			6.6	 Postoperative Care and Follow-Up
			6.7	 Outcomes
		7	 Transvesical Approach to SP Radical Prostatectomy
			7.1	 Transvesical Access and SP Docking
			7.2	 Bladder Neck, vas Deferens, and Seminal Vesicles Dissection
			7.3	 Anterior Dissection
			7.4	 Vascular Pedicle and Nerve Sparing
			7.5	 Lymph Node Dissection and Vesicourethral Anastomosis
			7.6	 Postoperative Care and Follow-Up
			7.7	 Outcomes
		8	 Comparative Outcomes between SP and Multiport Robots
		9	 Conclusion
		References
	Textbook of Robotic Urologic Surgery: Retzius-Sparing Robot-Assisted Radical Prostatectomy
		1	 Background and Technical Rationale
		2	 Surgical Technique
			2.1	 Patient Positioning and Port Placement
			2.2	 Pansadoro Stitch
			2.3	 Seminal Vesicles Approach and Transabdominal Stitches
			2.4	 Posterior Prostate Dissection
			2.5	 Anterior Prostate and Bladder Neck Dissection and Removal of the Prostate
			2.6	 Vesico-Urethral Anastomosis and Suprapubic Tube Placement
		3	 The Niguarda Experience
			3.1	 Perioperative Outcomes
			3.2	 Oncological Outcomes
			3.3	 Urinary Continence Recovery
			3.4	 Erectile Function Recovery
		4	 State of Art of the Posterior Approach around the World
		References
	Extraperitoneal Robot-Assisted Radical Prostatectomy
		1	 Introduction
		2	 History of Radical Prostatectomy with Focus on the Extraperitoneal Approach
			2.1	 The Beginnings of Radical Prostatectomy
			2.2	 The Anatomically Appropriate Nerve-Sparing Radical Prostatectomy
			2.3	 The Onset of Laparoscopic Prostatectomy
			2.4	 The Development of Endoscopic Extraperitoneal Radical Prostatectomy
		3	 Endoscopic Extraperitoneal Approach Adapted to Robot-Assisted Radical Prostatectomy: Emphasis on Port Placement
			3.1	 Patient Positioning
			3.2	 Development of the Extraperitoneal Space and Insertion of Trocar 1 (Optic Trocar)
			3.3	 Insertion of the Remaining Trocars
				3.3.1	 Placement of Trocar 2
				3.3.2	 Placement of Trocar 3
				3.3.3	 Placement of Trocar 4
				3.3.4	 Placement of Trocar 5
			3.4	 Docking of the Robot and Insertion of the Instruments
		4	 Instrument Use for E-RARP
			4.1	 Multi-Port (E-RARP-Mp)
				4.1.1	 Access
				4.1.2	 Radical Prostatectomy With or Without Pelvic Lymph Node Dissection (PLND)
				4.1.3	 Post-Operative Care and Follow-Up
			4.2	 Single-Port E-RARP
		5	 Complications of the Extraperitoneal Approach
			5.1	 Intraoperative Complications
			5.2	 Post-Operative and Late Complications
		6	 Pros and Cons of the Extraperitoneal Technique
			6.1	 Pros: Special Circumstances and Favorable Indications
				6.1.1	 Previous Abdominal Surgeries
				6.1.2	 Concurrent Inguinal Hernia Repair
				6.1.3	 Obese Patients
			6.2	 Cons: Limitations and Relative Contraindications
				6.2.1	 Prior Bilateral Inguinal Hernia Repair
				6.2.2	 Severe Respiratory Disease
				6.2.3	 Extended Lymphadenectomy
				6.2.4	 “Non-standard” RARP
		7	 Tips and Tricks
		8	 The Single-Port (SP) Promise
			8.1	 Access
			8.2	 Operative Procedure and Post-Operative Care
			8.3	 Robotic “Simple” Extraperitoneal Prostatectomy with the Single-Port (SP) System
		9	 Conclusions
		References
	Lymphadenectomy in Prostate Cancer: Technique and Outcomes
		1	 Introduction
			1.1	 Current Guideline Recommendations for Extended PLND in Prostate Cancer
		2	 Lymphadenectomy and Staging of Prostate Cancer: Templates and Patterns of Lymph Node Involvement
			2.1	 Preoperative Prediction of Positive Nodes Using 68Ga-PSMA PET
		3	 Surgical Technique
		4	 Perioperative Outcomes and Complications
			4.1	 Intraoperative and Perioperative Outcomes
			4.2	 Functional Outcomes
		5	 Oncological Outcomes
			5.1	 Impact of Extended PLND on Biochemical Recurrence
			5.2	 Extended PLND and the Risk of Distant Metastases
			5.3	 Extended PLND and Cancer-Specific and Overall Mortality
			5.4	 Randomized Controlled Trials (RCTs)
			5.5	 Potential Benefits of Extended PLND in Prostate Cancer
		6	 Salvage Lymphadenectomy
		7	 Conclusions
		References
	Robotic-Assisted Salvage Radical Prostatectomy
		1	 Introduction
		2	 History of Salvage Radical Prostatectomy
		3	 Background
		4	 Current Status: sRARP
			4.1	 Salvage Lymph Node Dissection
		5	 Preoperative Considerations
		6	 Surgical Techniques of Salvage Robotic Assisted Radical Prostatectomy
			6.1	 Varied Surgical Technique Based on Primary Prostate Cancer Treatment
		7	 Complications
		8	 Functional Outcomes
			8.1	 Continence and Erectile Function
			8.2	 The Influence of Primary Therapy on Functional Outcomes
		9	 Oncological Outcomes
		10	 Conclusion
		References
	Histological Evaluations of RADICAL Prostatectomy Specimens
		1	 Introduction
		2	 Handling and Processing of RALP Specimen in the Regular Setting
			2.1	 Specimen Transportation
			2.2	 Specimen Weight and Dimensions
			2.3	 Inking the Surface
