ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Oxidative Stress, Disease and Cancer

دانلود کتاب استرس اکسیداتیو، بیماری و سرطان

Oxidative Stress, Disease and Cancer

مشخصات کتاب

Oxidative Stress, Disease and Cancer

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 1860946097, 9781860946097 
ناشر: Imperial College Press 
سال نشر: 2006 
تعداد صفحات: 1105 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 30,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 14


در صورت تبدیل فایل کتاب Oxidative Stress, Disease and Cancer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب استرس اکسیداتیو، بیماری و سرطان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب استرس اکسیداتیو، بیماری و سرطان

هدف این کتاب بررسی جامع به روزترین دانش در مورد منابع و مکانیسم های مولکولی استرس اکسیداتیو و نقش آن در بیماری و سرطان است. همچنین بر روی عوامل و روش‌های جدیدی تمرکز دارد که می‌توان برای جلوگیری از استرس اکسیداتیو و بیماری‌های مرتبط با آن استفاده کرد. نویسندگان ابتدا جدیدترین داده ها را در مورد مکانیسم های اساسی استرس اکسیداتیو مرور می کنند. بخش دوم استرس اکسیداتیو منجر به چندین بیماری و سرطان را مورد بحث قرار می دهد و در بخش سوم، استراتژی های به کار رفته در پیشگیری و درمان بیماری های مرتبط با استرس اکسیداتیو مورد بحث قرار می گیرد.


توضیحاتی درمورد کتاب به خارجی

This book aims to provide a comprehensive review of the most up-to-date knowledge of the sources and molecular mechanisms of oxidative stress, and its role in disease and cancer. It also focuses on the novel agents and methods that can be employed to prevent oxidative stress and associated diseases. The authors first review the most recent data on the basic mechanisms of oxidative stress. The second section discusses oxidative stress leading to several diseases and cancers, and in the third section, the strategies employed in the prevention and treatment of oxidative stress-related diseases are discussed.



فهرست مطالب

BASIC MECHANISMS......Page 8
Contributors......Page 12
Preface......Page 20
2. Multiplicity of ROS-Producing Sources in Mitochondria......Page 22
3. ROS Production at Complex I of Mitochondrial Respiratory Chain......Page 28
4.1. The Q-cycle model of the coenzyme Q oxidation......Page 33
4.2. The site and source of electrons for the superoxide formation......Page 34
4.3. The unexplained features of the superoxide production mechanism at the Complex III......Page 37
5. Mitochondrial ROS Detoxifying Systems......Page 40
5.2. Phospholipids hydroperoxide glutathione peroxidase......Page 41
6.1. MnSOD......Page 43
6.2. Cytochrome c......Page 44
7.1. Catalase......Page 45
7.2. Glutathione......Page 46
7.4. Glutathione reductase......Page 47
7.5. A quintessence of the GSH-dependent mitochondrial ROS-defense network......Page 48
7.6. Hypothetical antioxidant function of NAD(P)H......Page 49
7.7. Glutathione peroxidase......Page 50
7.8. Peroxiredoxins and other oxins......Page 51
8. Mitochondrial ROS Production in Pathologies......Page 54
8.1. Types of mechanisms enhancing mitochondrial ROS production......Page 55
8.2. Complex I as a site of enhanced ROS production......Page 56
8.3. Complex III as a site of enhanced ROS production......Page 57
8.5. Ischemia reperfusion enhances mitochondrial ROS production......Page 58
8.6. Mitochondrial Ca2+ accumulation per se unlikely enhances ROS production......Page 60
8.7. Ca2 +-induced mitochondrial permeability transition may be responsible for an increase in ROS production......Page 61
References......Page 64
1. The Effects of Radiation on Mammalian Cells......Page 82
2. Evidence of Intracellular Mitochondrial Generation of ROS Following Ionizing Irradiation and Subsequent Apoptosis......Page 88
References......Page 99
