ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Proceedings of the 20th International Conference on Fluidized Bed Combustion

دانلود کتاب مجموعه مقالات بیستمین کنفرانس بین المللی احتراق بستر سیال

Proceedings of the 20th International Conference on Fluidized Bed Combustion

مشخصات کتاب

Proceedings of the 20th International Conference on Fluidized Bed Combustion

ویرایش: Jointly published with Tsinghua University Press2010 
نویسندگان: , , , , , , ,   
سری:  
ISBN (شابک) : 9783642026812, 9783642026829 
ناشر: Springer Berlin Heidelberg 
سال نشر: 2010 
تعداد صفحات: 1184 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 59 مگابایت 

قیمت کتاب (تومان) : 50,000



کلمات کلیدی مربوط به کتاب مجموعه مقالات بیستمین کنفرانس بین المللی احتراق بستر سیال: شیمی صنایع/مهندسی شیمی، مهندسی صنایع و تولید، مهندسی مکانیک، فناوری انرژی، مهندسی محیط زیست/بیوتکنولوژی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Proceedings of the 20th International Conference on Fluidized Bed Combustion به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مجموعه مقالات بیستمین کنفرانس بین المللی احتراق بستر سیال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مجموعه مقالات بیستمین کنفرانس بین المللی احتراق بستر سیال

مجموعه مقالات بیستمین کنفرانس بین المللی احتراق بستر سیال (FBC) 9 سخنرانی عمومی و 175 مقاله فنی بررسی شده ارائه شده در کنفرانسی که در شیان چین در 18-21، 2009 برگزار شد، جمع آوری می کند. این کنفرانس بیستمین کنفرانس از یک سری بود که آخرین نتایج تحقیقات بنیادی و همچنین تجربه کاربردی از کارخانه‌های آزمایشی، نمایش‌ها و واحدهای صنعتی در رابطه با علم و فناوری FBC را پوشش می‌داد. میزبان مشترک دانشگاه Tsinghua، دانشگاه جنوب شرقی، دانشگاه ژجیانگ، شورای برق چین و فدراسیون صنعت ماشین آلات چین بود. یکی از ویژگی‌های ویژه مقالات، تعادل بین مقالات ارسال شده توسط متخصصان صنعت و مقالات ارسال شده توسط محققان دانشگاهی است که هدف آن به کارگیری دانش دانشگاهی و همچنین تعریف زمینه‌های جدید برای تحقیق است. نویسندگان این مقالات فعال ترین محققان، توسعه دهندگان فناوری، اپراتورها و سازندگان تاسیسات مجرب و نماینده هستند. آنها آخرین نتایج تحقیقات، توسعه و پروژه های پیشرفته و تجربه مفید را ارائه کردند. این روند به بخش‌های زیر تقسیم می‌شود: • فناوری، بهره‌برداری و طراحی بویلر CFB • تحقیقات بنیادی در مورد سیال‌سازی و احتراق سیال • جذب C02 و حلقه‌های شیمیایی • گازسازی • مدل‌سازی و شبیه‌سازی فناوری FBC • محیط‌ها و کنترل آلاینده‌ها • سوخت‌های پایدار. به عنوان مرجع ایده برای محققان، مهندسان، دانشگاهیان و دانشجویان فارغ التحصیل، اپراتورهای کارخانه، تولید کنندگان دیگ بخار، تامین کنندگان قطعات و مدیران فنی که در زمینه تحقیقات بنیادی FBC، توسعه فناوری و کاربردهای صنعتی کار می کنند، ارائه شود.


توضیحاتی درمورد کتاب به خارجی

The proceedings of the 20th International Conference on Fluidized Bed Combustion (FBC) collect 9 plenary lectures and 175 peer-reviewed technical papers presented in the conference held in Xi'an China in May 18-21,2009. The conference was the 20th conference in a series, covering the latest fundamental research results, as well as the application experience from pilot plants, demonstrations and industrial units regarding to the FBC science and technology. It was co-hosted by Tsinghua University, Southeast University, Zhejiang University, China Electricity Council and Chinese Machinery Industry Federation. A particular feature of the proceedings is the balance between the papers submitted by experts from industry and the papers submitted by academic researchers, aiming to bring academic knowledge to application as well as to define new areas for research. The authors of the proceedings are the most active researchers, technology developers, experienced and representative facility operators and manufacturers. They presented the latest research results, state-of-the-art development and projects, and the useful experience. The proceedings are divided into following sections: • CFB Boiler Technology, Operation and Design • Fundamental Research on Fluidization and Fluidized Combustion • C02 Capture and Chemical Looping • Gasification • Modeling and Simulation on FBC Technology • Environments and Pollutant Control • Sustainable Fuels The proceedings can be served as idea references for researchers, engineers, academia and graduate students, plant operators, boiler manufacturers, component suppliers, and technical managers who work on FBC fundamental research, technology development and industrial application.



