ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Progress in Adhesion and Adhesives, Volume 6

دانلود کتاب پیشرفت در چسبندگی و چسب ها، جلد 6

Progress in Adhesion and Adhesives, Volume 6

مشخصات کتاب

Progress in Adhesion and Adhesives, Volume 6

دسته بندی: مواد
ویرایش:  
نویسندگان:   
سری: Adhesion and Adhesives: Fundamental and Applied Aspects 
ISBN (شابک) : 111984665X, 9781119846659 
ناشر: Wiley-Scrivener 
سال نشر: 2021 
تعداد صفحات: 893 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 39 مگابایت 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Progress in Adhesion and Adhesives, Volume 6 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت در چسبندگی و چسب ها، جلد 6 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half-Title Page
Series Page
Title Page
Copyright Page
Contents
Preface
1 Hot-Melt Adhesives: Fundamentals, Formulations, and Applications: A Critical Review
	1.1 Introduction to Hot-Melt Adhesives (HMAs)
	1.2 Formulation of Hot-Melt Adhesives
		1.2.1 Theories or Mechanisms of Adhesion
			1.2.1.1 Mechanical Interlocking Theory
			1.2.1.2 Electrostatic Theory
			1.2.1.3 Diffusion Theory
			1.2.1.4 Physical Adsorption or Wetting Theory
			1.2.1.5 Chemical Bonding
		1.2.2 Intermolecular Forces between Adhesives and Adherend
		1.2.3 Thermodynamic Model of Adhesion
		1.2.4 Bonded Joints
		1.2.5 Surface Preparation for HMA Application
			1.2.5.1 Solvent Degreasing
			1.2.5.2 Chemically-Active Surface
	1.3 Fundamental Aspects of Adhesive Behavior of HMAs
		1.3.1 Mechanical and Physical Behaviors
		1.3.2 Blending Behavior and the Effects of Other Ingredients
		1.3.3 Polymeric Behavior
	1.4 Preparation of HMAs Using Various Polymers
		1.4.1 HMAs by Grafting Acrylic and Crotonic Acids on Metallocene Ethylene-Octene Polymers
			1.4.1.1 Solution Grafting
			1.4.1.2 Melt Grafting
			1.4.1.3 Preparation of HMAs
		1.4.2 Cross-Linked Polyurethane Hot-Melt Adhesives (PUR-HMAs)
		1.4.3 Soybean Protein Isolate and Polycaprolactone Based HMAs (SPIP-HMAs)
	1.5 Mechanical Analysis of Hot-Melt Adhesives
		1.5.1 Fracture Mechanics of HMAs
			1.5.1.1 Fracture Energy Measurement
		1.5.2 Stress-Strain, and Frequency-Temperature Sweep Tests for Viscoelasticity
	1.6 Industrial Applications of Hot-Melt Adhesives
		1.6.1 Medical Applications
		1.6.2 Electronic Applications
		1.6.3 Anticorrosion Applications
		1.6.4 Food Packaging Applications
		1.6.5 Textile Applications
	1.7 Current Challenges and Future Scope of HMAs
	1.8 Summary
	Acknowledgment
	References
2 Optimization of Adhesively Bonded Spar-Wingskin Joints of Laminated FRP Composites Subjected to Pull-Off Load: A Critical Review
	2.1 Introduction
	2.2 Finite Element Analysis of SWJ
		2.2.1 Geometry and Configuration
		2.2.2 Finite Element Modeling
		2.2.3 Validation and Convergence Study
	2.3 Taguchi Method of Optimization
		2.3.1 Optimization of Material and Lamination Scheme
		2.3.2 Geometrical Parameter
	2.4 Results and Discussion
		2.4.1 Material and Lamination Scheme
			2.4.1.1 Analysis of Variance (ANOVA)
		2.4.2 Geometrical Parameter
			2.4.2.1 Analysis of Variance (ANOVA)
	2.5 Conclusions