1.1. General description and significance......Page 106
1.2. History of study of mitochondria and its significance......Page 108
1.3. Oxidative phosphorylation......Page 109
1.4. Other functions of mitochondria......Page 111
2. Source of ROS in Mitochondria......Page 112
3. Historical Aspect of Oxidative Damage to Mitochondria......Page 115
4. Significance of Mitochondrial Oxidative Damage in Relation to Membrane Damage and Disease Development......Page 117
4.1. Mitochondrial damage during cancer and carcinogenesis......Page 124
4.2. Damage during ischemia-reperfusion injury......Page 126
4.3. Damage during toxicity by drugs and chemicals......Page 127
5.1. Role of mitochondrial oxidative damage in aging and longevity......Page 128
5.2. Ischemia-reperfusion injury in the heart and aging......Page 132
5.3. Aging and caloric restriction......Page 133
5.4. Aging and DNA damage......Page 134
5.5. Antioxidants and aging......Page 135
6.1.2. Alpha-tocopherol......Page 137
6.1.3. Tocotrienols......Page 143
6.2.1. Serotonin......Page 144
6.2.3. Thioredoxin and GSH......Page 145
6.2.5. Bcl-2......Page 146
6.3.1. Chlorophyllin......Page 147
6.3.3. Caffeine......Page 148
6.3.6. Turmeric extract......Page 149
6.4.2. N-Acetylcysteine......Page 150
6.4.4. Boldine......Page 151
6.4.5. Mitochondria-targeted antioxidants......Page 152
6.5. Expression of antioxidant genes......Page 153
7. Mitochondria Permeability Transition (MPT) and Apoptosis......Page 155
7.1. MPT and toxicity......Page 157
7.3. MPT and influence by antioxidant-genistein......Page 158
8. Mitochondria and Cancer Treatment (Photodynamic Therapy)......Page 159
9. New Developments and Possible Applications......Page 161
References......Page 162
2.1. Types of reactive oxygen species (ROS) and sources of ROS formation......Page 172
2.2. Types of reactive nitrogen species (RNS) and sources of NO•......Page 173
2.2.1. Enzymatic sources of NO......Page 175
3. Physiological Roles of ROS and RNS, Oxidative Stress and Signaling......Page 177
3.1. ROS-mediated signaling......Page 178
3.2. Physiological functions of NO•, molecular targets and interaction with ROS......Page 179
4.1. Ascorbate......Page 180
4.2. Glutathione......Page 182
4.3. Tocopherols......Page 190
4.4. Thioredoxins......Page 191
4.6. Phenolic compounds as antioxidants......Page 193
4.7.1. Superoxide dismutase......Page 194
4.7.2. Catalase......Page 195
4.7.3. Peroxidases......Page 196
4.7.4. Glutathione peroxidase......Page 197
4.7.6. Glutathione reductase......Page 198
4.7.7. Dehydroascorbate reductase......Page 199
5.1. Apoplast and plasma membrane......Page 200
5.2. Endoplasmic reticulum and vacuole......Page 201
5.3. Peroxisomes......Page 202
5.4. Mitochondria......Page 203
5.5. Chloroplasts......Page 204
6. Concluding Remarks......Page 205
References......Page 206
1. Introduction......Page 222
2.1. Oxidative damage to DNA......Page 223
2.2. Lipid peroxidation......Page 225
2.3. Protein oxidation......Page 226
3.1. Induction of DNA damage by lipid peroxidation products......Page 228
3.2. Repair of lipid peroxidation-induced DNA damage......Page 230
4.1. DNA protein crosslinks......Page 231
4.2. Oxidative DNA base damage......Page 234
5. Biological Consequences and Occurrence of Protein-DNA and Lipid-DNA Adducts......Page 235
References......Page 238
1. Introduction......Page 242
2. Damage of Nucleotides by ROS......Page 244
3.1. Role of E. coli MutT in error avoidance......Page 247
3.2. Mammalian MTH1 with 8-oxo-dGTPase activity......Page 249
4.1. Structure of MTH1......Page 250
4.2. Tumorigenesis and mutagenesis in mice lacking MTH1......Page 254
4.3. Function of MTH1 in mitochondria......Page 256
5.1. NUDT5 with 8-oxo-dGDPase......Page 257
