ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nature of Science in Science Instruction: Rationales and Strategies

دانلود کتاب ماهیت علم در آموزش علوم: منطق و راهبردها

Nature of Science in Science Instruction: Rationales and Strategies

مشخصات کتاب

Nature of Science in Science Instruction: Rationales and Strategies

دسته بندی: آموزشی
ویرایش: New 
نویسندگان:   
سری: Philosophy, History and Education 
ISBN (شابک) : 9783030572389, 9783030572396 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 745 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Nature of Science in Science Instruction: Rationales and Strategies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ماهیت علم در آموزش علوم: منطق و راهبردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب ماهیت علم در آموزش علوم: منطق و راهبردها

ماهیت علم در آموزش علوم اولین کتابی است که توجیهی برای گنجاندن تاریخ و فلسفه علم در آموزش علوم با روش هایی ترکیب می کند که به وسیله آن می توان این محتوای حیاتی را با انواع زبان آموزان به اشتراک گذاشت. این شامل تجزیه و تحلیل کاملی از انواع ابزارهایی است که تاکنون برای ارزیابی یادگیری در این حوزه ایجاد شده است. این کتاب به مربیان روش های علوم، دانشجویان تحصیلات تکمیلی آموزش علوم و معلمان علوم مرتبط است.


توضیحاتی درمورد کتاب به خارجی

The Nature of Science in Science Education is the first book to blend a justification for the inclusion of the history and philosophy of science in science teaching with methods by which this vital content can be shared with a variety of learners. It contains a complete analysis of the variety of tools developed thus far to assess learning in this domain. This book is relevant to science methods instructors, science education graduate students and science teachers.



فهرست مطالب

Foreword
Preface
Acknowledgments
Introduction
	Organization of Nature of Science in Science Instruction
	References
Contents
Part I: Nature of Science in Science Teaching and Learning: Introduction
	Chapter 1: Nature of Science in Science Instruction: Meaning, Advocacy, Rationales, and Recommendations
		1.1 An Introduction to Science and Its Nature as the Foundation for Science Learning
			1.1.1 What Is Science?
			1.1.2 What Does the Expression “Nature of Science” Mean?
			1.1.3 Why “NOS”?
			1.1.4 What About NOS Should Be Taught and Learned?
		1.2 How We Know What We Know About How Science Works: A Brief Introduction
		1.3 A History of Advocacy for NOS in Science Instruction
		1.4 Rationales for the Inclusion of NOS in Science Instruction
			1.4.1 NOS Understanding is Fundamental for Understanding Science
			1.4.2 NOS Understanding Nutures Students’ Interest and Encourages Appreciation for Science
			1.4.3 NOS Knowledge Can Assist Students and Scientists: NOS has Practical Utility
			1.4.4 NOS Understanding is Vital for Citizenship
			1.4.5 NOS Knowledge Supports the Learning and Teaching of Traditional Science Content
		1.5 A Brief Overview of the State of Current NOS Education Research
		1.6 Taking Stock and Considering the Future of NOS in the Science Curriculum
		References
	Chapter 2: Considering a Consensus View of Nature of Science Content for School Science Purposes
		2.1 Introduction
		2.2 The Consensus Approach to Defining NOS for School Science Purposes
		2.3 Objections to the Consensus Approach
			2.3.1 A List of Shared Practices Across all Sciences May Blur or Perhaps Misrepresent the Distinctions About How NOS Functions in the Individual Science Discipline
			2.3.2 Most Suggestions for NOS Learning Goals are Focused on Only Widely Accepted Aspects of Nature of Science
			2.3.3 The Consensus View of NOS for Instructional Purposes May Be Incomplete
			2.3.4 The Foundation for Establishing the Consensus View of NOS Is Faulty
		2.4 Further Considerations: The Distinction between Declarative and Procedural NOS Knowledge
		2.5 Conclusions
		References
	Chapter 3: Principal Elements of Nature of Science: Informing Science Teaching while Dispelling the Myths