	References
3 Contact Angle Hysteresis – Advantages and Disadvantages: A Critical Review
	3.1 Introduction
	3.2 Contact Angle and Hysteresis Measurement
		3.2.1 Theoretical Treatment of Static Contact Angles
		3.2.2 Modeling of Dynamic Contact Angles
		3.2.3 Modelling Contact Angle Hysteresis
	3.3 Advantages of Contact Angle Hysteresis
	3.4 Disadvantages of Contact Angle Hysteresis
	3.5 Summary
	3.6 Acknowledgements
	References
4 Test Methods for Fibre/Matrix Adhesion in Cellulose Fibre-Reinforced Thermoplastic Composite Materials: A Critical Review
	4.1 Introduction
	4.2 Terms and Definitions
		4.2.1 Fibres
		4.2.2 Fibre Bundle
		4.2.3 Equivalent Diameter
		4.2.4 Critical Length
		4.2.5 Aspect Ratio and Critical Aspect Ratio
		4.2.6 Single Element versus Collective
		4.2.7 Interface and Interphase
		4.2.8 Adhesion and Adherence
		4.2.9 Practical & Theoretical Fibre/Matrix Adhesion
	4.3 Test Methods for Fibre/Matrix Adhesion
		4.3.1 Overview
		4.3.2 Single Fibre/Single Fibre Bundle Tests
			4.3.2.1 Pull-Out Test
			4.3.2.2 Microbond Test
		4.3.3 Test Procedures for Fibre/Matrix Adhesion
			4.3.3.1 Pull-Out Test
			4.3.3.2 Microbond Test
			4.3.3.3 Evaluation of Characteristic Values from Pull-Out and Microbond Tests
			4.3.3.4 Fragmentation Test
	4.4 Comparison of IFSS Data
	4.5 Influence of Fibre Treatment on the IFSS
	4.6 Summary
	Acknowledgements
	References
5 Bioadhesives in Biomedical Applications: A Critical Review
	5.1 Introduction
	5.2 Theories of Bioadhesion
		5.2.1 Factors Affecting Bioadhesion
	5.3 Different Polymers Used as Bioadhesives
		5.3.1 Collagen-Based Bioadhesives
		5.3.2 Chitosan-Based Bioadhesives
		5.3.3 Albumin-Based
		5.3.4 Dextran-Based Bioadhesives
		5.3.5 Gelatin-Based Bioadhesives
		5.3.6 Poly(ethylene glycol)-Based Bioadhesives
		5.3.7 Poly(acrylic acid)-Based Bioadhesives
		5.3.8 Poly(lactic-co-glycolic acid) (PLGA)-Based Bioadhesives
	5.4 Summary
	References
6 Mucoadhesive Pellets for Drug Delivery Applications: A Critical Review
	6.1 Introduction
	6.2 Mucoadhesive Polymers
	6.3 Pellets
		6.3.1 Preparation and Evaluation of Pellets
		6.3.2 Mucoadhesive Pellets for Drug Delivery Applications
	6.4 Summary and Prospects
	Conflict of Interest
	References
7 Bio-Inspired Icephobic Coatings for Aircraft Icing Mitigation: A Critical Review
	7.1 Introduction
	7.2 The State-of-the-Art Icephobic Coatings/Surfaces
		7.2.1 Lotus-Leaf-Inspired Superhydrophobic Surfaces (SHS) with Micro-/Nano-Scale Surface Textures
		7.2.2 Pitcher-Plant-Inspired Slippery Liquid-Infused Porous Surfaces (SLIPS)
	7.3 Impact Icing Process Pertinent to Aircraft Inflight Icing Phenomena
	7.4 Preparation of Typical SHS and SLIPS Coatings/Surfaces
	7.5 Measurements of Ice Adhesion Strengths on Different Icephobic Coatings/Surfaces
	7.6 Icing Tunnel Testing to Evaluate the Icephobic Coatings/Surfaces for Impact Icing Mitigation
	7.7 Characterization of Rain Erosion Effects on the Icephobic Coatings
	7.8 Summary and Conclusions
	Acknowledgments
	References
8 Wood Adhesives Based on Natural Resources: A Critical Review Part I. Protein-Based Adhesives
	List of Abbreviations