فهرست مطالب

Cover......Page 1
Proceedings of the 20th International Conference on Fluidized Bed Combustion......Page 4
Copyright Page ......Page 5
PREFACE......Page 6
Table of Contents ......Page 10
Keynotes......Page 20
CFB BOILER DEVELOPMENT HISTORY IN CHINA......Page 22
Axial and peripheral distributions of heat transfer coefficient and heat flux......Page 24
Axial profile of heat release fraction......Page 25
Misdistribution of hydrodynamics in a CFB boiler with multiple cyclones......Page 26
Capacity scaling up for efficiency improvement......Page 27
S02 Removal in a CFB boiler......Page 28
Energy saving CFB process......Page 29
CONCLUDING REMARKS......Page 30
REFRENCES......Page 31
FLUID DYNAMICS......Page 32
Modelling of the freeboard......Page 33
MASS BALANCES......Page 34
ENERGYBALANCE......Page 36
Drying and devolatilisation......Page 37
Chemical conversion of char......Page 38
Comminution of solid particles......Page 40
Conversion of tar......Page 41
CONCLUSIONS......Page 42
NOTATIONS......Page 43
REFERENCES......Page 44
INTRODUCTION......Page 46
POTENTIALS OF BIOMASS FOR CO-COMBUSTION......Page 47
CHARACTERISTICS OF BIOMASS AS FUELS......Page 48
EXAMPLES OF BIOMASS CO-COMBUSTION IN EUROPE......Page 51
Examples of power plants with co-combustion......Page 52
A detailed investigation of co-combustion in the Duisburg power plant......Page 53
PERSPECTIVES OF BIOMASS CO-COMBUSTION......Page 57
SUMMARYAND CONCLUSIONS......Page 59
REFERENCES......Page 60
NITROGEN OXIDES NO, NO2, N2O......Page 62
HYDROCHLORIC ACID HCL, ALKALI, HEAVY METALS, DIOXINS......Page 64
REFERENCES......Page 66
INTRODUCTION......Page 68
MAIN FINDINGS OF OXY-FUEL CFB TECHNOLOGY......Page 69
SO2 emission characteristics......Page 70
NOx emission characteristics......Page 71
Bed temperature......Page 72
Sealing problems......Page 73
TECHNO-ECONOMIC STUDIES......Page 74
Hot or cool flue gas looping......Page 75
REFERENCES......Page 76
INTRODUCTION......Page 78
Scale-up......Page 80
Reducing CO2 emissions......Page 81
Advantages of CFB technology with emphasis on fuel flexibility......Page 82
Features......Page 85
Operational Performance......Page 86
FLEXI-BURNTM CFB - SOLUTION FOR CARBON CAPTURE......Page 87
REFERENCE......Page 88
FUELS......Page 90
FUEL FEEDING......Page 91
COMBUSTION RESULTS......Page 93
EMISSIONS......Page 96
CONCLUSIONS......Page 99
REFERENCES......Page 100
NUMERICAL METHOD......Page 102
FLOW CONFIGURATION......Page 104
Initialization of the simulations......Page 105
Lagrangian correlations......Page 106
Structure of the dispersed phase......Page 107
Structure of the carrier phase......Page 108
Eulerian statistics......Page 111
CONCLUSIONS......Page 113
REFERENCES......Page 114
Technical challenges......Page 116
Non technical challenges......Page 117
EBARA's TwinRec process......Page 118
Twin Reactor system......Page 119
Agglomerates......Page 120
REFERENCES......Page 121
CFB Boiler Technology, Operation and Design......Page 124
Developing new external heat exchanger......Page 126
100 MW CFB Boiler......Page 127
210 MW CFB Boiler......Page 128
H-shaped 330MW and M-shaped 300MW CFB Boilers......Page 129
REFERENCES......Page 130
THE BAIMA PROJECT IN CHINA......Page 132
BOILER DESIGN......Page 133
BREAKTHROUGH FURTHER TO BAIMA COMMISSIONINGAND OPERATION......Page 134
Cyclone......Page 138
REFERENCES......Page 139
INTRODUCTION......Page 140
COMBUSTION TECHNOLOGY......Page 141
PLANT DESCRIPTION......Page 142
CONCLUSIONS......Page 143
INTRODUCTION......Page 144
DESIGN AND SCALING UP......Page 145
PLANT PERFORMANCE......Page 146
REFERENCES......Page 150
THE DESIGN PRINCIPAL......Page 151
Furnace......Page 153
THE PERFORMANCE PREDICTION......Page 154
REFERENCES......Page 155
INTRODUCTION......Page 156
Startup......Page 157
Boiler load......Page 158
Control of the combustible content in the fly ash......Page 159
EMISSIONS......Page 160
REFERENCES......Page 161
Slurry conveying......Page 162
Design feature and operating experience of Yanzhou powerplant 50MW CFB boiler Boiler general arrangement......Page 163
Design feature......Page 164
Design feature and operating experience of Yanzhou powerplant 135MW CFB boiler Boiler general arrangement......Page 165
Performance coal......Page 166
Design feature of Huaibeilinhuan powerplant 300MW CFB boiler Boiler general arrangement......Page 167
Design feature......Page 168
REFERENCES......Page 169
INTRODUCTION......Page 170
Bed temperature......Page 172
Availability......Page 173
CONCLUSIONS......Page 174
NOTATIONS......Page 175
NEW COMMERCIAL PROJECTS......Page 176
In-Bed Heat Exchanger......Page 179
DISCLAIMER......Page 180
EXPERIMENTAL......Page 181
PRIMARYAIR DISTRIBUTION SYSTEM......Page 182
RESULTS AND DISCUSSION......Page 184
REFERENCES......Page 185
EXPERIMENTAL......Page 186
Measuring Method......Page 187
RESULTS AND DISCUSSION......Page 188
REFERENCES......Page 190
Introduction to SIS......Page 191
Heat transfer area......Page 192
Suspension density......Page 193
Heat transfer coefficients and bed temperature......Page 194
Heat transfer coefficients and suspension density......Page 195
DISCUSSIONS......Page 196
REFERENCES......Page 197
WATER WALL DESIGN......Page 199
Experimental facility and method......Page 200
Empirical correlations......Page 201
HYDRAULIC CALCULATION......Page 202
REFERENCES......Page 204
EXPERIMENTAL......Page 205
Influence of bed temperature and excess air......Page 206
REFERENCES......Page 207
Sampling and sample analysis......Page 208
Mercury emission characteristics......Page 209
