ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals

دانلود کتاب تحولات جدید و آینده در بیوتکنولوژی میکروبی و مهندسی زیستی: کشاورزی پایدار: بازبینی مواد شیمیایی سبز

New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals

مشخصات کتاب

New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals

دسته بندی: بیوتکنولوژی
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0323855814, 9780323855815 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 564 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب New and Future Developments in Microbial Biotechnology and Bioengineering: Sustainable Agriculture: Revisiting Green Chemicals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تحولات جدید و آینده در بیوتکنولوژی میکروبی و مهندسی زیستی: کشاورزی پایدار: بازبینی مواد شیمیایی سبز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تحولات جدید و آینده در بیوتکنولوژی میکروبی و مهندسی زیستی: کشاورزی پایدار: بازبینی مواد شیمیایی سبز



کشاورزی پایدار: بازدید مجدد از مواد شیمیایی سبز در مورد فن‌آوری‌های سبز بحث می‌کند که به ما در درک مواد شیمیایی سبز جدید برای کاهش پاتوژن‌های گیاهی و القای رشد گیاه و همچنین سلامت خاک کمک می‌کند. پرمصرف ترین مواد شیمیایی سبز آنتی اکسیدان ها، محافظت کننده های اسمزی و فیتوهورمون ها هستند. این کتاب مرتبط‌ترین اطلاعات را در مورد چگونگی استفاده از منابع میکروبی برای توسعه فرمول‌های جدید برای این نوع مواد شیمیایی و فناوری‌ها برای کاربردهای میدانی گرد هم می‌آورد. این کتاب به مهندسان شیمی، بیوشیمی‌دانان، شیمی‌دانان کشاورزی، صنعت‌گران، محققان و دانشمندانی که روی کشاورزی پایدار کار می‌کنند، مطالب مرجع ارائه می‌دهد.


توضیحاتی درمورد کتاب به خارجی

Sustainable Agriculture: Revisiting Green Chemicals discusses green technologies that help us to understand new green chemicals to reduce plant pathogens and induce plant growth as well as soil health. The most used green chemicals are antioxidants, osmoprotectants, and phytohormones. This book brings together the most relevant information on how we can use microbial resources to develop new formulations for these types of chemicals and technologies for field application. The book offers reference material to chemical engineers, biochemists, agrochemists, industrialists, researchers, and scientists working on sustainable agriculture.