			2.4	 Slicing the Prostate
			2.5	 Partial or Total Embedding of the Radical Prostatectomy Specimen
			2.6	 Use of Whole-Mount Versus Standard Sections
			2.7	 Digital Versus Light Microscopy Examination
		3	 Intraoperative Margins Assessment During RALP: Rationale and Scientific Evidences
			3.1	 The NeuroSAFE Approach: Handling and Processing of RALP Specimen
			3.2	 NeuroSAFE Frozen Section Analysis
			3.3	 Processing of the Prostate Specimen for NeuroSAFE Frozen Section Analysis [2, 3]
			3.4	 Results, Internal and External Validation of the NeuroSAFE Frozen Section Analysis
		4	 Handling and Processing of RALP Specimen with the Confocal Microscope
			4.1	 Confocal Microscopy Applied to Prostatic Tissue
			4.2	 Ex Vivo Fluorescence Confocal Microscopy Applied to Surgical Margins During RALP
			4.3	 Handling and Processing of the Prostate and Prostatic Margins After FCM Technique
		5	 RALP Specimen Reporting
		6	 Conclusions
		References
	Management of Extracapsular Extension and Positive Surgical Margins Following Robot-Assisted, Laparoscopic Radical Prostatectomy
		1	 Introduction
		2	 Definition and Location of Extracapsular Extension
		3	 Risk Factors and Prediction of Extracapsular Extension
		4	 Definition, Causes, and Location of Positive Surgical Margins
		5	 Risk Factors and Prediction of Positive Surgical Margins
		6	 Natural History of Patients with Positive Surgical Margins and Extracapsular Extension
		7	 Management of Extracapsular Extension and Positive Surgical Margins
		8	 Conclusion
		References
	Managing Postoperative Complications After Robot-Assisted Radical Prostatectomy
		1	 Rectourethral Fistula
			1.1	 Incidence and Etiology
			1.2	 Diagnosis and Evaluation
			1.3	 Classification
			1.4	 Management
				1.4.1	 Conservative Management
				1.4.2	 Transanal Approaches
					The Latzko Procedure
					Endorectal Wall Advancement Flap
				1.4.3	 Transperineal Repair
				1.4.4	 Transanorectal Sphincter-Splitting Repair (York Mason Procedure)
				1.4.5	 Transabdominal
				1.4.6	 Urinary Diversion
		2	 Lymphocele
			2.1	 Incidence and Etiology
			2.2	 Clinical Spectrum
			2.3	 Management
				2.3.1	 Potential Preventative Strategies
				2.3.2	 Treatment Options
		3	 Vesico-urethral Anastomotic Stenosis
			3.1	 Incidence and Etiology
			3.2	 Clinical Presentation and Diagnosis
			3.3	 Management
				3.3.1	 Dilation
				3.3.2	 Direct Vision Internal Urethrotomy (DVIU)
				3.3.3	 Transurethral Electrosurgical Incision/Resection (TUR)
				3.3.4	 ReDo Vesico-urethral Anastomosis and Y-V Plasty
				3.3.5	 Stents
		4	 Well Leg Compartment Syndrome
			4.1	 Incidence and Etiology
			4.2	 Clinical Presentation
			4.3	 Surgical Management
		References
	Penile Rehabilitation After Robot-Assisted Laparoscopic Radical Prostatectomy
		1	 Introduction
		2	 Risk Factors for Post-RALRP ED
		3	 Penile Rehabilitation
		4	 Conclusion
		References
Part III: Kidney, Adrenals, and Ureter
	Renal Anatomy, Physiology, and Its Clinical Relevance to Renal Surgery
		1	 Introduction to Renal Anatomy and Its History
		2	 Renal Physiology
		3	 Embryology
		4	 Surgical Renal Anatomy
			4.1	 Renal Anatomical Relationships
				4.1.1	 Renal Topology
				4.1.2	 The Retroperitoneal Space
				4.1.3	 The Adrenal Glands
				4.1.4	 Variations
				4.1.5	 Surgical Impact
			4.2	 Arterial System
				4.2.1	 Normal Anatomy
				4.2.2	 Renal Artery Variations
				4.2.3	 Surgical Impact
			4.3	 Venous System
				4.3.1	 Normal Anatomy
				4.3.2	 Renal Vein Anomalies
				4.3.3	 Surgical Impact
			4.4	 Renal Collecting System and the Ureter
				4.4.1	 Renal Papillae, Calyces, and Pelvis
				4.4.2	 Ureter
			4.5	 Lymphatics, Retroperitoneal Nodes and Sympathetic Ganglia
				4.5.1	 Renal Lymphatics
				4.5.2	 Retroperitoneal Lymphatics
				4.5.3	 Surgical Impact
		References
	Training and Challenges to Perform Robot-Assisted Renal Surgeries
		1	 Introduction
		2	 The Role of Robot-Assisted Procedures in Renal Surgery
		3	 Training Curricula for Renal Surgery
		4	 Proficiency-Based Progression Training
			4.1	 Curriculum’s Pre-clinical Phase
			4.2	 Curriculum’s Clinical Phase
		5	 Summary
		References
	Current Imaging Modalities and Virtual Models for Kidney Tumors
		1	 Introduction
		2	 Ultrasound (US)
			2.1	 Contrast-Enhanced Ultrasound (CEUS)
			2.2	 Intraoperative Ultrasound
		3	 Computed Tomography (CT) Scan
			3.1	 Classification of Cystic Masses
		4	 Magnetic Resonance Imaging (MRI)
		5	 Near-Infrared Fluorescence Guidance with Indocyanine
		6	 Virtual Reality and 3D Models
			6.1	 How to Make a 3D Model Reconstruction
			6.2	 3D Model Applications
			6.3	 Future Perspectives
		7	 Conclusion
		References
	Patient Positioning for Renal Surgery
		1	 Standard Position for a Transperitoneal Approach
		2	 Variation for a Retroperitoneal Approach
		3	 Difficulties with Positioning