	8.1 Overview and Challenges for Wood Adhesives Based on Natural Resources
		8.1.1 Definition of Wood Adhesives Based on Natural Resources
		8.1.2 Motivation to Use Wood Adhesives Based on Natural Resources
		8.1.3 Combined Use of Synthetic and Naturally-Based Wood Adhesives
		8.1.4 Review Articles on Wood Adhesives Based on Natural Resources
		8.1.5 Motivation for this Review Article in Four Parts in the Journal “Reviews of Adhesion and Adhesives”
		8.1.6 Overview on Wood Adhesives Based on Natural Resources
		8.1.7 Requirements, Limitations, and Opportunities for Wood Adhesives Based on Natural Resources
		8.1.8 Synthetic and Natural Crosslinkers
		8.1.9 Future of Wood Adhesives Based on Natural Resources
	8.2 Protein-Based Adhesives
		8.2.1 Introduction
			8.2.1.1 Chemical Structure of Proteins
			8.2.1.2 Proteinaceous Feedstock
			8.2.1.3 Wood Bonding with Proteins
		8.2.2 Plant-Based Proteins
			8.2.2.1 Overview on Plant-Based Protein Sources and Types
			8.2.2.2 Soy Proteins
			8.2.2.3 Soy Protein as Wood Adhesive
			8.2.2.4 Thermal Treatment of Soy Proteins
		8.2.3 Animal-Based Proteins
			8.2.3.1 Types and Sources of Animal-Based Proteins
			8.2.3.2 Mussels (Marine) Proteins
			8.2.3.3 Slaughterhouse Waste as Source of Proteins
			8.2.3.4 Proteins from Specified Risk Materials (SRMs)
		8.2.4 Properties of Protein-Based Adhesives
		8.2.5 Denaturation and Modification of Proteins
			8.2.5.1 Modification of Proteins
			8.2.5.2 Crosslinking of Proteins
		8.2.6 Proteins in Combination with Other Natural Adhesives and Natural Crosslinkers
		8.2.7 Proteins in Combination with Synthetic Adhesive Resins and Crosslinkers
		8.2.8 Application of Protein-Based Wood Adhesives
	8.3 Summary
	General Literature (Overview and Review Articles) for Wood Adhesives Based on Natural Resources
	Protein-Based Adhesives
	Plant Proteins (including Soy)
	Animal Proteins and Other Sources
	References
9 Wood Adhesives Based on Natural Resources: A Critical Review Part II. Carbohydrate-Based Adhesives
	List of Abbreviations
	9.1 Types and Sources of Carbohydrates Used as Wood Adhesives
	9.2 Modification of Starch for Possible Use as Wood Adhesive
	9.3 Citric Acid as Naturally-Based Modifier and Co-Reactant
	9.4 Combination and Crosslinking of Carbohydrates with Natural and Synthetic Components
	9.5 Degradation and Repolymerization of Carbohydrates
	9.6 Summary
	General Literature (Overview and Review Articles) for CarbohydrateBased Adhesives
	References
10 Wood Adhesives Based on Natural Resources: A Critical Review Part III. Tannin- and Lignin-Based Adhesives
	List of Abbreviations
	10.1 Introduction
	10.2 Tannin-Based Adhesives
		10.2.1 Chemistry of Condensed Tannins
		10.2.2 Types of Condensed Tannins
		10.2.3 Extraction, Purification, and Modification Methods for Tannins
		10.2.4 Hardening and Crosslinking of Tannins
		10.2.5 Hardening of Tannins by Hexamethylenetetramine (Hexamine)
		10.2.6 Autocondensation of Tannins
		10.2.7 Combination of Tannins with Natural Components
		10.2.8 Combination of Tannins with Synthetic Components and Crosslinkers
	10.3 Lignin-Based Adhesives