The carbon amount effect on the mercury adsorption......Page 210
The pore structure of fly ash......Page 211
REFERENCES......Page 212
THEORETIC ANALYSIS......Page 214
FIELD TESTS IN CFB BOILERS......Page 216
REFERENCES......Page 217
INTRODUCTION......Page 219
RESULTS......Page 221
REFERENCES......Page 224
INTRODUCTION......Page 225
DESIGN PRINCIPLE AND CONSIDERATION......Page 226
FIELD TEST......Page 228
REFERENCES......Page 229
INTODUCTION......Page 231
Theoretical fundamentals......Page 232
Optimization on the furnace......Page 233
OPERATION PRACTICE OF THE LOW BED INVENTORY CFB BOILERS......Page 234
The comparison......Page 235
CONCLUSIONS......Page 236
REFERENCES......Page 237
Unplanned outage times......Page 238
Flue gas temperature......Page 239
Ignition and support oil......Page 240
SO2 emission control status......Page 241
REFERENCES......Page 242
INTRODUCTION......Page 243
CIRCULATING FLUIDIZED BED COMBUSTOR......Page 244
Influence of the Fluidization Velocity......Page 245
CFBC Setup for Operational Stability......Page 246
Experimental Results for Operational Stability......Page 247
NOTATIONS......Page 248
REFERENCES......Page 249
STATUS ANALYSIS OF BOTTOMASH COOLER......Page 250
INDUSTRIALAPPLICATION STATUS......Page 252
Results and discussion of cold test......Page 253
CONCLUSIONS......Page 254
REFERENCES......Page 255
Design parameters......Page 256
Fluidization quality......Page 257
Bed temperature distribution......Page 258
Parameters of the main loop......Page 259
Typical operation parameters......Page 260
REFERENCES......Page 261
LOAD RATE......Page 262
ECONOMIC INDEX......Page 263
Erosion......Page 264
REFERENCES......Page 265
CYCLONE SEPARATOROF CFB BOILER......Page 266
Three-ply structure of fire-resistant anti-wear layer anchor brick on side wall......Page 267
REFERENCES......Page 268
Furnace dense phase zone and lower part of water cooling expansion wall......Page 269
Cyclone separator......Page 270
Non-metallic Material......Page 271
Abrasion resistant coating used on the metallic surfaces......Page 272
CONCLUDING REMARKS......Page 273
REFERENCES......Page 274
Sampling......Page 275
Coal analysis......Page 276
Mercury balance......Page 277
Mercury removal......Page 278
.REFERENCES......Page 279
INTRODUCTION......Page 281
EXPERIMENTAL......Page 282
Combustion performance......Page 283
Influence of heavy metal in the fly ash and bottom ash......Page 285
Behavior of Hel in the Flue Gas......Page 286
CONCLUSIONS......Page 288
REFERENCES......Page 289
EXPERIMENTAL......Page 290
Combustion Test Results......Page 291
REFERENCES......Page 295
INTRODUCTION......Page 296
EXPERIMENTAL......Page 297
RESULTS ANDDISCUSSION......Page 298
REFERENCES......Page 300
INTRODUCTION......Page 301
RESULTS ANDDISCUSSION......Page 302
REFERENCES......Page 306
Fundamental Research on Fluidization and Fludized Combustion......Page 308
INTRODUCTION......Page 310
EXPERIMENTAL......Page 311
RESULTS AND DISCUSSION......Page 312
Comparison of Powder Characterization Techniques......Page 314
REFERENCES......Page 316
Velocity of Complete Fluidization......Page 317
Discrete Distribution of Fractions......Page 318
Continuous Distribution of Fractions......Page 320
ANALYSIS OF THE INFLUENCE OF FINE FRACTIONS ON THE FLUIDIZATION VELOCITY OF COARSE PARTICLES......Page 321
NOTATIONS......Page 322
REFRENCES......Page 323
INTRODUCTION......Page 324
EXPERIMENTAL......Page 325
Minimum fluidization velocity......Page 326
Solid circulation rate (Gs)......Page 327
REFERENCES......Page 328
EXPERIMENTAL......Page 330
Identification of fluidization regimes......Page 331
Bubbling to turbulent regime transition......Page 333
ACKNOWLEDGEMENT......Page 334
REFERENCES......Page 335
Cold circulating fluidized bed model......Page 336
Reflective optical fiber solids concentration measuring system......Page 337
The bottom zone flow properties without air staging......Page 338
The bottom zone flow properties with air staging......Page 339
ACKNOWLEDGEMENTS......Page 341
REFERENCES......Page 342
Apparatus......Page 343
RESULTS AND DISCUSSION......Page 344
Effect of feeding particle size......Page 345
Effect of feeding gas velocity......Page 346
Effect of fluidization gas velocity......Page 347
REFERENCES......Page 348
INTRODUCTION......Page 349
Coals tested......Page 350
Effect of carbon and volatile matter contents......Page 351
REFERENCES......Page 353
Experimental setup and materials......Page 354
MODEL DEVELOPMENT......Page 355
Radial distribution of voidage......Page 356
VERIFICATIONAND DISCUSSIONS......Page 357
REFERENCES......Page 358
INTRODUCTION......Page 360
Flow non-uniformity in circulation loops......Page 361
REFERENCES......Page 363
EXPERIMENTAL......Page 364
Solids fraction......Page 365
Particle velocity......Page 366
EFFECT OFAZIMUTHALANGLE......Page 367
REFERENCES......Page 368
EXPERIMENTAL PROGRAMME......Page 369
Effect of suspension density......Page 370
Local heat transfer coefficient variation......Page 371
COMPARISON......Page 372
PROPOSED CORRELATION......Page 373
A General Dimensional Correlation......Page 374
REFERENCES......Page 375
SUPERCRITICALWATER TEST RIG IN TSINGHUA UNIVERSITY......Page 376
CALCULATION OF TEMPERATURE OF INNER WALL OF THE TUBE......Page 377
EXPERIMENTAL RESULTS......Page 378
REFERENCES......Page 379
Materials......Page 380
The effects of the temperature of the drying medium......Page 381
The effects of the flow rate of the drying medium......Page 382
Modeling investigation of lignite drying......Page 383
NOTATIONS......Page 384
REFERENCES......Page 385