		3.1 Introduction
		3.2 Suppositions and Assertions About NOS Framing This Chapter
			3.2.1 NOS Content Described as a Set of Learning Goals Is Offered to Drive Instruction, Not a List to Be Memorized
			3.2.2 Science Educators Are Not Philosophers of Science
			3.2.3 Science Educators Must Work with Appropriate Experts to Define NOS Learning Goals
			3.2.4 There Is No One Right Way to Teach About NOS
			3.2.5 We Expect the Focus of Instruction Is on Teaching About NOS
			3.2.6 Science Education Is Self-Correcting
		3.3 The Development of a Consensus View of NOS for School Purposes: An Introduction
		3.4 A Proposal for Key Aspects of NOS Recommended for Inclusion in the Science Curriculum
			3.4.1 Why Recommend These Elements of NOS for Science Instruction?
		3.5 Discussion and Description of Recommended Key NOS Aspects
		3.6 The Tools and Products of Science
			3.6.1 Evidence in the Practice of Science
			3.6.2 Laws and Theories Are Equally Important but Distinct Kinds of Knowledge
			3.6.3 There Are Many Shared Methods in Science but No Single Stepwise “Scientific” Method
				3.6.3.1 Shared Methods of Science
				3.6.3.2 The Issue and Challenge of the Scientific Method
		3.7 There Are Human Elements in Science
			3.7.1 Creativity Plays a Significant Role in Science
			3.7.2 Science Involves Some Subjectivity
			3.7.3 There Are Sociocultural Impacts on Science and Vice Versa
		3.8 The Focus of Science and Its Limitations
			3.8.1 Science Is Limited in Its Ability to Answer All Questions
			3.8.2 Scientific Knowledge Is Tentative and Self-Correcting but Ultimately Durable
			3.8.3 Science and Engineering/Technology Are Related but Distinct
		3.9 Concluding Thoughts
		References
	Chapter 4: Nature of Science and Classroom Practice: A Review of the Literature with Implications for Effective NOS Instruction
		4.1 Introduction
		4.2 Effective NOS Instruction: Key Characteristics
			4.2.1 Explicit and Implicit NOS Instruction
			4.2.2 Reflective NOS Instruction
			4.2.3 Importance of Context in NOS Instruction
			4.2.4 Considering “Explicit,” “Reflective,” and “Context” in Combination: Implications for Practice
		4.3 Instructional Settings That Are Well Suited for Robust NOS Teaching and Learning
			4.3.1 Inquiry Science Teaching and NOS Instruction
			4.3.2 Argumentation and NOS Instruction
			4.3.3 Socioscientific Issues and NOS Instruction
			4.3.4 History of Science and NOS Instruction
		4.4 NOS Learning Readiness and NOS Learning Progressions
			4.4.1 Student Readiness: Starting Points for NOS Instruction
			4.4.2 Considering Formal NOS Learning Progressions
			4.4.3 Conclusions Regarding NOS Learning Progressions
		4.5 NOS and Science Teacher Education
			4.5.1 NOS in Methods Courses or as Part of Science Pedagogy Professional Development
			4.5.2 NOS in Science Content Experiences
			4.5.3 NOS in the Context of Scientific Research Experiences
			4.5.4 NOS-Focused Science Education Courses and/or Professional Development
			4.5.5 Summary and Synergistic Approaches to NOS Teacher Preparation
		4.6 Assessing NOS Teaching and Learning
			4.6.1 Assessing NOS Instruction
			4.6.2 Assessing NOS Learning
		4.7 Teaching About NOS: Challenges and Considerations
			4.7.1 Teachers Have Limited Understanding of NOS Knowledge, Content, and Pedagogy
			4.7.2 Teachers Place Limited Value on NOS Teaching and Learning
			4.7.3 A Lack of NOS-Focused Instructional Materials
			4.7.4 NOS Is Not Viewed as Important as “Traditional” Science Content: The Challenge of Reform Documents
		4.8 Conclusions
		References
Part II: Nature of Science Instruction: Foundation Knowledge for Nature of Science Instruction