فهرست مطالب

Front Cover
New and Future Developments in Microbial Biotechnology and Bioengineering
Copyright Page
Contents
List of contributors
About the editors
Preface
1 Alternative strategies to synthetic chemical fertilizers: revitalization of soil quality for sustainable agriculture usin...
	1.1 Introduction
	1.2 Green manure for the revitalization of soil quality
	1.3 Organic compost for the revitalization of soil quality
	1.4 Biochar for the revitalization of soil quality
		1.4.1 What is biochar?
	1.5 Effects of biochar on the nutrient availability in soil
	1.6 Effects of biochar on soil quality
	1.7 Microbial carrier of biochar
	1.8 Use of biochar for remediation in agricultural soils
	1.9 Uncertainties of biochar
	1.10 Future prospects of biochar use in agricultural soils
	1.11 Organo-mineral fertilizers: past, present, and future
		1.11.1 What is an organo-mineral fertilizer?
	1.12 Effects of organo-mineral fertilizers on soil productivity
	1.13 Effects of organo-mineral fertilizers on plant growth and plant nutrient use efficiency
	1.14 Role of organo-mineral fertilizers in sustainable agriculture
	1.15 Bio-fertilizers
	1.16 Future perspectives of bio-fertilizers
	References
2 Application of biostimulants to improve agronomic and physiological responses of plants: a review
	2.1 Introduction
	2.2 The response of plants to biostimulant elements
	2.3 Biostimulants: definitions and classifications
	2.4 Biostimulant origins
	2.5 Factors of biostimulants on growth
	2.6 The efficiency of biostimulants on the chemical composition
	2.7 Biostimulant use on vegetable crops
	2.8 Conclusions
	References
3 Green nanotechnology: a paradigm, panacea and new perspective for sustainable agriculture
	3.1 Introduction
		3.1.1 Background
		3.1.2 Green nanotechnology
		3.1.3 Nanomaterials or nanoparticles
		3.1.4 Brief description of green synthesis of nanomaterial and characterization
		3.1.5 Overview of engineered nanomaterials
		3.1.6 Classification of nanomaterials
			3.1.6.1 Nanoemulsions
			3.1.6.2 Nanoclays
			3.1.6.3 Nanoparticles
				3.1.6.3.1 Inorganic nanoparticles
				3.1.6.3.2 Organic nanoparticle
			3.1.6.4 Fluorescent nanomaterials
		3.1.7 Factors affecting the effect of engineered nanomaterials
	3.2 Review literature and recent developments
		3.2.1 Occurrence of nanomaterial in a living system
		3.2.2 Occurrence of nanomaterial in the agriculture system
		3.2.3 Uptake and translocation mechanism of nanoparticles in plants
			3.2.3.1 Uptake and translocation of nanoparticles
				3.2.3.1.1 Foliar uptake and translocation of NPs
				3.2.3.1.2 The uptake and translocation of nanoparticles in the plant via the root system
		3.2.4 Phytotoxicity of engineered nanomaterials
		3.2.5 Green nanotechnology approach for sustainable agriculture
			3.2.5.1 Increase productivity
			3.2.5.2 Crop protection
				3.2.5.2.1 Nanofertilizers
				3.2.5.2.2 Nanopesticides
			3.2.5.3 Precision farming
			3.2.5.4 Stress tolerance
			3.2.5.5 Soil enrichment
			3.2.5.6 Crop growth
			3.2.5.7 Crop improvement
			3.2.5.8 Pollution monitoring
				3.2.5.8.1 Diagnostic
				3.2.5.8.2 Pollutant remediation
		3.2.6 Green nanotechnology approaches in other sectors
			3.2.6.1 Approaches to green nanotechnology for engineering smart plant sensors
			3.2.6.2 Approaches to green nanotechnology for the food sector
			3.2.6.3 Approaches to green nanotechnology for water and wastewater treatment
			3.2.6.4 Approaches to green nanotechnology for pollution monitoring
			3.2.6.5 Approaches to green nanotechnology for the energy sector and photovoltaic cells
			3.2.6.6 Approaches to green nanotechnology for nanofabrics
			3.2.6.7 Approaches of nanobiotechnology for medicines, drugs, defense, and security
			3.2.6.8 Approaches to nanobiotechnology for cosmetics