		10.3.1 Chemistry and Structure of Lignin
		10.3.2 Lignin as Adhesive
		10.3.3 Analysis of Molecular Structure
		10.3.4 Modification of Lignin
		10.3.5 Lignin as Sole Adhesive and Chemical Activation of the Wood Surface
		10.3.6 Laccase Induced Activation of Lignin
		10.3.7 Pre-Methylolation of Lignin
		10.3.8 Incorporation of Lignin into PF Resins
		10.3.9 Reactions of Lignin With Various Aldehydes and Other Naturally-Based Components
		10.3.10 Reaction of Lignin With Synthetic Components and Crosslinkers
	10.4 Summary
	General Literature (Overview and Review Articles) for Tannin and Lignin
	References
11 Adhesion in Biocomposites: A Critical Review
	11.1 Introduction
	11.2 Biocomposite Processing Methods
	11.3 Factors Enhancing Adhesion Property in Biocomposites
		11.3.1 Effect of Chemical Modification
		11.3.2 Effect of Enzymatic Modification
		11.3.3 Effect of Physical Modification
	11.4 Physical and Chemical Characterization
	11.5 Adhesion in Polymer Biocomposites with Specific Applications
		11.5.1 Biomedical Applications
		11.5.2 Dye Adsorption and Removal
		11.5.3 Automotive Applications
	11.6 Summary
	References
12 Vacuum UV Surface Photo-Oxidation of Polymeric and Other Materials for Improving Adhesion: A Critical Review
	12.1 Introduction
	12.2 Vacuum UV Photo-Oxidation Process
		12.2.1 VUV Background
		12.2.2 VUV Radiation
			12.2.2.1 Emission from Excited Atoms
			12.2.2.2 Emission from High Pressure Rare Gas Plasmas
			12.2.2.3 Emission from Rare-Gas Halides and Halogen Dimers
		12.2.3 VUV Optical Filters
		12.2.4 Penetration Depths of VUV Radiation in Polymers
		12.2.5 Analytical Methods for Surface Analysis
		12.2.6 VUV Photochemistry of Oxygen
		12.2.7 Reaction of O Atoms and Ozone with a Polymer Surface
	12.3 Adhesion to VUV Surface Photo-Oxidized Polymers
		12.3.1 Fluoropolymers
		12.3.2 Nafion
		12.3.3 Polyimides
		12.3.4 Metal-Containing Polymers
		12.3.5 Polyethylene (PE)
		12.3.6 Polystyrene
		12.3.7 Other Polymers
			12.3.7.1 Polypropylene (PP)
			12.3.7.2 Poly(ethylene terephthalate) (PET)
			12.3.7.3 Poly(ethylene 2,6-naphthalate) (PEN)
			12.3.7.4 Cyclo-Olefin Polymers
			12.3.7.5 Polybenzimidazole (PBI)
	12.4 Applications of VUV Surface Photo-Oxidation to Other Materials
		12.4.1 Carbon Nanotubes and Diamond
		12.4.2 Metal Oxides
	12.5 Prospects
		12.5.1 Sustainable Polymers
	12.6 Summary
	References
13 Bioand Water-Based Reversible Covalent Bonds Containing Polymers (Vitrimers) and Their Relevance to Adhesives – A Critical Revie
	List of Abbreviations
	13.1 Introduction
		13.1.1 RCBPs Classification
		13.1.2 Reversible Bonds
			13.1.2.1 General Reversible Covalent Bonds
			13.1.2.2 Dynamic Reversible Covalent Bonds
		13.1.3 RCBPs Applications
			13.1.3.1 Recyclability
			13.1.3.2 Self-Healing Materials
			13.1.3.3 Shape-Memory Materials
			13.1.3.4 Smart Composites
			13.1.3.5 Adhesives
			13.1.3.6 Dynamic Hydrogels and Biomedical Materials
	13.2 Bio-Based RCBPs
		13.2.1 Bio-Based Polymers
			13.2.1.1 Classification of Bio-Based Polymers
			13.2.1.2 Common Synthetic Bio-Based Polymers
		13.2.2 Bio-Based RCBPs