INTRODUCTION......Page 386
EXPERIMENTAL SYSTEM......Page 387
Fluidization characteristic of the materials in external heat exchanger......Page 388
Test research for adjusting the velocity of external heat exchanger......Page 389
REFERENCES......Page 391
Principles of the experiment and calculation......Page 392
The introduction of test-bed system......Page 393
The particles' flow temperature distribution......Page 394
The influencing factors of the particles' HTC......Page 395
NOTATIONS......Page 396
REFERENCES......Page 397
EXPERIMENTAL......Page 398
The effect of initial bed height on mass transfer between adjacent fluidized beds......Page 400
The effect of fluidizing velocity on average heat transfer......Page 401
The effect of probe orientation on heat transfer coefficient......Page 402
REFERENCES......Page 403
INTRODUCTION......Page 405
Experimental methodology......Page 406
Experimental study of gas solid flow characteristics in the long and the short inlet ducts......Page 407
Comparative study of cyclone performance......Page 409
REFERENCES......Page 410
EXPERIMENTAL SET-UP......Page 412
Pressure drop......Page 414
Gas- solid flow in cyclone......Page 415
REFERENCES......Page 416
INTRODUCTION......Page 417
EXPERIMENTAL APPARATUS......Page 418
Freeboard characterization......Page 419
CONCLUSIONS......Page 421
REFERENCES......Page 422
INTRODUCTION......Page 423
Effect of residence time......Page 424
Effect of coal types......Page 425
Effect of atmosphere......Page 426
CONCLUSIONS......Page 427
REFERENCES......Page 428
Experimental Installation......Page 429
Fuel Characterization......Page 430
Influence of Excess Air......Page 431
REFERENCES......Page 434
DESCRIPTION OF MODELS......Page 435
Case 1: co-combustion of coal A, rice husk, and eucalyptus bark......Page 436
Case 2: co-combustion of coal B and straw, or rapeseed residue......Page 438
REFERENCES......Page 440
Ash balance......Page 441
Trace metals emission and distribution......Page 442
Particulate matter PM 2,5/10 emissions......Page 444
PAH and dioxines......Page 445
REFERENCES......Page 446
INTRODUCTION OF THE 440TIH BOILER......Page 448
Ash and slag ratio......Page 449
Bed material supply system......Page 450
CONCLUSIONS......Page 451
REFERENCES......Page 452
Experimental setup and conditions......Page 453
EQUILIBRIUM CALCULATION CONDITIONS......Page 454
Condensation of heavy metals in HCI/O21N2......Page 455
Influence of ellsratio on the condensation......Page 456
Influence of quenching rate on the condensation......Page 457
CONCLUSIONS......Page 458
REFERENCES......Page 459
INTRODUCTION......Page 460
EXPERIMENTAL......Page 461
Approximation of dynamics with the FOPDT model......Page 463
Main Features of the Observed Dynamics......Page 464
CONCLUSIONS......Page 465
REFERENCES......Page 466
INTRODUCTION......Page 467
EXPERIMENTAL......Page 468
The influence of solids inventory Iv......Page 469
DISCUSSION......Page 470
REFERENCES......Page 471
Experimental setup......Page 472
Description of secondary air jet range......Page 473
Effect of nozzle diameter on secondary air jet range......Page 474
Effect of secondary air velocity on jet range......Page 475
REFERENCES......Page 476
MODEL......Page 478
Overall solids mixing process and trajectory of a single particle......Page 479
Effect of superficial gas velocity and bed width......Page 480
DISCUSSION OF DSR......Page 481
REFERENCES......Page 482
EXPERIMENTALAPPARATUS AND METHODS......Page 483
Local flow pattern near the secondary air inlet......Page 484
The effect of exit deflecting arrangement on local flow pattern......Page 486
Local flow pattern near the screen superheater......Page 487
REFERENCES......Page 489
EXPERIMENTAL......Page 490
RESULTS AND DISCUSSION......Page 491
Effect of the fluidized air velocity......Page 492
REFERENCES......Page 493
DESIGN OF THE RDF-5 BUBBLING FLUIDIZED BED BOILER......Page 494
Heat release ratio in fluidized bed region......Page 496
Performance testing of the BFBB......Page 497
The fuel flexibility tests of the BFBB......Page 498
REFERENCES......Page 499
Description of the plant unit for oil production from oil shale......Page 500
Fluidized bed retort process......Page 502
SUMMARY......Page 503
REFERENCES......Page 504
INTRODUCTION......Page 505
Procedures......Page 506
Impact fragmentation of raw limestones (R)......Page 507
Impact fragmentation of sulfated limestones (8)......Page 508
Multiple impact fragmentation tests......Page 509
REFERENCES......Page 510
INTRODUCTION......Page 511
MODIFIED BELL JAR NOZZLE AND THE EXPERIMENTAL TEST RIG......Page 512
THE PRESSURE CHARACTERISTICS OF THE MODIFIED BELL JAR NOZZLE......Page 513
REFERENCES......Page 514
INTRODUCTION......Page 515
Calculation of the reheat steam flow......Page 516
Calculation of the ratio of fly ash and bottom ash......Page 517
RESULTS DISCUSSION......Page 518
Discussion of physical heat loss of bottom ash......Page 519
REFERENCES......Page 520
CO_2 Capture and Chemical Looping......Page 522
INTRODUCTION......Page 524
Experimental method......Page 525
Cycling between Fe3O4 and Feo.947O......Page 526
Cycling between Fe3O4and Fe......Page 527
The effect of the ratio of CO2 to CO in the reducing gas on performance......Page 528
CONCLUSIONS......Page 529
REFERENCES......Page 530
INTRODUCTION......Page 531
EXPERIMENTAL......Page 532
Interphase Mass Transfer......Page 533
Effect of external mass transfer......Page 534
Determining the intrinsic kinetics......Page 535
CONCLUSIONS......Page 536
REFERENCES......Page 537
INTRODUCTION......Page 538