6. Exclusion of Mutagenic Nucleotides from the DNA Precursor Pool......Page 260
7. Exclusion of Oxidized Guanine Nucleotides from the RNA Precursor Pool......Page 264
References......Page 265
2. Generation and Types of Oxidative Damage......Page 274
4. Base Excision Repair (BER)......Page 276
5. Recombinational Repair (RER)......Page 281
6. Mismatch Repair (MMR)......Page 283
7. Nucleotide Excision Repair (NER)......Page 287
8. Translesion Synthesis (TLS)......Page 288
9. Interaction and Redundancy Between Repair Pathways for Repair of Oxidative Damage......Page 289
References......Page 290
1. Introduction......Page 302
2. Cells Have a Range of General Responses to Reactive Oxygen Species......Page 304
3. Adaptation to Resistance......Page 305
4. Gene Expression Responses to ROS......Page 307
5. Cell Transcriptional Response Patterns are very Concentration Dependent......Page 310
6. Cells Have Different Constitutive Systems for Protection Against Different ROS: There is No One Oxidant That is Representative of a General Oxidative Stress......Page 312
7. Core Cellular Functions Required to Maintain Resistance......Page 315
8. Functions Required to Maintain Cellular Resistance to Specific ROS......Page 316
9. Cell Division Cycle Delay......Page 317
10. The Link Between Apoptosis, Aging and ROS in Yeast......Page 318
References......Page 321
1. Introduction......Page 330
3. Transcription Factors......Page 331
3.1. NF-κB......Page 332
3.3. c-myc......Page 333
4. Signaling Molecules......Page 334
4.2. Mitogen-activated protein kinases (MAPKs)......Page 335
4.3. Ras......Page 336
5.1. Apoptosis signal-regulating kinase/thioredoxin: (ASK-1/Trx)......Page 337
5.2. Bcl-2......Page 338
5.4. p53......Page 340
5.5. Caspases......Page 341
6. Oxidative Stress in Cancer......Page 343
References......Page 345
2.1. Monosaccharides......Page 354
2.2. Polysaccharides and nucleic acids......Page 359
2.3. Glycated proteins......Page 362
2.4. Mechanisms of toxicity of carbohydrate breakdown products......Page 363
3.1. Theα-amino acid functionality......Page 367
3.2. The side chain......Page 369
References......Page 375
1. Sod2, Oxidative Stress, and Genetic Instability......Page 378
2. Antioxidant Interventions and Chronic Mitochondrial Oxidative Stress......Page 379
3. ROS, Genetic Instability, and Cell Fates......Page 381
4. ROS and Cellular Transformation......Page 382
5. Sod2 and DNA Repair......Page 383
6. Sod2 as a Putative Tumor Suppressor......Page 384
References......Page 385
DISEASE......Page 9
1. Introduction......Page 392
2.2. Superoxide dismutase 1......Page 393
2.3. Superoxide dismutase 2......Page 394
2.5. Catalase......Page 405
3.1.1. Glutathione peroxidase 1......Page 406
3.1.2. Glutathione peroxidase 4......Page 407
3.3. Glutathione S-transferases......Page 408
3.3.2. Glutathione S-transferase M......Page 409
3.3.4. Glutathione S-transferase P......Page 410
3.3.5. Glutathione S-transferase T1......Page 411
3.4. The MAPEG family......Page 412
3.4.2. MGST2 and MGST3......Page 413
3.4.3. 5-Lipoxygenase activating protein and leukotriene C4 synthase......Page 414
3.4.5. NAD(P)H:quinone oxidoreductase 1......Page 415
3.4.6. NRH:quinone oxidoreductase 2......Page 416
3.4.7. Soluble epoxide hydrolase......Page 417
3.4.8. Microsomal epoxide hydrolase......Page 418
3.5.3. CoQ synthesis......Page 419
3.5.5. UDP-glucuronosyltransferase......Page 420
3.6.1. γ -Glutamylcysteine synthetase......Page 421
3.6.2. Glutathione synthetase......Page 422
3.6.3. Glutathione reductase......Page 423
3.6.5. Thioredoxin reductase......Page 424
4.1. 8-Oxoguanine DNA glycosylase......Page 425
4.2.1. NADPH oxidase......Page 426
4.2.2. Myeloperoxidase......Page 427
4.2.4. Nitric oxide synthase 1......Page 428