			13.2.2.1 Bio-Based DA RCBPs
			13.2.2.2 Bio-Based Acylhydrazone-Containing RCBPs
			13.2.2.3 Bio-Based Imine (Schiff-Base)-Containing RCBPs
			13.2.2.4 Bio-Based ß-Hydroxy Ester Containing RCBPs
			13.2.2.5 Bio-Based Disulfide-Containing RCBPs
	13.3 Water-Based RCBPs
		13.3.1 Solvents in Polymer Industry
			13.3.1.1 Organic and Inorganic Solvents Used in RCBPs Synthesis
			13.3.1.2 Water-Based Polymers
		13.3.2 Water-Based RCBPs
			13.3.2.1 Acylhydrazone-Containing Water-Based RCBPs
			13.3.2.2 Schiff-Base-Containing Water-Based RCBPs
	13.4 Summary
	13.5 Authors Contributions
	13.6 Funding
	13.7 Conflict of Interest
	References
14 Superhydrophobic Surfaces by Microtexturing: A Critical Review
	14.1 Introduction
		14.1.1 Background
		14.1.2 State-of-the-Art
			14.1.2.1 Microtexture Geometry
			14.1.2.2 Ice Adhesion
			14.1.2.3 Optical Transparency
			14.1.2.4 Anti-Condensation Surfaces
	14.2 Fabrication of Microtextured Surfaces
		14.2.1 Surface Materials
		14.2.2 Methods of Fabrication of Superhydrophobic Surfaces
			14.2.2.1 Plasma Treatment
			14.2.2.2 Laser Ablation
			14.2.2.3 Chemical Etching
	14.3 Properties of Microtextured Surfaces
		14.3.1 Antifogging
		14.3.2 Antibacterial
		14.3.3 Antireflection
		14.3.4 Self-Cleaning
		14.3.5 Effect of Temperature on Surface Properties
	14.4 Applications
		14.4.1 Anti-Icing
		14.4.2 Drag Reduction
		14.4.3 Anti-Corrosion
		14.4.4 Solar Cells
		14.4.5 Water-Repellent Textiles
	14.5 Future Outlook
	Acknowledgments
	References
15 Structural Acrylic Adhesives: A Critical Review
	15.1 Introduction
	15.2 Compositions and Chemistries
		15.2.1 Base Monomer
		15.2.2 Thickeners and Elastomeric Components
		15.2.3 Adhesive Additives
		15.2.4 Initiators
		15.2.5 Aerobically Curable Systems
		15.2.6 Fillers
	15.3 Physico-Mechanical Properties of SAAs
	15.4 Adhesives for Low Surface Energy Materials
		15.4.1 Initiators Based on Trialkylboranes
		15.4.2 Alternative Types of Boron-Containing Initiators
		15.4.3 Additives Modifying the Curing Stage
		15.4.4 Hybrid SAAs
	15.5 Comparison of the Properties of SAAs and Other Reactive Adhesives
	15.6 Summary and Outlook
	References
16 Current Progress in Mechanically Durable Water-Repellent Surfaces: A Critical Review
	16.1 Introduction
	16.2 Fundamentals of Superhydrophobicity and SLIPs
		16.2.1 Intermolecular Forces and Wetting
		16.2.2 Young’s Contact Angle and Surface Chemistry Limitation
		16.2.3 Superhydrophobicity by Texturing
		16.2.4 Hysteresis and Tilt Angle
		16.2.5 Slippery Liquid-Infused Porous Surfaces (SLIPs)
	16.3 Techniques to Achieve Water-Repellent Surfaces
		16.3.1 Superhydrophobic Composite Coatings
		16.3.2 Superhydrophobic Textured Surfaces
		16.3.3 Liquid-Impregnated Surfaces/SLIPs
	16.4 Durability Testing
	16.5 Future Trends
	16.6 Summary
	References
17 Mussel-Inspired Underwater Adhesivesfrom Adhesion Mechanisms to Engineering Applications: A Critical Review
	17.1 Introduction
	17.2 Adhesion Mechanisms of Mussel and the Catechol Chemistry
		17.2.1 Hydrogen Bonding and Metal Coordination
		17.2.2 Hydrophobic Interaction
		17.2.3 Cation/Anion/π-π Interactions