EXPERIMENTAL......Page 539
Proof and assumptions of kinetic model......Page 540
Effect of CO partial pressure......Page 541
Kinetic determination and analysis......Page 542
Limitations of present work and kinetic model......Page 543
REFERENCES......Page 544
INTRODUCTION......Page 546
Experimental Data Processing......Page 547
Determination of the reaction temperature......Page 548
Effects of the final temperature......Page 549
REFERENCES......Page 550
INTRODUCTION......Page 552
DESIGN OF THE DUAL BUBBLING FLUIDIZED BED REACTORS......Page 553
RESULTS AND DISCUSSION......Page 556
NOTATIONS......Page 557
ACKNOWLEDGEMENT......Page 558
INTRODUCTION......Page 559
Sorbents......Page 560
Pilot-scale dual fluidized bed system......Page 561
Effect of shift reaction in carbonation......Page 563
Effect of carbonation temperature......Page 564
Effect of oxy-fuel calcination......Page 565
ACKNOWLEDGMENTS......Page 566
REFERENCES......Page 567
INTRODUCTION......Page 568
EXPERIMENTAL......Page 569
Examples of experimental results......Page 570
Basic modelling of the carbonator reactor......Page 571
CONCLUSIONS......Page 572
REFERENCES......Page 573
EXPERIMENTAL......Page 574
THEORY......Page 575
Transition from FeZO3 to Fe3O4......Page 576
Transition from Fe3O4 to Feo.947O......Page 578
NOTATIONS......Page 579
REFERENCES......Page 580
Sorbents Preparation......Page 581
Test result of a single carbonation-regeneration cycle......Page 582
XRD tests results of those sorbents......Page 583
N2 adsorption tests results of those sorbents......Page 584
SEM results for those sorbents......Page 585
REFERENCES......Page 586
CaO Hydration with Steam......Page 588
Pelletization......Page 589
Pelletization......Page 590
Thermogravimetric Tests......Page 591
REFERENCES......Page 593
INTRODUCTION......Page 595
Catalyst characterization......Page 596
Effect of ultrasonic treatment on physicochemical structure of catalysts......Page 597
Analysis of catalytic cracking process and mechanism......Page 598
Effect of ultrasonic treatment on coking tendency of catalysts......Page 599
REFERENCES......Page 600
THEORETICAL BACKGROUND......Page 602
EXPERIMENTAL......Page 603
RESULTS ANDDISCUSSION......Page 604
Effect of the CaO looping rate ratio (FcaoiFcOz) and space time (r)......Page 605
Comparison of methods for determining F cao/F CO2......Page 606
REFERENCES......Page 607
INTRODUCTION......Page 609
EXPERIMENTAL......Page 610
CLC with direct gasification of the solid fuel in the fuel reactor......Page 611
Chemical looping cycle for the production of high-purity hydrogen from coal or biomass......Page 612
A modified Chemical Looping Cycle for the combustion of solid fuels......Page 613
REFERENCES......Page 614
Preparation of the MCM-41 from Oyashes......Page 615
Characterization of the mesoporous materials F-MCM-41......Page 616
Carbon dioxide sorption on modified mesoporous materials from fly ash......Page 618
REFERENCES......Page 621
THE DCFB SYSTEM......Page 622
CHEMICAL LOOPINGAUTOTHERMAL REFORMING......Page 623
RESULTS ANDDISCUSSION......Page 624
REFERENCES......Page 626
INTRODUCTION......Page 627
RESULTS AND DISCUSSION......Page 628
REFERENCES......Page 630
EXPERIMENTAL......Page 631
Characteristics of coal, sludge and bed materials......Page 632
Combustion characteristics......Page 633
NOx emission characteristic......Page 634
REFERENCES......Page 635
INTRODUCTION......Page 637
Calculations......Page 638
RESULTS ANDDISCUSSION......Page 639
NOTATIONS......Page 641
REFERENCES......Page 642
Apparatus......Page 643
Materials......Page 644
Procedures......Page 645
RESULTS ANDDISCUSSION......Page 646
REFERENCES......Page 647
Gasification......Page 650
EXPERIMENTAL......Page 652
Effect of temperature......Page 653
REFERENCES......Page 654
PROCESS DETAILS......Page 655
ENERGYBALANCE......Page 656
EXPERIMENTAL SETUP......Page 657
RESULTS AND DISCUSSION......Page 658
REFERENCES......Page 660
EXPERIMENTALS......Page 661
The Composition Analysis of Tar Before and After Being Thermally Cracked......Page 662
The Determination of the Cracking Efficiency and the Deposit Carbon of Tar......Page 663
The XRD and DSC Analysis for the Deposit Carbon......Page 664
CONCLUSIONS......Page 665
REFERENCES......Page 666
Catalysts......Page 667
Pyrolysis process of cotton straw with catalyst......Page 668
The effect of catalysts to precipitated characteristic of cotton straw volatile......Page 669
The influences of catalysts on ash yield......Page 670
REFERENCES......Page 671
EXPERIMENTAL......Page 672
Regulating performance of one kind of air......Page 673
The influence of the horizontal orifice height......Page 674
The influence of the fluidizing airflow on the distribution of heat transfer coefficient......Page 675
The influence of the horizontal orifice height and the loosening airflow on the distribution of heat transfer coefficient......Page 676
REFERENCES......Page 677
THE CONCEPT......Page 678
Optional fluidization medium......Page 679
THE DEMONSTRATION......Page 680
FIRST RESULTS......Page 681
REFERENCES......Page 682
INTRODUCTION......Page 683
EXPERIMENTAL......Page 684
RESULTS AND DISCUSSION......Page 685
CONCLUSIONS......Page 686
REFERENCES......Page 687
INTRODUCTION......Page 688
The Composition Analysis of Tar Before and After Being Thermally Cracked......Page 689
The XRD Analysis of Cao Before and After Being Used As Catalyst for Tar Being Cracked......Page 690
The Determination of the catalytically Cracking Efficiency and the Deposit Carbon of Tar......Page 691
