دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Mitsutaka Kimura, Satoshi Mizutani, Mitsuhiro Imaizumi, Kodo Ito سری: Advanced Research in Reliability and System Assurance Engineering ISBN (شابک) : 9780367558055, 2022045317 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 372 [373] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Reliability and Maintenance Modeling with Optimization: Advances and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلسازی قابلیت اطمینان و نگهداری با بهینهسازی: پیشرفتها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مدلسازی قابلیت اطمینان و تعمیر و نگهداری با بهینهسازی، اساسیترین و بینرشتهایترین حوزه تحقیقاتی است و میتوان آن را در هر زمینه فنی و مدیریتی اعمال کرد. این مونوگراف جدیدترین پیشرفت ها و دستاوردها در قابلیت اطمینان و نگهداری را ارائه می دهد. این کتاب به بحث جایگزینی، تعمیر، بازرسی، تخمین و تست های آماری همراه با تست عمر سریع می پردازد. این تجزیه و تحلیل تولید ضمانت و همچنین قابلیت اطمینان خدمات را بررسی می کند. خوانندگان هدف، محققان علاقه مند به قابلیت اطمینان و مهندسی تعمیر و نگهداری هستند. این کتاب می تواند به عنوان مطالعه تکمیلی در سمینارهای حرفه ای مورد استفاده قرار گیرد و همچنین برای مهندسان، طراحان، مدیران پروژه و همچنین دانشجویان تحصیلات تکمیلی ایده آل است.
Reliability and maintenance modeling with optimization is the most fundamental and interdisciplinary research area and it can be applied to every technical and management field. This monograph provides the most recent advances and achievements in reliability and maintenance. The book discusses replacement, repair, inspection, estimation, and statistical tests along with accelerated life testing. It explores warranty analysis manufacturing and also service reliability. The targeted readers are researchers interested in reliability and maintenance engineering. The book can be used as supplemental reading in professional seminars and is also ideal for engineers, designers, project managers, as well as graduate students.
Cover Half Title Series Page Title Page Copyright Page Contents Preface Contributors SECTION I: Stochastic Maintenance Policies Chapter 1: Nine Memorial Research Works 1.1. Introduction 1.2. Two-unit Standby System 1.3. Imperfect PM (Preventive Maintenance) 1.4. Discrete Weibull Distribution 1.5. Definition of Minimal Repair 1.6. Shock and Damage Model 1.7. Finite Interval 1.8. Replacement First, Last, Overtime and Middle 1.9. Random K-out-of- n System 1.10. Asymptotic Calculations Chapter 2: Replacement First and Last Policies with Random Times for Redundant Systems 2.1. Introduction 2.2. Random Age Replacement 2.2.1. Random Replacement Distribution 2.2.2. Replacement Policies for Single Unit System 2.3. Replacement Policies for Redundant System 2.4. Series System 2.5. Parallel System 2.6. Random K-out-of-n System 2.7. Numerical Examples of Four Redundant Systems with 4 Units 2.8. Conclusions Chapter 3: Backup Policies with Random Data Updates 3.1. Introduction 3.2. Expected Cost Rates 3.3. Optimum Backup Times 3.3.1. Incremental Backup 3.3.1.1. Case I 3.3.1.2. Case II 3.3.2. Differential Backup 3.3.2.1. Case I 3.3.2.2. Case II 3.3.3. Numerical Example 3.4. Overtime Backup Models 3.5. Optimum Backup Times 3.5.1. Incremental Backup 3.5.1.1. Case I 3.5.1.2. Case II 3.5.2. Differential Backup 3.5.2.1. Case I 3.5.2.2. Case II 3.6. Comparisons of Update