		4	 Positioning-Related Complications
		5	 Port Placement
			5.1	 The Influence of Robotic Platform on Port Placement
			5.2	 Port Placement for the Transperitoneal Approach
			5.3	 Port Placement for the Retroperitoneal Approach
			5.4	 Port Placement for a Transperitoneal Nephroureterectomy
		6	 Docking and Theatre Layout
		7	 Conclusion
		References
	Port Placement for Robotic Renal Surgery
		1	 Introduction
		2	 General Objectives and Rules for Port Placement
		3	 Port Placement for Transperitoneal Robotic Partial Nephrectomy
			3.1	 Step 1: Patient Positioning
			3.2	 Step 2: Flexion of the Table
			3.3	 Step 3: Fixation of the Patient
			3.4	 Step 4: Marking the Anatomical Landmarks
			3.5	 Step 5: Marking “Imaginary” Vertical Lines
			3.6	 Step 6: da Vinci X and Xi Port Placement
			3.7	 Step 6: (b) da Vinci Si Port Placement
		4	 Port Placement for Retroperitoneal Robotic Partial Nephrectomy
			4.1	 Positioning
			4.2	 Access
			4.3	 Port Placement
			4.4	 Docking
		5	 Conclusion
		References
	Early Unclamping, Selective, Superselective, and Unclamped Robotic Partial Nephrectomy
		1	 Introduction
		2	 Terminology
			2.1	 Selective Clamping
			2.2	 Superselective Clamping
			2.3	 Unclamped Partial Nephrectomy
			2.4	 Zero-ischemia
		3	 Patient Selection
		4	 Preoperative Imaging
		5	 Surgical Technique
		6	 Patient Positioning and Trocar Placement
		7	 Hilar Dissection
		8	 Kidney Mobilization
		9	 Color Doppler Ultrasound
		10	 Selective and Superselective Clamping
		11	 Unclamped Partial Nephrectomy: Minimal Margin Resection or Enucleo-resection
		12	 Hemostasis and Kidney Reconstruction
		13	 Early Unclamping
		14	 Extraction of the Specimen and Closure of Port Sites
		15	 Post-Operative Care
		16	 Outcomes of Superselective and Unclamped PN
		References
	Tips and Tricks for Kidney Mobilization in Robot-Assisted Renal Surgery
		1	 Robot-Assisted Partial Nephrectomy (RAPN)
			1.1	 The Use of the Fourth Arm to Elevate the Ureter and the Lower Pole of the Kidney to Access Renal Hilum
			1.2	 Gerota’s Opening
			1.3	 Toxic Fat: How to Predict and Management
			1.4	 Complete Renal Flipping to Access the Posterior Face of the Kidney
			1.5	 Maneuvers to Rotate the Kidney to Access the Upper Pole
		2	 Robot-Assisted Radical Nephrectomy (RARN)
			2.1	 How to Carefully Mobilize a Previously Treated Kidney
			2.2	 Difficult Mobilization of Upper Pole in Case of Psoas Muscle Infiltration
			2.3	 Examples of Surgical Plane for Adrenal/Removal Sparing
			2.4	 Avoid Diaphragmatic Injury
		References
	Tips and Tricks for Excision of Renal Tumours
		1	 Introduction
		2	 Kidney Mobilisation
		3	 Preparing for Excision
		4	 Tumour Resection
			4.1	 Endophytic Tumours
			4.2	 Hilar Tumours
			4.3	 Cystic Tumours
			4.4	 Multiple Tumours
		5	 Conclusion
		References
	Renorrhaphy Techniques in Robot-Assisted Partial Nephrectomy
		1	 Introduction
		2	 Main Body of the Chapter
			2.1	 Surgical Techniques for Renorrhaphy in Robotic Partial Nephrectomy
			2.2	 The Impact of Different Suture Techniques on Outcomes
			2.3	 Feasibility of “Sutureless” RAPN
		3	 Conclusion
		References
	Robot-Assisted Radical Nephrectomy and Vena Cava Thrombus Management
		1	 Introduction
		2	 Indications and Contraindications
			2.1	 Indications
			2.2	 Contraindications
			2.3	 Lymph Node Dissection (LND)
			2.4	 Adrenalectomy
		3	 Preoperative Preparation
			3.1	 Preoperative Evaluation
			3.2	 Imaging
		4	 Surgical Technique
			4.1	 Retroperitoneal RARN
				4.1.1	 Patient Positioning and Port Placement
				4.1.2	 Kidney Preparation
				4.1.3	 Radical Nephrectomy
			4.2	 Transperitoneal RARN
				4.2.1	 Patient Positioning
				4.2.2	 Port Placement
				4.2.3	 Robotic Instruments
				4.2.4	 Transperitoneal Right RARN
				4.2.5	 Transperitoneal Left RARN
			4.3	 Postoperative Management
			4.4	 Complications and Management
		5	 RARN with IVC Thrombectomy
			5.1	 Indications and Contraindications
				5.1.1	 Indications
				5.1.2	 Contraindications
			5.2	 Preoperative Preparation
				5.2.1	 General Patient Preparation
				5.2.2	 Special Patient Preparation
			5.3	 Step-by-Step Operative Technique
				5.3.1	 Anesthesia and Patient Position
				5.3.2	 Right RARN and IVC Thrombectomy
					Patient Position and Port Placement
					Dissection of Inferior Vena Cava, Left Renal Vein, and Right Renal Vein
					Dissection of the IVC at the Thrombus Level, Left Renal Vein, and Part Lumbar Vein
				5.3.3	 Extraction of Thrombus
					Right Radical Nephrectomy
			5.4	 Left RARN and IVC Thrombectomy
				5.4.1	 Patient Position and Port Placement
				5.4.2	 Dissection of Inferior Vena Cava
				5.4.3	 Isolation of the Right and Left Renal Veins
			5.5	 Robot-Assisted Level III IVC Thrombectomy: Left Side
				5.5.1	 Preoperative Preparation
				5.5.2	 Patient Position and Trocar Placement