	Chapter 5: Beyond Experiments: Considering the Range of Investigative and Data-Collection Methods in Science
		5.1 Introduction
		5.2 How the Modes of Scientific Inquiry (MSI) Flowchart Can Be Useful
		5.3 Teaching with Inquiry and Teaching How Science Functions
		5.4 Using the MSI to Guide the Conduct of Scientific Investigations
		5.5 Example 1: A Qualitative Descriptive Investigation
		5.6 Example 2: A Quantitative Descriptive Investigation
		5.7 Example 3: A Correlational Investigation
		5.8 Conclusions and Recommendations
		References
	Chapter 6: Exchanging the Myth of a Step-by-Step Scientific Method for a More Authentic Description of Inquiry in Practice
		6.1 The Myth and Reality of the Scientific Method
		6.2 The Inquiry Wheel: An Alternative Description of the Stepwise Scientific Method
		6.3 Teaching Authentic Scientific Inquiry
			6.3.1 The Inquiry Wheel
			6.3.2 The Role of Serendipity in Science
			6.3.3 The Role of Thought Experiments in Inquiry
			6.3.4 Observation and Description as Scientific Method: The Role of Qualitative Research
			6.3.5 Experimentation in Inquiry
		6.4 Conclusions
		References
	Chapter 7: Exploring the Challenges and Opportunities of Theory-Laden Observation and Subjectivity: A Key NOS Notion
		7.1 Introduction
		7.2 Observations, “Theories,” and the Myth of Complete Subjectivity
		7.3 Pros and Cons of “Theory-Based” Observations in Science
		7.4 Considering the Challenges of Observations in Science Instruction
		7.5 Prior Knowledge and the Expectancy Effect in School Science
		7.6 The Daphnia Dilemma: An Experimental Illustration of the Challenge of Prior Knowledge
			7.6.1 Methodology
			7.6.2 Results
		7.7 Discussion and Conclusion
			7.7.1 Implications and Recommendations
			7.7.2 A Note About Ethical Considerations
		A.	Appendices
			Appendix A: The Use of Optical Illusions to Illustrate “Theory-Based” Observations
			Appendix B: A Practical Example of Expectancy in Chemistry Class
		References
	Chapter 8: Distinguishing Science, Engineering, and Technology
		8.1 Introduction
		8.2 Definitions of Science, Engineering, and Technology in U.S. Science Education Documents
		8.3 Two Strategies for Teacher Training
			8.3.1 Strategy One: Distinguishing Science and Engineering
				8.3.1.1 Stage 1: Reveal Misconception That Engineering Articles Follow IMRD
				8.3.1.2 Stage 2: Focus of Science and Engineering Articles
				8.3.1.3 Stage 3: Similarities and Differences Between Science and Engineering
				8.3.1.4 Stage 4: Pedagogical Implications
				8.3.1.5 Practical Considerations
			8.3.2 Strategy Two: The Interrelationships between Science, Engineering, and Technology
				8.3.2.1 Stage 1: Reveal Prior Conceptions About Science, Engineering, and Technology
				8.3.2.2 Stage 2: Comparison of Science and Engineering based on NGSS
				8.3.2.3 Stage 3: Similarities and Differences between Science and Engineering
				8.3.2.4 Stage 4: Reveal Remaining Misconceptions
				8.3.2.5 Stage 5: Understanding Engineering Design
				8.3.2.6 Stage 6: Pedagogical Implications
		8.4 Summary and Conclusion
		References
Part III: Teaching About Nature of Science: Generalized Instructional Perspectives
	Chapter 9: The Use of Metacognitive Prompts to Foster Nature of Science Learning
		9.1 Architecture of a Teaching Strategy for Teaching NOS
			9.1.1 Modeling
			9.1.2 Emulation
			9.1.3 Self-Control
			9.1.4 Self-Reflection
		9.2 Sample Lessons
			9.2.1 Inquiry Lesson on Gas Laws with Empiricism as an NOS Instructional Goal
				9.2.1.1 Modeling
				9.2.1.2 Emulation
				9.2.1.3 Self-Control