The Gas Composition Analysis from Tar Being Cracked......Page 692
REFERENCES......Page 693
INTRODUCTION......Page 694
HSC chemistry equilibrium calculations......Page 695
The result of chemical equilibrium calculations......Page 696
CONCLUSIONS......Page 697
REFERENCES......Page 698
INTRODUCTION......Page 699
EXPERIMENTAL......Page 700
Effect of particle size on axial holdup in the riser......Page 701
Modulus maxima of pressure fluctuation signals for different particle sizes......Page 702
CONCLUSIONS......Page 703
REFERENCES......Page 704
INTRODUCTION......Page 705
EXPERIMENTAL......Page 706
Reaction kinetics......Page 707
Hydrodynamics......Page 708
RESULTS AND DISCUSSION......Page 709
CONCLUSIONS AND OUTLOOK......Page 710
REFERENCES......Page 711
INTRODUCTION......Page 712
Particulate phase......Page 713
Experimental setup......Page 715
Results......Page 716
REFERENCES......Page 718
DESCRIPTION OF THE PILOT PLANT......Page 719
PLANT OPERATION......Page 720
Variation of the Lambda Value......Page 721
Variation of Bed Material......Page 722
CONCLUSIONS......Page 723
REFERENCES......Page 724
INTRODUCTION......Page 725
MODELING APPROACH......Page 726
Model validation......Page 727
Coal predrying using flue gas......Page 728
Integrated with pyrolysis topping......Page 729
REFERENCES......Page 730
CATALYTIC TAR CONVERSION IN FLUIDIZED BEDS......Page 731
EXPERIMENTAL......Page 732
RESULTS AND DISCUSSION......Page 734
CONCLUSIONS......Page 736
REFERENCES......Page 737
INTRODUCTION......Page 738
Experimental method......Page 739
Char properties......Page 740
Gas properties......Page 741
Oil properties......Page 742
REFERENCES......Page 743
INTRODUCTION......Page 745
CC tests......Page 746
Effect of calcination pressure......Page 747
Effect of hydration treatment......Page 748
Further discussion......Page 749
REFERENCES......Page 750
Experimental setup and procedure......Page 751
Data processing......Page 752
Influence of catalyst type on gasification reaction......Page 753
Fe/Ca ratio......Page 754
Fe/Cu ratio......Page 755
Influence of dosage of mixed catalyst on gasification reaction......Page 757
REFERENCES......Page 758
INTRODUCTION......Page 759
Experimental facility and conditions......Page 760
Major gas components......Page 761
Lower heating value and gas yield......Page 762
Tar content......Page 763
REFERENCES......Page 764
Test facility......Page 766
Effects of catalytic reaction conditions......Page 767
Catalyst evaluation......Page 769
REFERENCES......Page 771
Modling and Simulation......Page 774
INTRODUCTION......Page 776
Combustion and NOx models......Page 777
Scope and principles......Page 778
Pilot-scale CFB process analysis......Page 779
Bituminous Coal Combustion in a Large-scale CFB Boiler......Page 780
REFERENCES......Page 781
INTRODUCTION......Page 783
RESULTS AND DISCUSSION......Page 784
REFERENCES......Page 786
INTRODUCTION......Page 787
S-type voidage profile......Page 788
Ration of bed inventory......Page 789
RESULTS AND DISCUSSION......Page 790
ACKNOWLEDGEMENTS......Page 791
REFERENCES......Page 792
3D-MODEL FOR LARGE-SCALE CFB COMBUSTORS......Page 793
MODELVALIDATION......Page 794
Gas exchange in the bottom zone......Page 795
Injection of off-gas from external heat exchangers (EHE)......Page 796
RESULTS AND DISCUSSION......Page 797
REFERENCES......Page 798
THE MODEL......Page 799
THE ENTHALPY BALANCE......Page 800
RESULTS AND DISCUSSION......Page 801
Comparison of model calculations with measurements......Page 802
NOTATIONS......Page 803
REFERENCES......Page 804
DISCRIPTION OF THE FURNACE OF THE 600MWE CFB BOILER......Page 805
Heat transfer model on the furnace side......Page 806
Overall heat transfer characteristics in furnace......Page 807
Distribution of the heat flux......Page 808
Distribution of the heat transfer coefficient......Page 809
REFERENCES......Page 810
TWO-DIMENSIONAL BUBBLING FLUIDIZED BED STUDY......Page 811
LARGE SCALE CFDSTUDY......Page 814
PROCESS MODEL STUDIES......Page 815
REFERENCES......Page 817
THE 2D CIRCULATING FLUIDIZED BED......Page 818
EXPERIMENTAL......Page 819
SIMULATION RESULTS AND COMPARISONS TO MEASUREMENTS......Page 820
CONCLUSIONS......Page 822
REFERENCES......Page 823
MODELLINGAPPROACH......Page 824
Turbulence Modelling......Page 825
Simulations of Dilute Gas-particle Flow in a CFB riser (CERCHAR)......Page 826
Simulations of a Cold Circulating Fluidized Bed with A-type Particle......Page 827
Flow Structure......Page 828
REFERENCES......Page 829
Experimental setup......Page 831
Simulation model and conditions......Page 832
Influence of the inlet drying temperature......Page 833
CONCLUSIONS......Page 834
REFERENCES......Page 835
INTRODUCTION......Page 836
Load Response characteristics......Page 837
Economic load allocation for boiler (ELA_B)......Page 838
Soft measurement sensor......Page 839
Advanced temperature control......Page 840
EFFECTIVE OF OPERATION......Page 841
REFERENCES......Page 842
POST COMBUSTION MODELAND ID COMBUSTION MODEL OFA CFB BOILER......Page 843
PREDICTION OF POST COMBUSTION IN A 135MWE CFB BOILER......Page 844
REFERENCES......Page 846
GENERAL LAYOUT OF HOT CIRCULATION LOOP......Page 848
Analysis on the hot circulation loop flow field......Page 849
REFERENCES......Page 851
INTRODUCTION......Page 852
DEVELOPMENT OF TWO-STAGE CFB DYNAMIC SIMULATION MODEL......Page 853
Dynamic performance of the CFB boiler......Page 855
Impact analysis of secondary air distribution......Page 856
REFERENCES......Page 857
INTRODUCTION......Page 858
METHODOLOGY FOR BED HYDRODYNAMICS MODELING......Page 859