4.2.5. Nitric oxide synthase 2......Page 429
4.2.6. Nitric oxide synthase 3......Page 430
4.3. Receptor for advanced glycation end-products......Page 431
5. Conclusions......Page 432
Abbreviations......Page 434
References......Page 436
1. Introduction......Page 482
1.2. Thioredoxin and 8-hydroxy-2 -deoxyguanosine as a biomarker for oxidative stress in patients with autoimmune diseases......Page 484
1.3. High levels of TRX and 8-OHdG in patients with autoimmune diseases......Page 485
2.1. Oxidative stress and rheumatoid arthritis......Page 486
2.2. Oxidative stress and Sjögren’s syndrome......Page 487
2.3. UV-B-induced oxidative stress and cutaneous manifestations......Page 489
2.4. UV-B-induced oxidative stress and SS-A/Ro antigen......Page 490
3. Concluding Remarks......Page 492
References......Page 493
1. Introduction......Page 498
2. Oxidative Stress as a Lifespan-Determining Factor in Drosophila melanogaster......Page 499
3. Genetic Manipulations Aimed at Modulating Oxidative Stress in Drosophila......Page 500
4. Oxidative Stress as a Lifespan-Determining Factor in Caenorhabditis elegans......Page 502
5.1. Manganese superoxide dismutase......Page 503
5.2. Glutathione peroxidase 1 (Gpx1)......Page 504
5.3. CuZn superoxide dismutase......Page 505
5.5. Peroxiredoxins......Page 506
6. Overexpression of Antioxidant Enzymes......Page 507
7. Conclusions and Future Directions......Page 508
References......Page 509
1. Introduction — The Ataxia–Telangiectasia Disease......Page 520
1.1. ATM gene and protein......Page 522
1.2. Mouse models......Page 524
1.3. Localization of ATM......Page 525
1.4. ATM activation......Page 526
1.6. Gene expression in A–T......Page 529
2.1. Signal transduction......Page 530
2.3. Neurodegeneration......Page 531
2.5. Aging......Page 532
3. Therapy......Page 533
References......Page 535
1. Introduction......Page 540
1.1. Xanthine oxidase......Page 541
2. ROS and Endothelial Dysfunction......Page 542
3. ROS and Hypertension......Page 543
4. ROS and Atherosclerosis......Page 545
5.1. ROS and hypertrophy......Page 546
6. Clinical Trials to Reduce Oxidative Stress......Page 548
7. Conclusion......Page 549
References......Page 550
1. Introduction......Page 558
2. From Overfeeding to Insulin Resistance: The Role of Oxidative Stress......Page 560
3. Oxidative Stress as a Common Pathogenic Factor for the Dysfunction of β and Endothelial Cells......Page 562
4. From Insulin Resistance to Impaired Glucose Tolerance: The Role of Oxidative Stress......Page 565
5. From IGT to Diabetes and Endothelial Dysfunction......Page 566
7. Oxidative Stress as the Connection Between Nutrition Overload and Diabetes and Related Cardiovascular Complications: Therapeutic Implications......Page 567
References......Page 570
1. Introduction......Page 578
2. Oxidative Stress......Page 579
3.1. Superoxide dismutase......Page 581
3.2. Amyloid precursor protein......Page 583
4. SOD-1 and AβPP —Gene Dosage Effects or Protective Response?......Page 584
5. MtDNA Mutations......Page 586
6. Down’s Syndrome Inheritance......Page 588
7. Conclusions......Page 590
References......Page 591
1. Approaches to Studying Oxidative Stress in Ulcerative Colitis......Page 598
2.1. Mucosal in.ammation: the role of lamina propria leukocytes......Page 599
2.2. UC and the production of reactive oxygen species......Page 601
2.3. The role of nitric oxide in UC......Page 602
2.4. Antioxidant capacity......Page 607
3.1. Antioxidant activity of aminosalicylates......Page 611
3.2. Antioxidant vitamins......Page 617
3.3. Thiol compounds......Page 618
3.4. Plant-derived compounds......Page 619
3.5. Synthetic antioxidants, antioxidant derivatives, and iron chelators......Page 621
3.6. Antioxidant enzymes and related compounds......Page 623
