دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: David E. Stewart
سری: CMS/CAIMS Books in Mathematics, 4
ISBN (شابک) : 303108120X, 9783031081200
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 644
[645]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Numerical Analysis: A Graduate Course به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تحلیل عددی: دوره تحصیلات تکمیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب قصد دارد دانشجویان فارغ التحصیل را با بسیاری از کاربردهای محاسبات عددی آشنا کند و به تفصیل توضیح دهد که چگونه و چرا روش های ارائه شده در عمل کار می کنند. این متن به تحلیل عددی به عنوان یک حد وسط بین عمل و تئوری می پردازد و هم به تحلیل ریاضی انتزاعی و هم به مدل های محاسباتی و برنامه نویسی کاربردی می پردازد که برای این زمینه مفید هستند. در حالی که متن از شبه کد استفاده می کند، کدهای Matlab و Julia به صورت آنلاین در دسترس دانش آموزان است تا از آنها استفاده کنند و تکنیک های پیاده سازی را نشان دهند. کتاب درسی همچنین بر مسائل چند متغیره در کنار مسائل تک متغیره تأکید میکند و به موضوعات تصادفی، از جمله معادلات دیفرانسیل تصادفی و الگوریتمهای تصادفیسازیشده، و موضوعات بهینهسازی و تقریب مرتبط با یادگیری ماشین میپردازد. در نهایت به دنبال شفاف سازی مسائل در تحلیل عددی در زمینه کاربردها و ارائه روش های قابل دسترس به دانش آموزان در ریاضیات و علوم داده است.
This book aims to introduce graduate students to the many applications of numerical computation, explaining in detail both how and why the included methods work in practice. The text addresses numerical analysis as a middle ground between practice and theory, addressing both the abstract mathematical analysis and applied computation and programming models instrumental to the field. While the text uses pseudocode, Matlab and Julia codes are available online for students to use, and to demonstrate implementation techniques. The textbook also emphasizes multivariate problems alongside single-variable problems and deals with topics in randomness, including stochastic differential equations and randomized algorithms, and topics in optimization and approximation relevant to machine learning. Ultimately, it seeks to clarify issues in numerical analysis in the context of applications, and presenting accessible methods to students in mathematics and data science.
Preface Contents 1 Basics of Numerical Computation 1.1 How Computers Work 1.1.1 The Central Processing Unit 1.1.2 Code and Data 1.1.3 On Being Correct 1.1.4 On Being Efficient 1.1.5 Recursive Algorithms and Induction 1.1.6 Working in Groups: Parallel Computing 1.1.7 BLAS and LAPACK Exercises 1.2 Programming Languages 1.2.1 MATLABTM 1.2.2 Julia 1.2.3 Python 1.2.4 C/C++ and Java 1.2.5 Fortran Exercises 1.3 Floating Point Arithmetic 1.3.1 The IEEE Standards 1.3.2 Correctly Rounded Arithmetic 1.3.3 Future of Floating Point Arithmetic Exercises 1.4 When Things Go Wrong 1.4.1 Underflow and Overflow 1.4.2 Subtracting Nearly Equal Quantities 1.4.3 Numerical Instability 1.4.4 Adding Many Numbers Exercises 1.5 Measuring: Norms 1.5.1 What Is a Norm? 1.5.2 Norms of Functions Exercises 1.6 Taylor Series and Taylor Polynomials 1.6.1 Taylor Series in One Variable 1.6.2 Taylor Series and Polynomials in More than One Variable 1.6.3 Vector-Valued Functions Exercises Project 2 Computing with Matrices and Vectors 2.1 Solving Linear Systems 2.1.1 Gaussian Elimination 2.1.2 LU Factorization 2.1.3 Errors in Solving Linear Systems 2.1.4 Pivoting and PA=LU 2.1.5 Variants of LU Factorization Exercises 2.2 Least Squares Problems 2.2.1 The Normal Equations 2.2.2 QR Factorization Exercises 2.3 Sparse Matrices 2.3.1 Tridiagonal Matrices 2.3.2 Data Structures for Sparse Matrices 2.3.3 Graph Models of Sparse Factorization 2.3.4 Unsymmetric Factorizations Exercises 2.4 Iterations 2.4.1 Classical Iterations 2.4.2 Conjugate Gradients and Krylov Subspaces 2.4.3 Non-symmetric Krylov Subspace Methods Exercises 2.5 Eigenvalues and Eigenvectors 2.5.1 The Power Method & Google 2.5.2 Schur Decomposition 2.5.3 The QR Algorithm 2.5.4 Singular Value Decomposition 2.5.5 The Lanczos and Arnoldi Methods Exercises 3 Solving nonlinear equations 3.1 Bisection method 3.1.1 Convergence 3.1.2 Robustness and reliability Exercises 3.2 Fixed-point iteration 3.2.1 Convergence 3.2.2 Robustness and reliability 3.2.3 Multivariate fixed-point iterations Exercises 3.3 Newton's method 3.3.1 Convergence of Newton's method 3.3.2 Reliability of Newton's method 3.3.3 Variant: Guarded Newton method 3.3.4 Variant: Multivariate Newton method Exercises 3.4 Secant and hybrid methods 3.4.1 Convenience: Secant method 3.4.2 Regula Falsi 3.4.3 Hybrid methods: Dekker's and Brent's methods Exercises 3.5 Continuation methods 3.5.1 Following paths 3.5.2 Numerical