N and Overtime T 3.6.1. Incremental Backup 3.6.2. Differential Backup 3.6.3. Numerical Examples 3.7. Conclusions Chapter 4: Main and Auxiliary Subsystem 4.1. Introduction 4.2. Assumptions and Modelling 4.3. Optimal Solution and Discussions 4.4. Extended Model for Systems with Dependent Parts 4.5. Numerical Examples 4.5.1. System with Independent Parts 4.5.2. System with Dependent Parts 4.6. Conclusion Chapter 5: Extended Replacement Policy in Damage Models 5.1. Introduction 5.2. Description of General Replacement Policy 5.3. Formulation 5.4. Optimal Policy 5.5. Numerical Example 5.6. Conclusions SECTION II: Reliability Modeling & Application Chapter 6: Optimal Checking Policy for a Server System with a Cyber Attack 6.1. Introduction 6.2. Model 1 6.3. Model 2 6.4. Model 3 6.5. Model 4 6.6. Model 5 6.7. Numerical Examples 6.8. Conclusions Chapter 7: Reliability Analysis of Congestion Control Scheme 7.1. Introduction 7.2. Congestion Control Scheme with FEC 7.2.1. Reliability Quantities 7.2.2. Optimal Policy 7.2.3. Example 1 7.3. Congestion Control Scheme with Hybrid ARQ 7.3.1. Reliability Quantities 7.3.2. Optimal Policy 7.3.3. Example 2 7.4. Conclusions SECTION III: Warranty Analysis Manufacturing Chapter 8: The Optimal Design of Consecutive-k Systems 8.1. Introduction 8.2. Consecutive-k Systems 8.3. Reliabilities of Consecutive-k Systems 8.3.1. System Reliability 8.3.2. Approximation Methods for System Reliability 8.4. Component Assignment Problem (CAP) 8.4.1. Efficient Algorithm for Obtaining the Optimal Arrangement 8.4.2. Algorithms for Obtaining Pseudo-Optimal Arrangement 8.5. Maintenance Problems 8.5.1. Maintenance Problems in Linear Consecutive-k-out-of-n:F System 8.5.2. Maintenance Problems in Linear Consecutive-k-out-of-n:G Systems 8.6. Conclusions Chapter 9: Infrastructure Maintenance 9.1. Introduction 9.2. Basic Models 9.2.1. Model 1 9.2.2. Model 2 9.3. Model 3 9.4. Model 4 9.5. Extended Models 9.5.1. Model 5 9.5.2. Model 6 9.5.3. Model 7 9.5.4. Model 8 9.6. Conclusion SECTION IV: Software Reliability and Testing Chapter 10: Optimal Maintenance Problem with OSS-Oriented EVM for OSS Project 10.1. Introduction 10.2. Related Research 10.3. Effort Estimation Model Based on Stochastic Differential Equation 10.4. Assessment Measures for OSS-Oriented EVM 10.4.1. How to Use the OSS Project Data 10.4.2. How to Derive OSS-Oriented EVM Value 10.5. Optimum Maintenance Time Based on Wiener Process Models 10.6. Application of Proposed Method to Actual Data 10.6.1. Used Data Set 10.6.2. Numerical Examples for Optimum Maintenance Time 10.7. Conclusion Chapter 11: Reliability Assessment Model Based on Wiener Process 11.1. Introduction 11.2. Wiener Process Modeling Based on Periodic Weight Functions 11.3. Parameter Estimation 11.4. Numerical Examples 11.5. Concluding Remarks Chapter 12: Approximated Estimation of Software Target Failure Measures 12.1. Introduction 12.2. SIL and Target Failure Measures 12.3. Software Hazard Rate Modeling 12.4. Formulations of Target Failure Measures 12.5. Numerical Examples 12.6. Concluding Remarks SECTION V: Maintenance Optimization and Applications Chapter 13: PH Expansion of MRGP and Its Application to Reliability Problems 13.1. Introduction 13.2. Markov Regenerative Process 13.2.1. Structured MRGP 13.2.2. Stationary Analysis for Structured MRGP 13.3. PH