3.7. Inhibitors of pro-oxidative enzymes......Page 624
4. The Role of Oxidative Stress in UC Pathogenesis......Page 627
5. Conclusions......Page 631
References......Page 632
1. Introduction......Page 648
2. Evidence for a Pathological Role for Oxidative Stress in Alzheimer’s Disease......Page 649
2.1. Evidence for a role for oxidative stress in sporadic AD......Page 650
2.2. Oxidative stress and toxicity of mutant APP and presenilins......Page 652
2.3. Is oxidative stress an early event in the pathogenesis of AD?......Page 653
3.1. Evidence for oxidative stress in familial PD......Page 654
3.2. Mitochondrial dysfunction and oxidative stress in sporadic PD......Page 655
4.1. Oxidative toxicity of fALS mutant Cu/Zn-SOD......Page 657
4.2. Oxidative toxicity due to AMPA/kainate receptor overstimulation......Page 658
5.1. Mitochondrial dysfunction and oxidative stress in HD......Page 659
6. Concluding Remarks......Page 660
References......Page 661
1. Introduction......Page 670
3. Mitochondrial Diseases......Page 671
5. Alteration of Antioxidant Enzymes in Mitochondrial Diseases......Page 673
6. Consequences of Imbalanced Expression of Free Radical Scavenging Enzymes......Page 676
7. Oxidative DNA Damage and DNA Repair in Mitochondria......Page 681
8. Antioxidant Therapy for Mitochondrial Disease......Page 683
9. Concluding Remarks......Page 684
References......Page 686
1. Introduction......Page 694
2. Oxidative Stress and Asthma......Page 695
3. Oxidative Stress and COPD......Page 697
4. Oxidative Stress and Interstitial Lung Diseases......Page 700
6. Oxidative Stress and Cystic Fibrosis......Page 701
8. Conclusions......Page 702
References......Page 703
2. Oxidative Stress and Male Infertility......Page 708
3. ROS and Physiological Role......Page 709
4.2. DNA damage......Page 710
5. ROS and Body Defense Mechanisms......Page 711
6.1.2. Flowcytometry......Page 712
7. Sources of ROS......Page 713
7.1. Generation of ROS by spermatozoa......Page 714
8.2. Decreased sperm count......Page 715
8.4. Sperm DNA damage......Page 716
10.1. ROS and follicular fluid......Page 717
10.4. ROS and hydrosalpingeal fluid......Page 718
13. Treatment Strategies......Page 719
References......Page 720
1. Introduction......Page 726
2. Intracellular Reactive Oxygen Species, Antioxidants, and Carcinogenesis......Page 728
2.1. Antioxidants......Page 729
2.2. ROS and carcinogenesis......Page 730
3. ROS Dependent Damage to Cellular Macromolecules and Carcinogenesis......Page 732
5. ROS Signaling and Cell Proliferation......Page 735
References......Page 740
1. Oxidative Stress in Cancer: Causes and Pathophysiologic Mechanisms......Page 754
2.1. Epidemiology and pathophysiology......Page 758
2.3. Proinflammatory cytokines......Page 759
2.5. Decreased food intake......Page 760
2.6. Role of leptin and neuropeptides......Page 761
3. Mechanisms Linking Oxidative Stress and Cachexia in Cancer......Page 762
4. Treatment Approaches of CACS/OS in Cancer: An Innovative Approach Beyond Current Treatment......Page 764
4.1. Preliminary results of the phase II study......Page 767
5. CACS/OS in Cancer: Where Will We Go From Here?......Page 772
References......Page 774
1. Introduction......Page 782
2.1. Fanconi anemia......Page 783
2.2. Ataxia telangiectasia......Page 788
2.3. Xeroderma pigmentosum......Page 789
2.4. Bloom syndrome......Page 791
3. Progeroid Syndromes......Page 792
3.1. Down syndrome......Page 793
3.2. Werner syndrome......Page 794
4. Hereditary Cancer Syndromes......Page 796
5. Conclusions and Outlook in Future Research......Page 797
References......Page 800
2. Fenton Chemistry and “Catalytic” Iron......Page 810
3. Catalytic Iron in the Biological Environment......Page 811