			3.2.6.9 Approaches of nanobiotechnology for electronics, fuel cells, batteries, space, chemical sensors, automobiles, and t...
	3.3 Conclusion and future prospects
	References
4 Feasibility and challenges of biopesticides application
	4.1 Introduction
	4.2 Biopesticides
		4.2.1 Microbial biopesticides
		4.2.2 Plant-incorporated protectants
		4.2.3 Biochemical pesticides
	4.3 Merits and disadvantages of biopesticides
	4.4 Role of biopesticides
	4.5 Application of biopesticides
	4.6 Commercialization of biopesticides
	4.7 Conclusion and recommendations
	Acknowledgments
	References
5 How the soil nitrogen nutrient promotes plant growth—a critical assessment
	5.1 Introduction
		5.1.1 One-to-one care for soil N controlling
		5.1.2 Status of N concentration in planting soil
		5.1.3 N mineralization and immobilization from soil organic matter
		5.1.4 Is microbe helping in plant nitrogen acquisition?
		5.1.5 Nitrogen uptake and assimilation in plants
		5.1.6 N localization in plants
		5.1.7 Crosstalk of N, NO, and N transporters
		5.1.8 Approaches for improved N fertilization
		5.1.9 Sol nitrogen management through agronomic cropping practice nitrogen
	5.2 Conclusion
	References
6 Morphological and phytochemical changes of Cannabis sativa L. affected by light spectra
	6.1 Introduction
	6.2 Secondary metabolites in cannabis
	6.3 Biosynthesis pathway of cannabinoids
	6.4 How to analyze and measure the amount of cannabinoids in the plant
	6.5 The importance of light spectra in plant cultivation
	6.6 Examining the effects of light spectra on cannabis
		6.6.1 Morphological characteristics
		6.6.2 Phytochemical characteristics
	6.7 Conclusion
	References
7 Application of phosphite as a biostimulant in agriculture
	7.1 Introduction
	7.2 Chemistry of Phi and its metabolism in plants
	7.3 Phosphite as a biostimulant in agriculture
	7.4 Cereal and pulse crops
	7.5 Fruits
	7.6 Vegetables
	7.7 Other food crops
	7.8 Beyond agricultural applications of Phi: biotechnological and industrial usage
	7.9 Conclusion and prospects
	References
8 Sustainable mainframes for control of Sugarcane early shoot borer, Chilo infuscatellus (Snellen)
	8.1 Introduction
	8.2 Biology of early shoot borer on sugarcane
		8.2.1 Embryonic development
		8.2.2 Larval development
		8.2.3 The external appearance of pupa form
		8.2.4 Description and morph metrics of adult
	8.3 Integrated pest management for early shoot borer, Chilo infuscatellus
	8.4 Design making stage for early shoot borer
	8.5 Role of soil nutrients on the incidence of Chilo infuscatellus on sugarcane varieties
	8.6 Utilization of eggs parasitoid
	8.7 Genotype×role of climatic factors in under irrigation condition in sugarcane at advanced screening stages
	8.8 Adumbrate the molecular markers character of sugarcane forming resistance against early shoot borer
	8.9 Application of Pheromone traps techniques
	8.10 In vitro bioassay to determine the toxicity of cry 1f protein effective against Chilo Infuscatellus
	8.11 Synthesize Bt genes effective in the management of early shoot borer
	8.12 Effect of granulosis virus on early shoot borer
	8.13 Conclusions
	References
9 Levulinic acid: a potent green chemical in sustainable agriculture
	9.1 Introduction
	9.2 Levulinic acid: will it replace fossil fuels?
	9.3 Chemical and physical properties
	9.4 Application of levulinic acid and its derivatives
		9.4.1 Fuel or fuel additives
		9.4.2 Pharmaceuticals and medicines
		9.4.3 Food additives and preservatives
		9.4.4 Resin and adhesives
		9.4.5 Solvent
		9.4.6 Other uses of levulinic acid in product preparations
	9.5 Industrially important derivatives of levulinic acid, applications, and synthesis
		9.5.1 Diphenolic acids
		9.5.2 Δ-Aminolevulinic acid
		9.5.3 2-Methyltetrahydrofuran
		9.5.4 &e_0263;-Valerolactone
		9.5.5 Succinic acid
		9.5.6 Pyrrolidones
		9.5.7 Levulinic ketals