				5.5.3	 Surgical Strategy
			5.6	 Robot-Assisted Level IV IVC Thrombectomy: Right Side
			5.7	 Robotic-Assisted Cavectomy for Level II IVC Thrombectomy
			5.8	 RAC-IVCT for Right-Sided RCC with IVCT
			5.9	 RAC-IVCT for Left-Sided RCC with IVCT
			5.10	 Complications and Management
		6	 Future Perspectives for RARN and IVC Thrombectomy
		References
	Robotic Renal Transplantation
		1	 Introduction
		2	 Robot-Assisted Kidney Transplantation (RAKT): Living Donor
			2.1	 Background
				2.1.1	 Living-Donor Nephrectomy
				2.1.2	 Living-Donor Kidney Transplantation
			2.2	 Surgical Technique
				2.2.1	 Living-Donor Nephrectomy
				2.2.2	 Bench Table Preparation
				2.2.3	 Patient and Trocar Positioning
				2.2.4	 Transplant Bed Preparation
				2.2.5	 Vascular Anastomosis
				2.2.6	 Ureteroneocystostomy
		3	 Results
		4	 Complex Surgical Scenarios
			4.1	 Obese Patient
			4.2	 Multiple Vessels
		5	 Limitations
			5.1	 Robot-Assisted Kidney Transplantation: Deceased Donor
		6	 Future Perspectives
			6.1	 Intracorporeal Graft Cooling Systems
			6.2	 Iliac Artery Plaque Tracking
			6.3	 Robot-Assisted Kidney Autotransplantation (RAKAT)
		References
	Nephroureterectomy and Bladder Cuff Excision
		1	 Introduction
		2	 Case Selection and Preparing for Surgery
		3	 Patient Positioning
		4	 Instrumentation and Equipment
		5	 Surgical Technique
			5.1	 Step 1: Abdominal Access
			5.2	 Step 2: Port Placement and Configuration
			5.3	 Step 3: Colon Mobilization
			5.4	 Step 4: Dissection of the Ureter and Identification of the Renal Hilum
			5.5	 Step 5: Hilar Dissection
			5.6	 Step 6: Adrenal Gland Dissection and Kidney Mobilization
			5.7	 Step 7: Lymphadenectomy
			5.8	 Step 8: Dissection of the Distal Ureter and Bladder Cuff
			5.9	 Step 9: Bladder Cuff Excision
			5.10	 Step 10: Bladder Repair/Cystotomy Closure
			5.11	 Step 11: Retrieval of the Specimen and Closure
		6	 Postoperative Management
		7	 Steps to Avoid Complications
		8	 Outcomes
		9	 Discussion
		10	 Conclusions
		References
	Current Status of Robotic-Assisted Pyeloplasty in Adults
		1	 Definition and Indications (When to Operate and When to Wait)
		2	 Preoperative Evaluations
			2.1	 Ultrasonography
			2.2	 Computed Tomography
			2.3	 Magnetic Resonance Urography
			2.4	 Diuretic Renography
			2.5	 Intravenous Pyelography
			2.6	 Preoperative Stenting
			2.7	 Preoperative Nephrostomy
		3	 OR Setting and Patient Positioning
			3.1	 The Port Placement
			3.2	 Surgical Procedure
			3.3	 Ureteral Stenting
			3.4	 The Pelvic Stone Treatment
		4	 Tips and Tricks
		5	 Surgical Outcomes
			5.1	 Comparative Studies
			5.2	 The Role of Robotic System in the Treatment of Recurrent UPJO
		6	 Novelties and New Technologies
			6.1	 Single-Site Robot-Assisted Pyeloplasty
			6.2	 The Role of Indocyanine Green in Pyeloplasty
			6.3	 Buccal Mucosal Graft in Pyeloplasty
		References
	Reconstructive Surgery for Ureteral Strictures: Boari Flap, Psoas Hitch, Buccal Mucosa, and Other Techniques
		1	 Introduction
			1.1	 Proximal Ureter
			1.2	 Mid-Ureter
			1.3	 Distal Ureter
			1.4	 Identification and Isolation of Strictured Segment
			1.5	 Ureteral Rest
		2	 Ureterolysis
			2.1	 Retroperitoneal Fibrosis
			2.2	 Patient Positioning and Trocar Placement
			2.3	 Technique
		3	 Ureteroneocystostomy (Ureteral Reimplantation)
			3.1	 Patient Positioning and Robotic Trocar Placement
			3.2	 Technique
		4	 Psoas Hitch
		5	 Boari Flap
			5.1	 Patient Positioning and Robotic Trocar Placement
			5.2	 Technique
		6	 Non-transecting Side-to-Side Ureteral Reimplantation
			6.1	 Patient Positioning and Robotic Trocar Placement
			6.2	 Technique
			6.3	 Outcomes
		7	 Buccal Mucosal Ureteroplasty
			7.1	 Buccal Mucosal Graft Harvesting
			7.2	 Onlay Buccal Mucosal Graft Ureteroplasty
			7.3	 Augmented Anastomotic Buccal Mucosal Graft Ureteroplasty
			7.4	 Omental Wrap
		8	 Appendiceal Ureteroplasty
			8.1	 Appendiceal Onlay
			8.2	 Appendiceal Bypass
		9	 Technique Summary and Algorithmic Approach
		10	 Single-Port Robotic System
		References
	Robot-Assisted Adrenalectomy Workup and Management
		1	 Introduction
		2	 Indications for Radical Adrenalectomy
			2.1	 Adrenal Carcinoma
			2.2	 Pheochromocytoma
			2.3	 Metastases
			2.4	 Benign Tumors
			2.5	 Other Diseases
		3	 Preoperative Imaging
			3.1	 Contrast-Enhanced Computed Tomography (CECT)
			3.2	 Magnetic Resonance Imaging (MRI)
		4	 Vascular Anatomy
		5	 Preoperative Setting
			5.1	 Pheochromocytoma
			5.2	 Conn’s Syndrome
			5.3	 Cushing’s Syndrome
		6	 Patients’ Setup
		7	 Robot-Assisted Radical Adrenalectomy
			7.1	 Transperitoneal Approach
			7.2	 Retroperitoneal Approach
		8	 Postoperative Care
		9	 Complications
			9.1	 Intraoperative Complications
			9.2	 Postoperative Complications
		10	 Outcomes
		11	 Robot-Assisted Partial Adrenalectomy