methods to follow paths Exercises Project 4 Approximations and Interpolation 4.1 Interpolation—Polynomials 4.1.1 Polynomial Interpolation in One Variable 4.1.2 Lebesgue Numbers and Reliability Exercises 4.2 Interpolation—Splines 4.2.1 Cubic Splines 4.2.2 Higher Order Splines in One Variable Exercises 4.3 Interpolation—Triangles and Triangulations 4.3.1 Interpolation over Triangles 4.3.2 Interpolation over Triangulations 4.3.3 5021671En4FigdPrint.eps Approximation Error over Triangulations 4.3.4 Creating Triangulations Exercises 4.4 Interpolation—Radial Basis Functions Exercises 4.5 Approximating Functions by Polynomials 4.5.1 Weierstrass' Theorem 4.5.2 Jackson's Theorem 4.5.3 Approximating Functions on Rectangles and Cubes 4.6 Seeking the Best—Minimax Approximation 4.6.1 Chebyshev's Equi-oscillation Theorem 4.6.2 Chebyshev Polynomials and Interpolation 4.6.3 Remez Algorithm 4.6.4 Minimax Approximation in Higher Dimensions Exercises 4.7 Seeking the Best—Least Squares 4.7.1 Solving Least Squares 4.7.2 Orthogonal Polynomials 4.7.3 Trigonometric Polynomials and Fourier Series 4.7.4 Chebyshev Expansions Exercises Project 5 Integration and Differentiation 5.1 Integration via Interpolation 5.1.1 Rectangle, Trapezoidal and Simpson's Rules 5.1.2 Newton–Cotes Methods 5.1.3 Product Integration Methods 5.1.4 Extrapolation 5.2 Gaussian Quadrature 5.2.1 Orthogonal Polynomials Reprise 5.2.2 Orthogonal Polynomials and Integration 5.2.3 Why the Weights are Positive 5.3 Multidimensional Integration 5.3.1 Tensor Product Methods 5.3.2 Lagrange Integration Methods 5.3.3 Symmetries and Integration 5.3.4 Triangles and Tetrahedra 5.4 High-Dimensional Integration 5.4.1 Monte Carlo Integration 5.4.2 Quasi-Monte Carlo Methods 5.5 Numerical Differentiation 5.5.1 Discrete Derivative Approximations 5.5.2 Automatic Differentiation 6 Differential Equations 6.1 Ordinary Differential Equations — Initial Value Problems 6.1.1 Basic Theory 6.1.2 Euler's Method and Its Analysis 6.1.3 Improving on Euler: Trapezoidal, Midpoint, and Heun 6.1.4 Runge–Kutta Methods 6.1.5 Multistep Methods 6.1.6 Stability and Implicit Methods 6.1.7 Practical Aspects of Implicit Methods 6.1.8 Error Estimates and Adaptive Methods 6.1.9 Differential Algebraic Equations (DAEs) Exercises 6.2 Ordinary Differential Equations—Boundary Value Problems 6.2.1 Shooting Methods 6.2.2 Multiple Shooting 6.2.3 Finite Difference Approximations Exercises 6.3 Partial Differential Equations—Elliptic Problems 6.3.1 Finite Difference Approximations 6.3.2 Galerkin Method 6.3.3 Handling Boundary Conditions 6.3.4 Convection—Going with the Flow 6.3.5 Higher Order Problems Exercises 6.4 Partial Differential Equations—Diffusion and Waves 6.4.1 Method of Lines Exercises Projects 7 Randomness 7.1 Probabilities and Expectations 7.1.1 Random Events and Random Variables 7.1.2 Expectation and Variance 7.1.3 Averages Exercises 7.2 Pseudo-Random Number Generators 7.2.1 The Arithmetical Generation of Random Digits 7.2.2 Modern Pseudo-Random Number Generators 7.2.3 Generating Samples from Other Distributions 7.2.4 Parallel Generators Exercises 7.3 Statistics 7.3.1 Averages and Variances 7.3.2 Regression and Curve Fitting 7.3.3 Hypothesis Testing Exercises 7.4 Random Algorithms 7.4.1 Random Choices 7.4.2 Monte Carlo Algorithms and Markov Chains Exercises 7.5 Stochastic Differential Equations 7.5.1 Wiener Processes 7.5.2 Itô Stochastic Differential Equations 7.5.3 Stratonovich Integrals and Differential Equations 7.5.4 Euler–Maruyama Method 7.5.5 Higher Order Methods for Stochastic Differential Equations Exercises Project 8 Optimization 8.1 Basics of Optimization 8.1.1 Existence of Minimizers 8.1.2 Necessary Conditions for Local Minimizers 8.1.3 Lagrange Multipliers and Equality-Constrained Optimization Exercises 8.2 Convex and Non-convex 8.2.1 Convex Functions 8.2.2 Convex Sets Exercises 8.3 Gradient Descent and Variants 8.3.1 Gradient Descent 8.3.2 Line Searches 8.3.3 Convergence 8.3.4 Stochastic Gradient Method 8.3.5 Simulated Annealing Exercises 8.4 Second Derivatives and Newton's Method Exercises 8.5 Conjugate Gradient and Quasi-Newton Methods 8.5.1 Conjugate Gradients for Optimization 8.5.2 Variants on the Conjugate Gradient Method 8.5.3 Quasi-Newton Methods Exercises 8.6 Constrained Optimization 8.6.1 Equality Constrained Optimization 8.6.2 Inequality Constrained Optimization Exercises Project Appendix A What You Need from Analysis A.1 Banach and Hilbert Spaces A.1.1 Normed Spaces and Completeness A.1.2 Inner Products A.1.3 Dual Spaces and Weak Convergence A.2 Distributions and Fourier Transforms A.2.1 Distributions and Measures A.2.2 Fourier Transforms A.3 Sobolev Spaces Appendix References Index