4. Iron Transporters......Page 812
5. Post-transcriptional Regulation of Iron Metabolism......Page 814
6. Hemochromatosis......Page 815
7. Target Genes in Fenton Reaction-Induced Carcinogenesis......Page 817
9. Conclusions......Page 820
References......Page 821
1. General Aspects......Page 828
2. Molecular Mechanisms of DNA Damage Induced by Organic Compounds in the Presence of Copper......Page 832
3. The Importance of Chemical Redox Potentials of Copper Complexes......Page 834
4. The Role of Copper and Oxidative Stress in Diseases and Cancer......Page 836
5. Conclusions......Page 840
References......Page 841
1. Background......Page 846
1.2. Metabolism of arsenic......Page 847
1.3. Toxicity of arsenic......Page 848
1.4.2. Animal......Page 850
2.1. Detection of radicals—in vitro......Page 852
2.2. Detection of radicals—in vivo......Page 853
2.3.2. In vivo — animal......Page 854
2.4. Signal transduction and gene expression......Page 855
2.6. Apoptosis......Page 856
2.7.2. In vivo — animal......Page 857
3. Arsenic-Induced Oxidative Stress and Cancer......Page 858
3.1.1. In vitro genotoxicity and oxidative stress......Page 859
3.1.2. In vivo genotoxicity and oxidative stress......Page 860
3.2. Promotion......Page 861
4.1. Redox cycling......Page 862
4.4. Stimulation of NAD(P)H oxidase......Page 863
4.5.2. In vivo inhibition of redox enzymes......Page 864
5. Summary......Page 865
Acknowledgments......Page 866
References......Page 867
1. Introduction......Page 872
2. Animal Models of Estrogen-Induced Carcinogenesis......Page 873
3.1. Estrogen metabolism and resultant oxidative stress as the proposed mechanism of estrogen-induced cancer......Page 877
3.2. Estrogen metabolism/oxidative stress and human breast cancers......Page 880
3.3. Receptor-mediated hormonal effects of estrogens and estrogen-induced proliferation......Page 881
4. Conclusions......Page 887
References......Page 890
1. Introduction......Page 906
3. Evidence for the Contribution of Oxidative Stress to the Pathogenesis of HIV Infection......Page 907
3.2. Impairment of lymphocyte functions by glutathione depletion......Page 908
3.3. Clinical effects of cysteine supplementation......Page 909
4. Loss of Cysteine as the Major Cause of Glutathione Depletion......Page 911
5. Concluding Remarks......Page 913
References......Page 914
1.2. Oxidative stress in breast cancer risk......Page 918
1.3. Oxidative stress in cancer therapy......Page 919
2.1. DNA adducts......Page 921
2.3. Autoantibodies to oxidized DNA......Page 922
2.5. TBARS and aldehyde......Page 923
3.1. Family history of breast cancer......Page 924
3.2. Reproductive and hormonal factors......Page 925
4. Genetic Polymorphisms of Enzymes Related to Oxidative Stress......Page 926
4.1.1. Myeloperoxidase......Page 927
4.1.2. Tumor necrosis factor......Page 928
4.1.3. Nuclear factor kappa-beta......Page 929
4.2.1. Catalase......Page 930
4.2.2. Glutathione peroxidases......Page 931
4.2.3. Manganese superoxide dismutase......Page 932
4.2.4. Extracellular superoxide dismutase......Page 933
4.2.5. NAD(P)H: quinone oxidoreductase-1 (NQO1)......Page 934
4.2.6. Glutathione S-transferases......Page 935
4.3.1. Catechol-O-methyl transferase......Page 937
5. Summary......Page 938
References......Page 939
1. Introduction......Page 954
2. Solar UV Radiation and the Skin......Page 955
3. UV Radiation and Oxidative Stress......Page 957
4. Mechanism of UV-Induced Oxidative Stress: Double Hit Model of Keratinocytic Injury......Page 958
5. UV Induces Depletion of Cutaneous Antioxidant Defense......Page 959
7. UV Radiation and Skin Cancer......Page 961
7.2. Characteristics of UV radiation......Page 962
7.3. Strategies to prevent UV-induced skin cancer or photocarcinogenesis......Page 963