		9.5.8 Levulinate esters
	9.6 Synthesis of levulinic acid
		9.6.1 Levulinic acid production from first-generation biomass
			9.6.1.1 Sugars
		9.6.2 From the second generation of biomass
			9.6.2.1 Lignocellulosic feedstock
		9.6.3 From other renewable resources
		9.6.4 The third generation of biomass
	9.7 Different processes for levulinic acid synthesis
		9.7.1 Biofine process
		9.7.2 Homogenous catalytic system
		9.7.3 Heterogeneous catalytic system
		9.7.4 Biphasic system
		9.7.5 Ionic liquids system
		9.7.6 Supercritical fluid system
	9.8 Bottlenecks of levulinic acid production
	9.9 Conclusion and future remarks
	References
10 Role of chitosan in eco-friendly management of plant diseases for sustainable agriculture
	10.1 Introduction
	10.2 Sources of chitosan and its chemical structure
		10.2.1 Chemical structure of chitosan
		10.2.2 Sources of chitosan
	10.3 Application of chitosan in plant growth promotion and yield improvement
	10.4 Application of chitosan in plant protection
	10.5 Mode of action
		10.5.1 Mode of action of antimicrobial activity
	10.6 Factors affecting chitosan activity
		10.6.1 Microbial factors
		10.6.2 Intrinsic factors of chitosan
			10.6.2.1 Positive charge density
			10.6.2.2 Molecular weight
			10.6.2.3 Hydrophobic/hydrophilic characteristics
			10.6.2.4 Chelating capacity
		10.6.3 Physical state
			10.6.3.1 Antimicrobial activity in a soluble state
			10.6.3.2 Antimicrobial activity in solid-state
		10.6.4 Environmental factors
			10.6.4.1 pH is too an important factor
			10.6.4.2 Ionic strength
			10.6.4.3 Time and temperature
	10.7 Conclusion
	References
11 Role of trehalose in plant–rhizobia interaction and induced abiotic stress tolerance
	11.1 Introduction
		11.1.1 Trehalose—an abiotic stress protectant metabolite in rhizobia
		11.1.2 Trehalose—an abiotic stress protectants metabolite in plants
	11.2 Trehalose biosynthesis pathways in microorganisms and plants
		11.2.1 Pathways of trehalose biosynthesis
		11.2.2 Trehalase enzyme: trehalose catabolic enzyme
	11.3 Genetic modification of plants and microorganisms for higher trehalose biosynthesis and external amendments of trehalo...
	11.4 Role of trehalose in microbial protection from abiotic stress
	11.5 Role of trehalose in Rhizobium-legume symbiosis and abiotic stress tolerance
	11.6 Use of trehalose in seed priming, improved shelf life, preservation, and maintenance of microbial strains
	11.7 Conclusion and future prospects
	Acknowledgments
	References
12 Combinative effect of seed priming with plant growth-promoting rhizobacteria and green chemicals on plant growth and str...
	12.1 Introduction
	12.2 Biopriming
	12.3 Mechanism of priming
	12.4 Molecular, biochemical, and physiological changes in seeds on priming
	12.5 Recent strategies and operators of seed priming
		12.5.1 Hydropriming
		12.5.2 Halopriming
		12.5.3 Osmohardening
		12.5.4 Matrix priming
		12.5.5 On-farm priming
		12.5.6 Hormone enhancer priming
		12.5.7 Micronutrient seed priming
		12.5.8 Chemical priming
		12.5.9 Nanoparticle priming
	12.6 The potential of green chemicals seed priming synthesized with nanoparticles to promote plant growth
	12.7 Components influencing the seed priming process
	12.8 Essentiality of biopriming in stress forbearance
	12.9 Role of biopriming against abiotic stress
	12.10 Modes of plant growth-promoting rhizobacteria interceded drought and salt stress resilience
	12.11 Beneficial effects of seed priming
	12.12 Conclusion and future prospects
	References
13 Burgeoning trends using green chemicals to impede the obliterating invasive insects
	13.1 Introduction
	13.2 Future prospects and conclusions
	References
14 Routing microbial biosurfactants to agriculture for revitalization of soil and plant growth
	14.1 Introduction
	14.2 Mechanisms of action of surfactant molecules on surfaces and interfaces