				9.2.1.4 Self-Reflection
			9.2.2 An Inquiry Lesson on the Development of the Atomic Theory with an Application on the Modern Periodic Table and the NOS Elements of Tentativeness, Durability, and Self-Correcting Nature of the Scientific Enterprise
				9.2.2.1 Modeling
				9.2.2.2 Emulation
				9.2.2.3 Self-Control
				9.2.2.4 Self-Reflection
		9.3 Creating Metacognitive Prompts of NOS for Other Lessons
			9.3.1 Format for Metacognitive Prompts
			9.3.2 Embedding the Suite of Prompts into Inquiry Instruction
		9.4 Summary
		References
	Chapter 10: Teaching Nature of Science Through a Critical Thinking Approach
		10.1 Introduction
		10.2 NOS and Critical Thinking (CT)
		10.3 Teaching NOS Critically
		10.4 Feasibility Study
		References
	Chapter 11: The Nature of Science Card Exchange: Introducing the Philosophy of Science
		11.1 The Card Exchange
		11.2 Playing the Game
		11.3 Conclusion
		Appendix: Card Exchange Statements
		References
	Chapter 12: Reflecting on Nature of Science Through Philosophical Dialogue
		12.1 Introduction
		12.2 Nature of Science and the Importance of Reflection
		12.3 An Introduction to Philosophical Dialogue
			12.3.1 Beginning the Dialogue: The Centrality of Questions
				12.3.1.1 Distinguishing Philosophical Questions from Scientific Questions
				12.3.1.2 Stimulating Philosophical Questions
				12.3.1.3 Questioning the Questions
			12.3.2 Facilitating Philosophical Dialogue
				12.3.2.1 Stimulating Philosophical Dialogue
			12.3.3 Sustaining Philosophical Dialogue
		12.4 A Note on Student Experiences
		12.5 Conclusions
		References
	Chapter 13: Preparing Science Teachers to Overcome Common Obstacles and Teach Nature of Science
		13.1 Current State of NOS Teaching and Learning
		13.2 Accurately and Effectively Teaching the NOS
		13.3 Obstacles That Interfere with Effective NOS Instruction
		13.4 Characteristics and Actions of Teachers Who Overcome NOS Instruction Obstacles
		13.5 Preparing Teachers to Navigate Constraints That Work Against NOS Teaching
		References
	Chapter 14: Perspectives for Teaching About How Science Works
		14.1 Introduction
		14.2 An Illustration of the Role of Perspectives in Knowledge Development
		14.3 Perspective-Based Knowledge Development in Science Classrooms
			14.3.1 Perspective-Directed Knowledge Development in Biology Education: Using a Functional Perspective
			14.3.2 Perspective-Directed Knowledge Development in Chemistry Education: Using a Particle Perspective
		14.4 How Can Perspective-Based Knowledge Development Contribute to Understanding of General Aspects of Nature of Science?
			14.4.1 Domain #1: Human Elements in Science
			14.4.2 Domain #2: Tools and Products of Science
			14.4.3 Domain #3: The Special Nature of Scientific Knowledge
		References
	Chapter 15: Framing and Teaching Nature of Science as Questions
		15.1 The Importance of Framing and Teaching the NOS as Questions
		15.2 NOS Questions to Explore in Science Education
		15.3 Exploring NOS Questions with Students
		15.4 Standards as Cues for Teaching and Learning
		References
	Chapter 16: Using Real and Imaginary Cases to Communicate Aspects of Nature of Science
		16.1 Introduction
			16.1.1 Science as Doctrine
			16.1.2 Science as Process
			16.1.3 Science as Social Institution
			16.1.4 Nature of Science: An Analysis of an Imaginary Case Study
		16.2 An Analysis of the Causes of Mass Extinctions: An Actual Case Study in the Nature of Science
			16.2.1 The Extinction Debate: An Overview
			16.2.2 Using the Extinction Case Study: An Instructional Strategy
		Appendix: Umbrellaology: A Science or Not?