Expansion of MRGP 13.3.1. PH Approximation 13.3.2. PH Expansion 13.4. Illustrative Examples 13.4.1. MRSPN to MRGP 13.4.2. PH Expansion 13.5. Conclusions Chapter 14: A Hybrid Model Fitting Framework Considering Accuracy and Performance 14.1. Introduction 14.2. Software Reliability Growth Models 14.2.1. Nonhomogeneous Poisson Process Software Reliability Growth Models 14.2.2. Discrete Cox Proportional Hazard NHPP Software Reliability Growth Models 14.3. Parameter Estimation Algorithms 14.3.1. Initial Parameter Estimates 14.3.2. Particle Swarm Optimization (PSO) 14.3.3. Expectation Conditional Maximization (ECM) Algorithm 14.3.4. Newton's Method (NM) 14.4. Illustrations 14.4.1. Nonhomogeneous Poisson Process Software Reliability Growth Models 14.4.1.1. PSO Tradeoff Analysis 14.4.1.2. Performance assessment 14.4.2. Discrete Cox Proportional Hazard NHPP Software Reliability Growth Models 14.4.2.1. Constant and Variable Average Number of Function Evaluations 14.4.2.2. Performance Assessment 14.5. Conclusion and Future Work Chapter 15: Alternating α-Series Process 15.1. Introduction 15.2. α-Series Process 15.3. Alternating α-Series Process 15.3.1. Introduction 15.3.2. Counting Process 1: N(t) Number of Cycles Completed by Time t 15.3.3. Counting Process 2: M(t) Number of Failures up to Time t 15.4. Mean and Variance of the Counting Processes N(t) and M(t) 15.4.1. Computing E(N(t)) and Var(N(t)) 15.4.2. Computing E(M(t)) and Var(M(t)) 15.5. Numerical Results 15.6. Application of an AAS Process to Modelling Warranty Data 15.6.1. Procedure for Fitting an AAS Process 15.6.2. Warranty Data 15.6.3. Fitting an AAS Process to the Warranty Claims Data 15.7. Conclusion Chapter 16: Staggered Testing Strategy 16.1. Introduction 16.2. PFD of Redundant Safety Instrumented Systems with 2 and 3 Units 16.2.1. Optimal Staggered Testing in SIS with 1 out of 2 Structures 16.2.2. Optimal Staggered Testing in SIS with 1 out of 3 Structures (Equal Testing Interval) 16.3. Staggered Testing Strategies with Different Testing Intervals 16.3.1. Cases with Three Groups and Two Different Testing Intervals 16.3.2. Cases with Three Different Testing Intervals 16.3.3. Comparison between Different Testing Strategies 16.4. Cost Models of Staggered Testing Strategies 16.5. Conclusions Chapter 17: Modules of Multi-State Systems 17.1. Introduction 17.2. Ordered Set Theoretical Preliminaries 17.2.1. Composite Function 17.2.2. Product Ordered Set 17.3. Basic Concepts 17.4. A Module of a System 17.4.1. Definition and Basic Properties 17.5. Hierarchy of Multi-State Systems 17.5.1. Homogeneous System 17.5.2. Three Modules Theorem of Binary-State Systems 17.6. EEBW system 17.7. Introduction to Three Modules Theorem for Multistate Systems 17.8. Concluding Remarks Chapter 18: A Postponed Repair Model for a Mission-Based System 18.1. Introduction 18.2. Notations and Assumptions 18.3. Cost Model under the Proposed Policy 18.3.1. Expected Number of Missions Successively Completed by t 18.3.2. Three Renewal Cases and the Corresponding Occurrence Probabilities 18.3.2.1. A Failure Renewal 18.3.2.2. A Random Inspection Renewal 18.3.2.3. A Periodic Inspection Renewal 18.3.3. The Expected Renewal Cycle Cost 18.3.4. The Expected Renewal Cycle Length 18.4. Three Maintenance Policies 18.5. Numerical Examples 18.6. Conclusions and Further Research