		17.2.4 The Flexibility of the Molecular Chain
	17.3 Catechol-Functionalized Adhesive Materials
		17.3.1 Permanent/High-Strength Adhesives
		17.3.2 Temporary/Smart Adhesives
			17.3.2.1 pH-Responsive Adhesives
			17.3.2.2 Electrically Responsive Adhesives
			17.3.2.3 Thermally Responsive Adhesives
			17.3.2.4 Photo-Responsive Adhesives
		17.3.3 Applications
	17.4 Summary and Outlook
	References
18 Wood Adhesives Based on Natural Resources: A Critical Review Part IV. Special Topics
	List of Abbreviations
	18.1 Liquified Wood
	18.2 Pyrolysis of Wood
	18.3 Replacement of Formaldehyde in Resins
	18.4 Unsaturated Oil Adhesives
	18.5 Natural Polymers
		18.5.1 Poly(lactic acid) (PLA)
		18.5.2 Natural Rubber
	18.6 Poly(hydroxyalkanoate)s (PHAs)
	18.7 Thermoplastic Adhesives Based on Natural Resources
		18.7.1 Polyurethanes (PURs)
		18.7.2 Polyamides (PAs)
		18.7.3 Epoxies
	18.8 Cellulose Nanocrystals (CNCs) and Cellulose Nanofibrils (CNFs)
		18.8.1 Cellulose Nanofibrils (CNFs) as Sole Adhesives
		18.8.2 Cellulose Nanofibrils as Components of Adhesives
	18.9 Cashew Nut Shell Liquid (CNSL)
	18.10 Summary
	General Literature (Overview and Review Articles) for Wood Adhesives Based on Natural Resources (for further information see [1]
	References
19 Cold Atmospheric Pressure Plasma Technology for Modifying Polymers to Enhance Adhesion: A Critical Review
	19.1 Introduction
	19.2 Atmospheric Pressure Plasma Discharge
		19.2.1 Corona Discharge
		19.2.2 Dielectric Barrier Discharge (DBD)
		19.2.3 Cold Atmospheric Pressure Plasma Jet (CAPPJ)
		19.2.4 Polymer Surface Modification by CAPPJ
	19.3 Experimental Setup for the Generation of Cold Atmospheric Pressure Plasma Jet
	19.4 Methods and Materials for Surface Modification of Polymers
	19.5 Direct Method for the Determination of Temperature of Cold Atmospheric Pressure Plasma Jet (CAPPJ)
	19.6 Results and Discussion
		19.6.1 Temperature Determination of Cold Atmospheric Pressure Plasma Jet (CAPPJ)
		19.6.2 Electrical Characterization of the CAPPJ
			19.6.2.1 Power Balance Method
			19.6.2.2 Current Density Method
			19.6.2.3 Determination of Energy Dissipation in the Cold Plasma Discharge per Cycle by the Lissajous Figure Method
		19.6.3 Optical Characterization of CAPPJ
			19.6.3.1 Line Intensity Ratio Method
			19.6.3.2 Stark Broadening Method
			19.6.3.3 Boltzmann Plot Method
			19.6.3.4 Determination of the Rotational Temperature
			19.6.3.5 Determination of the Vibrational Temperature
	19.7 Surface Characterization/Adhesion Property of Polymers
		19.7.1 Contact Angle Measurements and Surface Free Energy Determination
			19.7.1.1 Poly (ethylene terephthalate) (PET)
			19.7.1.2 Polypropylene (PP)
			19.7.1.3 Polyamide (PA)
			19.7.1.4 Polycarbonate (PC)
		19.7.2 FTIR Analysis
			19.7.2.1 Fourier Transform Infrared (FTIR) Analysis of PET
			19.7.2.2 Fourier Transform Infrared (FTIR) Analysis of PP
		19.7.3 SEM Analysis
			19.7.3.1 SEM Images of the Control and APPJ Treated PET
			19.7.3.2 SEM Images of the Control and APPJ Treated PP
	19.8 Summary
	Acknowledgements
	Data Availability
	Conflict of Interest
	References




نظرات کاربران