	Chapter 17: Avoiding De-Natured Science: Integrating Nature of Science into Science Instruction
		17.1 Introduction
		17.2 About the Activities and Experiences Presented Here
			17.2.1 Tricky Tracks
			17.2.2 Core Sampling and the Construction of Topographical Survey Maps
			17.2.3 Doing Real Science with Real Fossils
				17.2.3.1 High School Extensions
			17.2.4 Construction of a Model of the Atom (Also known as, The Mystery Tube)
			17.2.5 The Power and Pressure of Air
			17.2.6 Mystery Bones
			17.2.7 The Periodic Table
		17.3 Summary
		References
	Chapter 18: Blending Nature of Science with Science Content Learning
		18.1 Introduction
		18.2 Blending NOS and Science Content Instruction
		18.3 Designing Blended Instruction in the Context of Energy
		18.4 Activity 1: “Energy – One Concept, Many Forms”
			18.4.1 Hands-On Experiments
			18.4.2 Reflective Discussion
		18.5 Activity 2: “Mayer and Joule – Pathfinders to the Law of Energy Conservation”
			18.5.1 Hands-On Experiment
			18.5.2 Historical Background: A Reading for Students
			18.5.3 Reflective Discussion
		18.6 Activity 3: “Feynman’s Description of Energy Forms and Conservation”
			18.6.1 Students’ Reading Assignment
			18.6.2 Epistemic Discourse
		18.7 Activity 4: “Dark Energy – A Frontier Question of Science”
			18.7.1 Students’ Reading Assignment: The Expanding Universe
			18.7.2 Reflective Discussion
		18.8 Summary
		References
	Chapter 19: The Use of Digital Technologies to Enhance Learners’ Conceptions of Nature of Science
		19.1 Scientific and Technological Literacy
			19.1.1 Digital Literacies and Science Education
		19.2 Digital Timelines and Video Games
			19.2.1 Digital Scientific Timelines
			19.2.2 Digital Video Games (DVGs): The Potential for Learning About NOS
		19.3 Conclusion
		References
	Chapter 20: Using Exemplars to Improve Nature of Science Understanding
		20.1 Introduction
		20.2 An Explicit and Reflective Approach to Teacher Professional Growth for NOS
			20.2.1 Step 1: Create or Use Premade NOS Guides
			20.2.2 Step 2: Select Examples of Common NOS Conceptions
			20.2.3 Step 3: Teacher-Learner Negotiation of Example Responses
			20.2.4 Step 4: Whole Group Discussion
		20.3 Influence of the NOS Example Strategy on NOS Conceptions
		20.4 Conclusion
		Premade NOS Guides and Exemplar Responses (Figs. 20.4, 20.5, 20.6, 20.7, and 20.8)
		References
	Chapter 21: Practical Learning Resources and Teacher Education Strategies for understanding Nature of Science
		21.1 Introduction
		21.2 Framework on Nature of Science
		21.3 Designing Learning Resources
			21.3.1 Aims and Values of Science
			21.3.2 Social-Institutional System
			21.3.3 Scientific Practices
			21.3.4 Scientific Methods
			21.3.5 Scientific Knowledge
		21.4 Strategies for Including NOS in Science Teacher Education
		21.5 Concluding Remarks
		References
	Chapter 22: Arguing to Learn and Learning to Argue with Elements of Nature of Science