		12	 Conclusions
		References
	Single-Port Approach to Kidney Surgery
		1	 Introduction
		2	 Single-Port Retroperitoneal Robotic Partial Nephrectomy
		3	 Single-Port Retroperitoneal Robotic Partial Nephrectomy: Surgical Technique
		4	 Patient Selection
		5	 Access
		6	 Port Placement
		7	 Floating Technique (Air Docking)
		8	 Partial Nephrectomy
		9	 Technical Remarks
		10	 Single-Port Robotic Pyeloplasty Through a Pfannenstiel Abdominal Incision
		11	 Surgical Technique
		12	 Positioning, Pfannenstiel Incision, Access, and Port Placement
		13	 Exposing the Renal Pelvis and Ureteropelvic Junction (UPJ)
		14	 Dismembered Pyeloplasty
		15	 Conclusion
		References
	Robotic Single-Port Kidney Surgery: The Chicago Approach
		1	 Introduction
		2	 Overview and Key Points
		3	 Positioning
		4	 Access
			4.1	 Docking
			4.2	 Instruments and Equipment
		5	 Surgical Technique
		6	 Limitations
		7	 Conclusions
		References
	Complications in Robot-Assisted Renal Surgery
		1	 Introduction
		2	 Intraoperative Complications and Management
			2.1	 Patient Positioning
			2.2	 Trocar Placement and Bowel Lesion
			2.3	 Potential Issues with Pneumoperitoneum
			2.4	 Hepatic, Splenic, and Pancreatic Lesions
			2.5	 Vascular Injury and Management
				2.5.1	 Hemostatic Agent’s Role in Bleeding Episodes
			2.6	 Instrument Malfunction and Material Issues
			2.7	 Considerations for Vena Cava Thrombus Surgery
		3	 Postoperative Complications Related with the Robotic Approach
			3.1	 Acute Kidney Injury
			3.2	 Venous Thromboembolism (VTE) Complications
			3.3	 Rhabdomyolysis
			3.4	 Ocular Complications
			3.5	 Port-Site Hernias
			3.6	 Skin Lesions
			3.7	 Postoperative Complication Assessment: Is there a Quality Control?
		4	 Conclusion
		References
	Intraoperative Complications in Urologic Robotic Surgeries
		1	 Introduction
		2	 Robotic Platform and Instrument Malfunction
		3	 Patient Positioning and Cutaneous Lesion Considerations
		4	 Port Placement Considerations
			4.1	 Assessment of Surgical Field
			4.2	 Abdominal Access Techniques
				4.2.1	 Veress Needle Technique
				4.2.2	 Hasson Open Technique
				4.2.3	 Insertion of Additional Trocars
		5	 Pneumoperitoneum Considerations
		6	 Thermal Injury
		7	 Visceral and Vascular Injury Considerations
			7.1	 Bowel Injury Caused by Electrocautery and Mechanical Effects
			7.2	 Spleen and Liver Injuries
			7.3	 Pancreatic Injury
			7.4	 Rectal Injury
		8	 Compartment Syndrome (CS)
			8.1	 CS Clinical Presentation
			8.2	 CS Surgical Intervention
		9	 Conclusion
		References
	Technical Advances in Robotic Renal Surgery
		1	 Introduction
		2	 Preoperative Planning
			2.1	 Three-Dimensional (3D) Models
			2.2	 Hologram
		3	 Intraoperative Guidance
			3.1	 Three-Dimensional Augmented Reality (AR)
			3.2	 Virtual Reality (VR) Surgical Navigation
			3.3	 Image-Guided Surgery
			3.4	 Intraoperative Pathology
			3.5	 Artificial Intelligence
			3.6	 Instruments
		4	 Robotic Platforms
		5	 Training and New Technologies
		6	 Conclusions
		References
	Outcomes of Robotic Radical and Partial Nephrectomy
		1	 Overview
		2	 Robotic Radical Nephrectomy
		3	 Robotic Partial Nephrectomy
		4	 Robotic Retroperitoneal Partial Nephrectomy
		5	 Conclusion
		References
Part IV: Bladder
	Surgical Anatomy and Clinical Relevance to Robot-Assisted Cystectomy and Urinary Diversion
		1	 Introduction
		2	 The Anterior Abdominal Wall: Anatomical Landmarks
		3	 Anatomical Topography of the Female Pelvis
		4	 Anatomical Topography of the Male Pelvis
		5	 Ureter and Periureteral Space
		6	 Macroscopic and Microscopic Anatomy of the Urinary Bladder
		7	 Anatomic Abnormalities of the Urinary Bladder
		8	 Pelvic Floor
		9	 Male Urethra
		10	 Female Urethra
		11	 Sphincter Mechanisms
			11.1	 The Bladder Neck Component
			11.2	 The Urethral Wall Component
			11.3	 The External Urethral Sphincter
		12	 Lymph Node Dissection
		13	 Bowel
		14	 Summary
		References
	Imaging in Bladder Cancer Surgery
		1	 Introduction
			1.1	 Bladder Anatomy
			1.2	 Bladder Cancer
		2	 Bladder Cancer Diagnosis
			2.1	 From Symptom to Imaging
			2.2	 Ultrasound
			2.3	 CT Urography
			2.4	 Multi-parametric Magnetic Resonance Imaging (mpMRI)
			2.5	 International Guidelines
				2.5.1	 European Association of Urology (EAU)
				2.5.2	 American Urological Association/Society of Urodynamics, Female Pelvic Medicine and Urogenital Reconstruction (AUA/SUFU)
				2.5.3	 National Comprehensive Cancer Network (NCCN)
				2.5.4	 National Institute for Health and Care Excellence (NICE)
		3	 MRI of the Bladder
			3.1	 Bladder MRI Anatomy and MRI Semeiotics
			3.2	 MRI Acquisition Protocol
			3.3	 VI-RADS
				3.3.1	 T2WI Categories
				3.3.2	 DCE-MRI Categories
				3.3.3	 DWI/ADC Categories
				3.3.4	 Definitive VI-RADS Score
		4	 MRI Future Perspectives for Bladder Cancer