	14.3 Possible applications and environmental toxicity
	14.4 The surfactants of biological origin
	14.5 Microorganisms involved in the production of biosurfactants
	14.6 Production and extraction of microbial biosurfactants
	14.7 Biosurfactants as a possible stimulant in agriculture
	14.8 Seed germination and plant growth enhancement
	14.9 Biosurfactants in nutrient mobilization
	14.10 Biosurfactants as biocontrol agents
	14.11 Conclusion and future prospects
	References
15 Nanopriming in sustainable agriculture: recent advances, emerging challenges and future prospective
	15.1 Introduction
	15.2 Nanotechnology in agricultural sustainability
	15.3 Seed priming and its implications in agriculture
	15.4 Nanopriming
	15.5 The mechanism underlying the nanopriming of seeds
		15.5.1 Mechanism of nanoparticles uptake during seed germination
		15.5.2 Role of reactive oxygen species and phytohormones during germination using nanoprimed seeds
	15.6 Influences of nanopriming at different plant growth stages
		15.6.1 Germination stage
		15.6.2 Vegetative stage
		15.6.3 Reproductive stage
	15.7 Nanopriming in improving various abiotic and biotic stresses
		15.7.1 Drought stress
		15.7.2 Salinity stress
		15.7.3 Heavy metal stress
		15.7.4 Nanopriming for improving biotic stress conditions
	15.8 Other implications of nanopriming for improving sustainability
	15.9 Summary
	References
16 Toxicological assessment of biobased products: trends and challenges
	16.1 Raw material for biobased products
		16.1.1 Biomass
		16.1.2 Enzymatic extracts
		16.1.3 Microorganisms
		16.1.4 Examples of biobased products
			16.1.4.1 Bioherbicide
			16.1.4.2 Biofertilizer
	16.2 Toxicological aspects of the biobased products and its production chain
		16.2.1 Upstream processes
			16.2.1.1 Raw material
		16.2.2 Midstream processes
			16.2.2.1 Pretreatment and compound handling processes
			16.2.2.2 Genetic engineering
		16.2.3 Downstream processes
	16.3 Bioproducts toxicity assessment: approaches and results
	16.5 The trends and challenges of toxicological assessment
	References
17 Advance technology for biostimulants in agriculture
	17.1 Introduction
	17.2 Different advanced technology for biostimulants
	17.3 Nano biostimulant
		17.3.1 Nanosilver
	17.4 Mechanism of nanosilver particle
		17.4.1 Agri-nano
	17.5 Mechanism of agri-nanoproduct
	17.6 Plant biostimulant
		17.6.1 Amino acids
		17.6.2 Sea weed
		17.6.3 Chitosan
			17.6.3.1 Mechanism of action
		17.6.4 Protein hydrolysates
			17.6.4.1 Characterization and chemical classification of protein hydrolysates
			17.6.4.2 Mechanism of action
		17.6.5 Microalgae
			17.6.5.1 Chemical composition of microalgal biostimulants
			17.6.5.2 Method of application of microalgal biostimulants
	17.7 Humic substances
		17.7.1 Mechanism of action of humic substances
		17.7.2 Role of humic substances as biostimulant in plant
		17.7.3 Method of application of humic substances
			17.7.3.1 Soil application (liquid-status)
			17.7.3.2 Soil application (solid-status)
			17.7.3.3 Foliar application
			17.7.3.4 Fertigation
	17.8 Conclusion
	References
18 Chitin and chitosan as elicitors in sustainable production of medicinal crops
	18.1 Introduction
	18.2 Immune responses of medicinal plants
	18.3 Inducing resistance in medicinal plants
		18.3.1 Synthetic inducers
		18.3.2 Microbial elicitors
	18.4 Chitin and chitosan: the fungal elicitors
	18.5 Mechanism of action of chitin and chitosan in medicinal plants
	18.6 Applications of chitosan in enhanced production of therapeutics
	18.7 Conclusion
	Acknowledgements
	References
19 Deciphering the role of phytohormones in the regulation of arbuscular mycorrhizal fungal symbiosis and mechanisms involved
	19.1 Introduction
	19.2 Phytohormones as biostimulants in arbuscular mycorrhizal fungi development
	19.3 Strigolactones