Numerical Equations......Page 860
RESULTS AND DISCUSSION......Page 861
CONCLUSIONS......Page 862
REFERENCES......Page 863
INTRODUCTION......Page 864
THEORY......Page 865
RESULTS AND DISCUSSION......Page 868
REFERENCES......Page 869
CFDMODEL......Page 870
RESULTS AND DISCUSSION......Page 871
CONCLUSIONS......Page 874
REFERENCES......Page 875
INTRODUCTION......Page 876
CFD ANALYSIS OF FLUIDIZED BED FURNACE BASED ON RICE HUSK......Page 877
CONSTITUTIVE EQUATIONS......Page 878
FRICTIONAL STRESS......Page 879
RESULTS AND DISCUSSION......Page 880
REFERENCES......Page 882
NUMERICAL MODEL......Page 883
Method of Analysis......Page 884
RESULTS AND DISCUSSION......Page 885
Bubble Diameter......Page 886
NOTATIONS......Page 887
REFERENCES......Page 888
Equations of State (2)......Page 889
STATIONARY CLOUDS AND STATES OF UNIFORM FLUIDIZATION......Page 890
Behavior of the stationary clouds: Profiles of the solutions......Page 891
Engineering theory of uniform fluidization states......Page 892
STABILITY OF TRIVIAL SOLUTIONS AND BUBBLES......Page 893
CONCLUSIONS......Page 894
REFERENCES......Page 895
INTRODUCTION......Page 896
EXPERIMENTAL......Page 897
Operation characteristics......Page 898
Comparison of the proposed plant and a conventional plant......Page 899
REFERENCES......Page 901
EXPERIMENTAL......Page 902
Chemical reactions......Page 903
Flow characteristics under cold condition......Page 904
Profiles under air combustion condition......Page 905
CONCLUSIONS......Page 906
REFERENCES......Page 907
SIMULATION MODEL OF CO2 SEPARATION UNIT......Page 908
SIMULATION MODEL OF POWER PLANT WITH CO2 SEPRATION UNIT......Page 909
Influence of CO2 separation coefficient......Page 910
Influence of flue gases parameters......Page 911
CONCLUSIONS......Page 912
REFERENCES......Page 913
Environmentals and Pollution Control......Page 914
EXPERIMENTAL......Page 916
Effect of inlet NO concentration on NOx conversion......Page 917
Effect of HC : NO molar ratio on NOx and He conversions......Page 918
Effect of flue gas O2 concentration on NOx and He conversions......Page 919
REFERENCES......Page 920
INTRODUCTION......Page 921
Fuels and additives......Page 922
Element balance......Page 923
Fly ash composition......Page 924
Laboratory experiments......Page 927
REFERENCES......Page 928
INTRODUCTION......Page 929
Test conditions and procedure......Page 930
Combustion performance (Test Run #2)......Page 931
Emissions ofRDF co-firing with coal......Page 932
CONCLUSIONS......Page 933
REFERENCES......Page 934
EXPERIMENTAL......Page 935
Mercury speciation of co-combustion of sludge and coal......Page 936
Influence of CatS molar ratio to mercury speciation......Page 937
Influence of excess air coefficient to mercury emission......Page 938
Effect of 802 content on the percentage of Hg2+ in flue gas......Page 939
REFERENCES......Page 940
INTRODUCTION......Page 941
The Combustion Tests......Page 942
RESULTS AND DISCUSSION......Page 943
REFERENCES......Page 947
INTRODUCTION......Page 949
Fuel mixture effect......Page 950
Catalysts effect......Page 951
Predictions using FactSage......Page 952
REFERENCES......Page 954
EXPERIMENTAL......Page 955
General Comments......Page 956
NOx Emissions......Page 957
Sulphur Capture......Page 958
REFERENCES......Page 959
INTRODUCTION......Page 960
The apparatus......Page 961
Microstructural characterization of the ashes......Page 962
Effects of the ash reactivation mode on the desulfurization efficiency......Page 963
Effects of the fluidization velocity on the desulfurization efficiency......Page 964
REFERENCES......Page 965
EXPERIMENTAL......Page 966
RESULTS AND DISCUSSION......Page 967
A descriptive model of char-NO reaction with consideration of thermal annealing of char......Page 970
REFERENCES......Page 971
THE APPARATUS AND TEST PROCEDURE......Page 972
Empty reactor and a fixed bed of sand......Page 974
The effect of the addition of FeZ0 3to the bed of quartz sand......Page 975
REFERENCES......Page 978
INTRODUCTION......Page 979
Combustion conditions......Page 980
Effects of chemical additives on the reduction of PM2.5......Page 981
ACKNOWLEDGEMENTS......Page 982
REFERENCES......Page 983
INTRODUCTION......Page 985
MODEL......Page 986
Evaluation of Model Parameters......Page 987
MODELRESULTS......Page 988
CONCLUSIONS......Page 989
REFERENCES......Page 990
INTRODUCTION......Page 991
EXPERIMENTAL......Page 992
SO2 uptake and conversion by a sorbent......Page 993
Characterisation of sorbents......Page 994
DISCUSSION......Page 995
CONCLUSIONS......Page 996
REFERENCES......Page 997
INTRODUCTION......Page 998
Combustion experiments......Page 999
Fuel analyses......Page 1000
Mass balance and distribution of ash in the eFB boiler......Page 1001
The role of P in agglomeration......Page 1003
REFERENCES......Page 1004
INTRODUCTION......Page 1006
RESULTS AND DISCUSSION......Page 1007
REFERENCES......Page 1011
Model structure and hydrodynamics......Page 1012
Homogeneous chemistry......Page 1013
Input data for simulation of a 12MW boiler......Page 1014
Simulation results......Page 1015
REFERENCES......Page 1017
INTRODUCTION......Page 1018
Experimental Apparatus......Page 1019
Response surface methodology (RSM)......Page 1020
Analysis of variance for the full model......Page 1021
REFERENCES......Page 1023
INTRODUCTION......Page 1024
EXPERIMENTAL......Page 1025
Definition of ultimate NO conversion ratio (XNO*)......Page 1026
Effect of different coals on XNO* values......Page 1027
Effect of the different coals on N2O emission......Page 1028
REFERENCES......Page 1029
TEST FACILITY......Page 1030