			4.1	 Surveillance in Non-muscle-Invasive Bladder Cancer
			4.2	 MRI Before and After Bladder Cancer Treatment
		References
	Step-by-Step Approach to Robot-Assisted Male Cystectomy
		1	 Introduction
			1.1	 Robotic Instruments Used
			1.2	 Patient Positioning and Trocar Placement
			1.3	 Pelvic Lymph Node Dissection
		2	 Non-nerve-Sparing RARC in Male: Surgical Technique
		3	 Nerve-Sparing RARC in Male: Surgical Technique
		4	 Conclusions
		References
	Step-by-Step Approach to Robot-Assisted Female Cystectomy, Anterior Exenteration, and Pelvic Organ Preserving Approaches
		1	 Background
		2	 Patient Selection
		3	 Patient Positioning and Port Placement
		4	 RARC with Anterior Exenteration
		5	 RARC with POP
		6	 Evidence Acquisition
		7	 RARC with Anterior Exenteration Outcomes
			7.1	 RARC with Anterior Exenteration: Perioperative Outcomes and Complications (See Table 1)
			7.2	 RARC with Anterior Exenteration: Oncological and Survival Outcomes (See Tables 1 and 2)
			7.3	 RARC with Anterior Exenteration Outcomes: Functional Outcomes (See Table 2)
		8	 Female POP RARC Outcomes
		9	 ERAS
		10	 Learning Curves
		11	 Novel Approaches to RARC
		12	 Conclusion
		References
	Robot-Assisted Intracorporeal Ileal Conduit
		1	 Introduction
		2	 Patient Positioning
		3	 Instruments
		4	 Trocar Placement
			4.1	 Two Robotic Arms on the Left
			4.2	 Two Robotic Arms on the Right
		5	 Staplers
		6	 Step by Step: Bowel Handling and FireFly
			6.1	 Side-to-Side Anastomosis Ileum
		7	 Step-by-Step: Uretero-enteric Anastomosis Techniques
			7.1	 Bricker Technique
			7.2	 Wallace Technique
		8	 Step by Step: Extraction Ileal Conduit and Stoma Formation
		9	 Tips and Tricks
		References
	Robot-Assisted Intracorporeal Neobladder: The Karolinska Standardized Technique
		1	 Introduction
		2	 Materials and Methods
			2.1	 Patient Selection, Inclusion, and Exclusion Criteria
			2.2	 Preoperative Preparation and Enhanced Recovery Protocol
			2.3	 Operative Setup
			2.4	 Surgical Technique
				2.4.1	 Trocar Configuration
				2.4.2	 Orthotopic Neobladder, Intracorporeal Technique
			2.5	 Postoperative Care
		3	 Conclusions
		References
	Robotic Intracorporeal Neobladder: UCLH Experience
		1	 Introduction
		2	 Patient Selection
		3	 Operative Setup
		4	 Special Attention Points During Cystectomy to Facilitate Neobladder Creation
		5	 Construction of Orthotopic Neobladder
			5.1	 Rocco Stitch and Urethral-Intestinal Anastomosis
			5.2	 Isolation of Small Bowel for Neobladder
			5.3	 Construction of the Neobladder
			5.4	 Ureteroileal Anastomosis
			5.5	 Finishing Off the Procedure
			5.6	 Postoperative Care
			5.7	 Postoperative Outcomes
		References
	Step-by-Step Approach to Intracorporeal Urinary Diversion, Ileal Conduit, and W-Neobladder: The Roswell Park Technique
		1	 Introduction
			1.1	 Choice of Urinary Diversion
			1.2	 Preoperative Preparation
		2	 Surgical Technique
			2.1	 Positioning and Port Placement
			2.2	 Technique of Intracorporeal Ileal Conduit: The “Marionette” Technique [13]
			2.3	 Technique of Intracorporeal W Neobladder
			2.4	 Postoperative Management
		References
	Step-by-Step Approach to Extracorporeal Urinary Diversion in Robot-Assisted Cystectomy
		1	 Introduction
		2	 Perioperative Considerations
		3	 Patient Positioning, Port Placement, and Robotic Preparation
		4	 Ileal Conduit Extracorporeal Urinary Diversion
		5	 Robotic Preparation
		6	 Ileal Harvest
		7	 Ureteroileal Anastomoses
		8	 Ileal Conduit Stoma Creation
		9	 Postoperative Care
		10	 Ileal Conduit-Specific Complications
		11	 Extracorporeal Studer Orthotopic Ileal Neobladder
		12	 Robotic Preparation
		13	 Ileal Harvest and Neobladder Formation
		14	 Ureteroileal Anastomoses
		15	 Neovesical-Urethral Anastomosis
		16	 Postoperative Care
		17	 Orthotopic Neobladder-Specific Complications
		18	 Extracorporeal Indiana Pouch Urinary Diversion
		19	 Robotic and Laparoscopic Preparation
		20	 Ileocolonic Harvest
		21	 Catheterizable Limb Formation
		22	 Pouch Formation
		23	 Ureteroenteric Anastomoses
		24	 Suprapubic Catheter Placement
		25	 Creation of Catheterizable Channel
		26	 Postoperative Care
		27	 Indiana Pouch-Specific Complications
		28	 Recent Advancements in ECUD
		29	 Conclusion
		References
	Single-Port Robot-Assisted Radical Cystectomy
		1	 Introduction
		2	 Single-Port Robotic Radical Cystecomy and Extended Pelvic Lymph Node Dissection
			2.1	 Patient Positioning, Port Placement, and Robot Docking
			2.2	 Ureteral Dissection
			2.3	 Posterior Bladder and Pedicle Dissection
			2.4	 Anterior Dissection
			2.5	 Specimen Extraction
			2.6	 Lymph Node Dissection
		3	 Intracorporeal Urinary Diversion
			3.1	 Neobladder
			3.2	 Ileal Conduit
			3.3	 Indiana Pouch
			3.4	 Postoperative Outcome
			3.5	 Other Considerations
			3.6	 Conclusion