	19.4 Gibberellins
	19.5 Auxins
	19.6 Abscisic acid
	19.7 Ethylene
	19.8 Cytokinins
	19.9 Brassinosteroids
	19.10 Jasmonic acid
	19.11 Salicylic acid
	19.12 Conclusions and future direction of research
	Acknowledgments
	References
20 Biopreservation: an alluring method to safeguard food from spoilage
	20.1 Biopreservation
	20.2 Chemical preservatives versus biopreservatives
	20.3 Advantages of biopreservatives
	20.4 Lactic acid bacteria and its potential use in food safety
	20.5 Bacteriocin
	20.6 Lab bacteriocins
		20.6.1 Classification
		20.6.2 Factors inhibiting bacteriocin production
		20.6.3 Factors affecting bacteriocin activity in food
	20.7 Bacteriocins of various Gram-positive bacteria
	20.8 Bacillus as biopreservative
	20.9 Applications of bacteriocin-producing lactic acid bacteria in food
	20.10 Bacteriophages and their antibacterial life cycle
		20.10.1 Current bacteriophage-based food applications
	20.11 Endolysins: structure and mode of action
		20.11.1 Endolysins in food applications
	20.12 Limitations of biopreservation process
	20.13 Hurdle technology
	20.14 Applications of lactic acid bacteria bacteriocins in hurdle technology
	20.15 Pulsed electric field
		20.15.1 Limitations
	20.16 Nanotechnology
	20.17 Future prospects
	20.18 Conclusion
	References
21 Sustainable agriculture through improved on farm processing techniques and value-added organic food products
	21.1 Sustainable agriculture
	21.2 Drivers of sustainability
	21.3 Constraints and consideration of agricultural sustainability
	21.4 Traditional on-farm processing technologies and challenges
	21.5 Some selected value-added organic food products and their market status, prospects, and challenges
		21.5.1 Melon seed (Citrullus lanatus)
			21.5.1.1 Introduction
			21.5.1.2 Traditional on-farm technologies
			21.5.1.3 Processing
			21.5.1.4 Challenges
			21.5.1.5 Prospects
			21.5.1.6 Way forward and recommendations
			21.5.1.7 Publicity
			21.5.1.8 Rural development
			21.5.1.9 Malnutrition
		21.5.2 Groundnut (Arachis hypogaea)
			21.5.2.1 Introduction
			21.5.2.2 Traditional on-farm technologies
			21.5.2.3 Processing
			21.5.2.4 Challenges
			21.5.2.5 Rainfall variability and drought
			21.5.2.6 Aflatoxin
			21.5.2.7 Poor soil fertility
			21.5.2.8 Biotic and abiotic constraints
		21.5.3 Input supply
			21.5.3.1 Prospects
				21.5.3.1.1 Groundnut value chain
				21.5.3.1.2 Technological
			21.5.3.2 Way forward and recommendations
		21.5.4 Maize (Zea mays L.)
			21.5.4.1 Introduction
			21.5.4.2 Traditional farm technology
				21.5.4.2.1 Land selection
				21.5.4.2.2 Soil requirements
				21.5.4.2.3 Climatic requirements
				21.5.4.2.4 Water
				21.5.4.2.5 Planting date
				21.5.4.2.6 Weed control
			21.5.4.3 Land clearing and yield preparation
				21.5.4.3.1 Planting time
				21.5.4.3.2 Plant population
				21.5.4.3.3 Plant nutrient and fertilizer applications
			21.5.4.4 Disease control
				21.5.4.4.1 Insect/pest control
				21.5.4.4.2 Processing
			21.5.4.5 Market status of maize
			21.5.4.6 Challenges
			21.5.4.7 Prospects
		21.5.5 Date palm fruit (Phoenix dactylifera)
			21.5.5.1 Introduction
			21.5.5.2 Traditional on farm technologies
				21.5.5.2.1 Site selection
				21.5.5.2.2 Planting
				21.5.5.2.3 Fertilizer application
			21.5.5.3 Manure application, time, and dosage; soil and plant-dependent
				21.5.5.3.1 Harvesting
				21.5.5.3.2 Pests and disease management
				21.5.5.3.3 Processing
			21.5.5.4 Market status
			21.5.5.5 Prospects
			21.5.5.6 Recommendation
		21.5.6 Spinach (Spinacia oleracea)
			21.5.6.1 Introduction
			21.5.6.2 Traditional on-farm technologies
			21.5.6.3 Site selection
			21.5.6.4 Processing
			21.5.6.5 Constraints
		21.5.7 Recommendations
	21.6 Benefits of organic agriculture
	21.7 Conclusion
	References
Index
Back Cover




نظرات کاربران