NOx and N2O emissions along the height of the furnace......Page 1031
Influences of bed temperature on the NOx and N2O emissions......Page 1032
Influences of primary-to-secondary air ratio on the nitrogen oxide emissions and temperature distribution......Page 1033
Influences of coal species on the nitrogen oxide emissions......Page 1034
REFERENCES......Page 1035
EXPERIMENTAL......Page 1036
Emission of nitrogen oxides without metal oxides loaded......Page 1037
EFFECT OF MGO ON N2O AND NO......Page 1038
CONCLUSIONS......Page 1039
REFERENCES......Page 1040
INTRODUCTION......Page 1041
RDF delivery and sampling area......Page 1042
Furnace and steam generation......Page 1043
Heat recovery boiler with steam generator......Page 1044
Flue Gas Purification Plant......Page 1045
Steam turbine with generator......Page 1046
INTRODUCTION......Page 1047
ATTRITION AND DESULFURIZATION MODEL......Page 1048
RESULTS AND DISCUSSION......Page 1049
REFERENCES......Page 1052
INTRODUCTION......Page 1054
EXPERIMENTAL......Page 1055
Catalyst regeneration stage......Page 1056
REFERENCES......Page 1059
INTRODUCTION......Page 1060
Analyses of fuels and feedstock preparation......Page 1061
Combustion facility......Page 1062
Effect of fuel blending ratio......Page 1063
Effects of moisture......Page 1064
REFERENCES......Page 1065
INTRODUCTION......Page 1067
Test facility......Page 1068
Effect of mass mixing ratio......Page 1069
Effect of combustion temperature......Page 1070
Effect of CalS molar ratio......Page 1071
REFERENCES......Page 1072
INTRODUCTION......Page 1073
MATERIALS AND METHODS......Page 1074
X-ray diffractometry (XRD) analysis......Page 1075
Ash binding properties......Page 1076
Scanning electron microscopy of ash......Page 1077
REFERENCES......Page 1079
Objectives......Page 1080
EXPERIMENTAL......Page 1081
Fuels and fuel properties......Page 1082
ESP ash samples......Page 1083
Aerosol samples......Page 1084
REFERENCES......Page 1085
INTRODUCTION......Page 1086
Combustion characteristic of remnant carbon......Page 1087
Influence of oxygen content on RC combustion......Page 1088
REFERENCES......Page 1090
INTRODUCTION......Page 1091
Proportioning of raw mixtures......Page 1092
Burning of raw mixtures......Page 1093
REFERENCES......Page 1095
System and equipment......Page 1097
Apparent characteristics of the agglomerated particles prepared by different additives......Page 1098
Effect of cement on the rate of absorption of desulphurization......Page 1099
REFERENCES......Page 1100
Characteristics of coal combustion and experimental conditions......Page 1101
Method of analysis......Page 1102
Collection efficiency of ESP on different size coal ash particles......Page 1103
Distribution of minor, trace elements in PM10......Page 1104
REFERENCES......Page 1106
FORMULATION......Page 1107
RESULTS AND DICUSSION......Page 1108
CONCLUSIONS......Page 1109
REFERENCES......Page 1110
Sustainable Fuels-Combustion and New Concept......Page 1112
INTRODUCTION......Page 1114
Fuel and bed material......Page 1115
Flue gas emission......Page 1116
Defluidization analysis......Page 1119
CONCLUSIONS......Page 1120
REFERENCES......Page 1121
Samples......Page 1122
SEM-EDS......Page 1123
RESULTS AND DISCUSSION......Page 1124
REFERENCES......Page 1126
EXPERIMENTAL......Page 1128
Investigation on the processes of agropellet fluidization at room temperature......Page 1129
Change of gas temperature over a bed of combusting fuel, the rate of fuel combustion......Page 1132
NOTATIONS......Page 1133
REFERENCES......Page 1134
INTRODUCTION......Page 1135
EXPERIMENTAL......Page 1136
Chemical characterization of waste fuel......Page 1137
Chemical thermodynamic equilibrium calculations......Page 1139
REFERENCES......Page 1140
INTRODUCTION......Page 1142
RESULTS AND DISCUSSION......Page 1143
Effect of pre-treatment......Page 1144
Kinetic analysis......Page 1146
REFERENCES......Page 1147
EXPERIMENTAL......Page 1149
RESULTS AND DISCUSSION......Page 1151
REFERENCES......Page 1153
INTRODUCTION......Page 1155
Species identification during char oxidation......Page 1156
REFERENCES......Page 1159
INTRODUCTION......Page 1160
EXPERIMENTAL......Page 1161
DATA ANALYZING......Page 1162
Combustion proportion CP......Page 1163
CONCLUSIONS......Page 1164
REFFERENCES......Page 1165
INTRODUCTION......Page 1166
EXPERIMENTALS......Page 1167
RESULTS AND DISSCUSIONS......Page 1168
REFERENCES......Page 1170
SYNOPTIC OF THE INTERACTIONS IN THE BED......Page 1171
Eulerian modeling of the reactive flow......Page 1172
Modeling of the reaction rate......Page 1173
Modeling of inter-particle radiative heat transfer......Page 1174
Results and discussion......Page 1175
Influence of inter-particle radiative heat transfer......Page 1176
REFERENCES......Page 1177
INTRODUCTION......Page 1178
THE IDEAAND ITSRESOURCE......Page 1179
Depth of air projection......Page 1180
Effect of secondary air velocity......Page 1181
REFERENCES......Page 1182
APPENDIX PROJECTION CALCULATION......Page 1183
INTRODUCTION......Page 1184
CIRCULATION FLUIDIZED BED BOILERAND FUEL......Page 1185
The coal combustion and paper sludge/coal co-combustion processes in the CFB furnace......Page 1186
REFERENCES......Page 1188
Test content......Page 1190
The influence of feed styles on gas velocity......Page 1191
Influence of feed styles on solid upwards flux distribution......Page 1192
Influence of fluidizing velocity......Page 1193
Influence of circulating ratio......Page 1194
NOTATIONS......Page 1195
REFERENCES......Page 1196
Authors Index......Page 1197




نظرات کاربران