		References
	Complications of Robot-Assisted Radical Cystectomy
		1	 Overall Complication Rates of Robot-Assisted Radical Cystectomy
		2	 Predictors of Complications
		3	 Bias in Comparing Complication Rates Using Multi-Institutional and Non-prospective Data
		4	 Complication Rates: Open Versus Robot-Assisted Radical Cystectomy
		5	 Complication Rate: Extracorporeal Versus Intracorporeal Urinary Diversions
		6	 Perioperative Outcomes
			6.1	 Operative Time
			6.2	 Analgesia and Bowel Function Return
			6.3	 Hospital Length of Stay
			6.4	 Quality of Life Scores
		7	 Conclusions
		References
	Robotic-Assisted Radical Cystectomy Outcomes
		1	 Introduction
		2	 Perioperative Outcome
		3	 Complications
		4	 Functional Outcomes
			4.1	 Continence
			4.2	 Sexual Function
			4.3	 Quality of Life
		5	 Oncological Outcomes
		References
	Robotic Surgery Applications for Benign Bladder Diseases
		1	 Robot-Assisted YV Plasty (RAYV) for Recurrent Bladder Neck Stenosis
			1.1	 Introduction
			1.2	 Etiology
			1.3	 Treatment Options
			1.4	 Patient Selection and Preoperative Preparation
			1.5	 Surgical Technique
			1.6	 Operative Technique
			1.7	 Postoperative Management
			1.8	 Discussion
			1.9	 Conclusion
		2	 Robotic-Assisted Bladder Diverticulectomy
			2.1	 Introduction
			2.2	 Preoperative Evaluation and Preparation
			2.3	 Operating Room Configuration and Patient Positioning
			2.4	 Endoscopic Preparation
			2.5	 Trocar Placement and Instrumentation
			2.6	 Procedure
				2.6.1	 Intravesical Approach
				2.6.2	 Extravesical Approach
			2.7	 Postoperative Management
		References
	Robotic-Assisted Surgery in Urinary Fistulas
		1	 Vesicovaginal Fistulas
			1.1	 Definition and Types of VVF
			1.2	 Prevalence of VVF
			1.3	 Etiology of VVF
			1.4	 Preoperative Imaging
			1.5	 Classification of VVF
			1.6	 Surgical and Robotic Approach to VVF (Video 1)
			1.7	 Step-by-Step Procedure for Robotic VVF Repair
			1.8	 Step-by-Step Procedure
			1.9	 Interposition Tissue
			1.10	 Leakage of Pneumoperitoneum
			1.11	 Timing of Fistula Repair
			1.12	 Intraoperative Diagnosis of the VVF and Protective JJ Placement
			1.13	 Postoperative Management
			1.14	 Robotic Repair of VVF: Special Comments
		2	 Rectovesical Fistulas
			2.1	 Frequency Origin and Early Management of Rectovesical Fistula
			2.2	 Surgical Management of Rectovesical Fistula
			2.3	 Patient Preparation
			2.4	 Operative Technique (Video 2)
			2.5	 Follow-Up
			2.6	 Alternative Robotic-Assisted Techniques for Vesicorectal Fistula
			2.7	 Management of Rectoprostatic Fistula
			2.8	 Discussion
			2.9	 Conclusions
		3	 Ureterovaginal Fistulas
			3.1	 Introduction
			3.2	 Etiology
			3.3	 Symptoms
			3.4	 Diagnosis
			3.5	 Prevention
			3.6	 Management
			3.7	 Robotic Repair of Ureterovaginal Fistula
				3.7.1	 Preoperative Preparation
				3.7.2	 Surgical Room Setup
				3.7.3	 Patient Positioning
				3.7.4	 Trocar Configuration
				3.7.5	 Instrumentation and Equipment List
				3.7.6	 Step-by-step Technique
				3.7.7	 Postoperative Management
		References
Part V: Pediatric Surgery
	Robotic Surgery Applications in Pediatric Urologic Patients: Physiology and Special Considerations
		1	 Physiology of Minimally Invasive Surgery
			1.1	 Cardiovascular Changes
			1.2	 Respiratory Effect
			1.3	 Renal Effects
			1.4	 Cerebral Effect
			1.5	 Insufflation Gas
			1.6	 Trendelenburg Position
			1.7	 Abdominal Wall Elasticity
			1.8	 Inflammation
			1.9	 Metabolic Response
			1.10	 Conclusions: Physiology Associated with Robotic Surgery Applications in Pediatric Urologic Patients
		2	 Special Considerations
			2.1	 Small Working Spaces
			2.2	 Lack of Small Pediatric-Sized Instruments
			2.3	 Techniques and Learning Curve with Pediatric Robotic Surgery
		References
	Robotic Pediatric Renal Surgery
		1	 General Principles of Robotic Renal Surgery
		2	 Patient Selection for Robotic Renal Surgery
		3	 Patient Positioning and Preoperative Steps Prior to Robotic Renal Surgery
		4	 Trocar Site for Robotic Renal Surgery
		5	 Robotic Instruments Helpful in Robotic Renal Surgery
		6	 Robotic Pyeloplasty
			6.1	 Procedure
			6.2	 Complex RPP
		7	 Robotic Ureterocalicostomy
		8	 Heminephroureterectomy
		9	 Transperitoneal Approach: Surgical Technique
		10	 Robotic Platform for Nephrolithiasis
		References
	Robotic Reconstructive Surgery of Ureter in the Pediatric Population
		1	 Part I: Robot-Assisted Laparoscopic Ureteral Reimplantation: “LUAA” Gundeti Technique, Description, and Outcomes
			1.1	 Indications
			1.2	 Preoperative Preparation
			1.3	 Technical Description
			1.4	 Outcomes
			1.5	 Conclusion
		2	 Part II: Robot-Assisted Ureteroureterostomy in Pediatric Patients
			2.1	 Preoperative Assessment
			2.2	 Patient Positioning
			2.3	 Port Placement
			2.4	 Approach
			2.5	 Follow-Up