7.4. Prevention of photocarcinogenesis by sunscreens: adequate or inadequate?......Page 964
7.5. Chemoprevention of photocarcinogenesis by dietary antioxidants: an affordable strategy......Page 966
8. Dietary Antioxidants and Skin......Page 967
8.1. Green tea and its polyphenolic constituents......Page 968
8.2. Prevention of photocarcinogenesis or NMSC by green tea......Page 969
8.3. Prevention of UV-induced oxidative stress......Page 970
8.4. Prevention of DNA photodamage......Page 972
9. Grape Seed Proanthocyanidins......Page 973
9.2. Prevention of photocarcinogenesis by GSP......Page 974
9.4. Prevention of UV-induced oxidative damage by GSP......Page 975
References......Page 976
2. Biochemistry of Coenzyme Q10......Page 986
3.1. Synthesis......Page 990
3.2. Dietary intake and distribution......Page 991
4. Cardiovascular Disease, Oxidative Stress, and Therapy......Page 992
4.1.1. Australian pilot study of coenzyme Q10 in heart failure......Page 993
4.1.2. Meta-analysis of randomized trials of coenzyme Q10 in heart failure......Page 994
4.1.3. Statins cause CoQ10 deficiency......Page 997
4.2. Hypertension......Page 999
5.1. Parkinson’s disease......Page 1001
5.2. Friedreich’s ataxia......Page 1002
6. Oxidative Stress and CoQ10 Therapy in Physical Exercise......Page 1003
7. Summary and Conclusions......Page 1004
References......Page 1005
1. Introduction......Page 1016
2. Oxidative Stress and NF-κB Activation in Chronic Diseases and Cancers......Page 1017
3. NF-κB as a Preventive or Therapeutic Target in Inflammatory Diseases and Cancers......Page 1018
4.1. Isoflavones......Page 1019
4.1.1. Inhibition of oxidative stress and NF-κB activation in vitro by soy isoflavone genistein......Page 1020
4.1.3. The effects of soy isoflavone genistein on cancer cells......Page 1021
4.2. Indole-3-carbinol and 3,3 -diindolylmethane......Page 1022
4.3. Curcumin......Page 1023
4.5. Resveratrol......Page 1024
4.6. Lycopene......Page 1025
5. Conclusions......Page 1026
References......Page 1027
PREVENTION AND TREATMENT......Page 11
1. Free Radical Scavengers......Page 1034
2. Lipid Peroxidation Inhibitors......Page 1036
3. SOD Mimetics......Page 1037
4. Conclusions......Page 1038
References......Page 1039
1. Introduction......Page 1044
2. Antioxidants......Page 1045
3. Classes of Nanocarriers......Page 1046
3.1. Liposomes......Page 1048
3.3. Protein immunoconjugates......Page 1049
3.4. Biodegradable polymeric nanocarriers......Page 1050
4. Nanocarrier Immunotargeting and Internalization......Page 1052
4.1. Angiotensin-converting enzyme......Page 1053
4.3. Caveolar proteins......Page 1054
4.4. Phagocytosis......Page 1055
4.5. Ig-family cell adhesion molecules......Page 1056
5. Efficacy of CAM-Targeted Nanoparticles......Page 1057
6. Conclusion and Perspectives......Page 1058
References......Page 1059
1. Introduction......Page 1066
2.1.1. TBARS and MDA measurement......Page 1069
2.1.2. F2α-isoprostanes......Page 1070
2.2.1. Protein carbonyls......Page 1072
2.2.2. Oxidized amino acid products......Page 1073
2.3. Biomarkers of DNA damage......Page 1074
2.3.1. Detection of DNA base oxidation......Page 1075
2.3.1.2. GC–MS and LC–MS–MS detection of oxDNA......Page 1076
2.3.2. Single cell gel electrophoresis (Comet assay) detection of oxDNA......Page 1077
3.1. F2α-isoprostanes as biomarkers of pathogenesis......Page 1078
3.2. Oxidized amino acids as biomarkers of atherosclerosis......Page 1080
3.3. Oxidized DNA as a biomarker of oxidative stress induced by physical activity......Page 1082
3.4. Oxidized DNA as a biomarker in dietary antioxidant interventions......Page 1084
4. Conclusions......Page 1085
References......Page 1086
Index......Page 1098




نظرات کاربران