			2.6	 Postoperative Complications and Outcomes
			2.7	 Conclusion
		3	 Part III: Robot-Assisted Ureteral Mitrofanoff Procedure, Description, and Outcomes
			3.1	 Introduction
			3.2	 Indications
			3.3	 Preoperative Preparation
			3.4	 Technical Description
			3.5	 Outcomes
			3.6	 Conclusion
		References
	Robotic Vaginoplasty, Urinary, and Bowel Continent Procedures (Bladder Neck Reconstruction and Continent Catheterizable Channels)
		1	 Vaginoplasty
			1.1	 Patient Selection
			1.2	 Preoperative Preparation
			1.3	 Positioning and Port Placement
			1.4	 Surgical Steps
			1.5	 Postoperative Care
			1.6	 Outcomes and Complications
		2	 Continent Catheterizable Channels
		3	 Anatomy of the Ileocecal and Appendiceal Region
		4	 Appendicovesicostomy
			4.1	 Patient Selection
			4.2	 Preoperative Preparation
			4.3	 Positioning and Port Placement
			4.4	 Surgical Steps
			4.5	 Postoperative Care
			4.6	 Outcomes and Complications
		5	 Yang-Monti
			5.1	 Patient Selection
			5.2	 Preoperative Preparation
			5.3	 Positioning and Port Placement
			5.4	 Surgical Steps
			5.5	 Double Monti
			5.6	 Spiral Monti
			5.7	 Postoperative Care
			5.8	 Outcomes and Complications
		6	 Malone Antegrade Colonic Enema
			6.1	 Patient Selection
			6.2	 Preoperative Preparation
			6.3	 Positioning and Port Placement
			6.4	 Surgical Steps
			6.5	 Split APV and ACE
			6.6	 Cecal Flap ACE
			6.7	 Postoperative Care
			6.8	 Outcomes and Complications
		7	 Bladder Neck Reconstruction
			7.1	 Patient Selection
			7.2	 Preoperative Preparation
			7.3	 Positioning and Port Placement
			7.4	 Surgical Steps
			7.5	 Postoperative Care
			7.6	 Outcomes and Complications
		References
	Robotic Surgery to Approach Bladder Disorders in Pediatric Patients
		1	 Introduction
		2	 Bladder Diverticula
		3	 Appendicovesicostomy/Continent Catheterizable Channels
		4	 Bladder Augmentation
		5	 Bladder Neck Surgery
			5.1	 AUS (Artificial Urinary Sphincter)
			5.2	 Bladder Neck Sling
			5.3	 Bladder Neck Reconstruction
			5.4	 Bladder Neck Closure
		6	 Summary
		References
	Miscellaneous Procedures (Prostatic Utricle/UG Sinus/Oncological/Renal Transplantation Applications)
		1	 Background
		2	 Prostatic Utricle
			2.1	 Surgical Approach
		3	 Oncology
		4	 Urogenital Sinus
		5	 Pediatric Renal Transplant
		6	 Challenges in Pediatric Transplant
		7	 Specific Considerations
		8	 Conclusion
		References
Part VI: Penile
	Robotic-Assisted Video Endoscopic Inguinal Lymphadenectomy (R-VEIL) Technique and Outcomes for Penile Cancer
		1	 General Aspects of Penile Cancer (PeC)
		2	 Inguinal Dissemination of Penile Cancer
		3	 Inguinal Lymphadenectomy Indications in Penile Cancer
			3.1	 Patients with Clinically Normal Inguinal Lymph Nodes (cN0)
			3.2	 Patients with Palpable Unilateral or Bilateral Inguinal Nodes (cN1/cN2)
			3.3	 Patients with Bulky Inguinal Nodes
			3.4	 Other Indications Beyond Penile Cancer
		4	 Development of Minimally Invasive Inguinal Lymph Node Dissection (ILND)
		5	 Endoscopic Anatomy of Femoral Triangle Region
		6	 Preoperative Patient Management
		7	 R-VEIL Surgical Steps
			7.1	 Patient Positioning
			7.2	 Trocar Placement and Docking
			7.3	 Anterior, Posterior, and Lateral Dissection
		8	 Other Techniques
		9	 Postoperative Care After Inguinal Lymphadenectomy
		10	 Our Data and Literature Analysis
		11	 Discussion
		12	 Conclusions
		References
	Robotic Surgery Applications in Female Pelvic Floor Reconstruction
		1	 Introduction
		2	 Etiology
		3	 Epidemiology
		4	 Pelvic Organ Prolapse Classification
		5	 Pelvic Organ Prolapse Quantification (POP-Q)
		6	 Stages of POP-Q System Measurement
		7	 Patient Evaluation
		8	 Symptom Evaluation
			8.1	 Pelvic Exam and Signs of Pelvic Organ Prolapse
			8.2	 Supplementary Techniques During Pelvic Exam
		9	 Additional Diagnostic Test
		10	 Pelvic Floor Imaging
		11	 Robotic-Assisted Laparoscopic Surgeries for the Correction of Apical POP
		12	 Robotic-Assisted Single-Site Uterosacral Ligament Suspension
			12.1	 No-Mesh Technique
		13	 Robotic-Assisted Laparoscopic Apical Suspension (RALAS-4) and RALAS Spiral
			13.1	 No-Mesh Technique
		14	 New Technologies and Applications
		15	 Step-by-Step Sacrocolpopexy
			15.1	 Patient’s Positioning and Docking
		16	 Exposure of Promontory
			16.1	 Anatomical Landmarks
			16.2	 Nerve-Sparing Promontory Dissection
			16.3	 Tips and Tricks
		17	 Dissection of the Peritoneum
		18	 Vesicovaginal Dissection
			18.1	 Nerve-Sparing Anterior Dissection
		19	 Rectovaginal Dissection
		20	 Mesh Fixation
		21	 Peritoneal Closure
		22	 Robotic Sacrohysteropexy
		References
	Robot-Assisted Retroperitoneal Lymph Node Dissection (RPLND)
		1	 Introduction
		2	 Indications
		3	 Laparoscopic and Robot-Assisted RPLND
		4	 Robot-Assisted RPLND Surgical Technique
		5	 Conclusion
		References
Index




نظرات کاربران