		22.1 Introduction
		22.2 The Bottle Activity
			22.2.1 Procedure/Scenario
				22.2.1.1 Phase 1: Demonstration/Observations
				22.2.1.2 Phase 2: Inferring a Model/Making a Claim
				22.2.1.3 Phase 3: Alternative Explanations
				22.2.1.4 Phase 4: Explicit Reflective Debriefing for NOS and Argumentation
		22.3 Conclusion
		References
	Chapter 23: Considering the Classroom Assessment of Nature of Science
		23.1 Introduction
		23.2 General Practices Related to Teachers’ Classroom NOS Assessment
		23.3 What Does it Mean to Understand NOS?
		23.4 Understanding Aspects of NOS
		23.5 Nature of Science as a “Grasp of Practice”
		23.6 Knowledge of Whole Science (KnOWS)
		23.7 Discussion
		23.8 Recommendations
		23.9 Researching Teachers’ Classroom Assessment of NOS
		23.10 Development of Classroom NOS Assessments
		23.11 Professional Development Efforts
		References
Part IV: Teaching Aspects of the Nature of Science: Specific Instructional Strategies and Settings
	Chapter 24: Using Core Science Ideas to Teach Aspects of Nature of Science in the Elementary Grades
		24.1 Introduction
			24.1.1 Explanation of Targeted Aspects of NOS (for the Teacher)
			24.1.2 Subject-Matter Targeted (for the Teacher)
			24.1.3 Learning Goals (for the Student)
			24.1.4 Materials for Periods One and Two
				24.1.4.1 Description of Activity
		24.2 Conclusion
		References
	Chapter 25: Improving Nature of Science Instruction in Elementary Classrooms with Modified Trade Books and Educative Curriculum Materials
		25.1 Introduction
		25.2 The Strategy
			25.2.1 Selecting and Modifying Science Trade Books
			25.2.2 Developing the Educative Curriculum Materials
		25.3 Implementing the Strategy in the Classroom
		25.4 Conclusion
		References
	Chapter 26: Using a Participatory Problem Based Methodology to Teach About NOS
		26.1 Introduction
		26.2 NOS as a Pedagogical Construct for Teaching and Learning About HPSS
		26.3 A Participatory PBL Methodology
		26.4 Applying Participatory PBL Methodology to Teach About NOS
			26.4.1 General Argument and Key Questions in Teaching Planning
			26.4.2 Socioscientific Issues as Cases for Analysis
			26.4.3 Exemplifying the PBL Participatory Approach for Teaching About NOS in an Undergraduate Setting
			26.4.4 Exemplifying the PBL Participatory Approach to Teaching About NOS in a Graduate Setting
		26.5 Concluding Remarks
		References
	Chapter 27: Storytelling as a Pedagogical Tool in Nature of Science Instruction
		27.1 Introduction
			27.1.1 Storytelling as a Teaching Method
			27.1.2 Telling Stories from the HΟS Promotes NΟS Understanding
		27.2 How to Tell an Effective HOS Story
			27.2.1 Choosing and Adapting the Proper Story to Tell
				27.2.1.1 Characteristics of a Science Story
				27.2.1.2 The Form of the Story
				27.2.1.3 Points for Attention
			27.2.2 The Storytelling
				27.2.2.1 Designing Your Personal Version of the Story
				27.2.2.2 Telling the Story
			27.2.3 After Storytelling: The Dialogue
		27.3 Examples and Suggestions for Effective Teaching of NOS-Related Issues Through Storytelling
			27.3.1 Relating HOS Stories to Various Aspects of NOS
				27.3.1.1 Science Depends on Empirical Evidence
				27.3.1.2 Science Shares Many Common Features in Terms of Method
				27.3.1.3 Science Is Tentative, Durable, and Self-Correcting
				27.3.1.4 Laws and Theories Are Not the Same
				27.3.1.5 Science Has Creative Elements
				27.3.1.6 Science Has a Subjective Component
				27.3.1.7 There Are Historical, Cultural, Political, and Social Influences on Science
				27.3.1.8 Science and Technology Impact Each Other, But They Are Not the Same
				27.3.1.9 Science Cannot Answer All Questions
		27.4 Assessing the Effectiveness of Storytelling in Teaching NOS-Related Issues
		27.5 Conclusions
		Appendix: Brief Example of a Story: The Double Helix
		References
	Chapter 28: Using Stories Behind the Science to Improve Understanding of Nature of Science, Science Content, and Attitudes Toward Science
		28.1 Science Textbooks and NOS Instruction
		28.2 “The Story Behind the Science” Project
		28.3 Strategies for Effectively Implementing the Project Stories
		28.4 Classroom Example Illustrating the Use of Project Stories
		28.5 Project Outcomes and Future Directions
		References
	Chapter 29: A Typology of Approaches for the Use of History of Science in Science Instruction
		29.1 Introduction and Rationales for the Use of the History of Science (HOS) in Science Instruction
		29.2 Why Propose a Classification Scheme for HOS Curriculum and Instructional Designs?
		29.3 The Impact of HOS on Student Learning
		29.4 Proposed History of Science Typology of Instructional Approaches
			29.4.1 Type 1.0: First-Hand Interactions with Original Works (Teaching and Learning with Primary Sources)
				29.4.1.1 Impact on Students Through the Primary Source Approach
			29.4.2 Type 2.0: Case Studies, Stories, and Other Similar Illustrations of the History of Science (May Include Interaction with Original Written Materials and Laboratory Experiences)
				29.4.2.1 Impact on Students Through the Case Study/Story Approach
			29.4.3 Type 3.0: Biographies and Autobiographies Detailing Scientists’ Lives and Discoveries
				29.4.3.1 Impact on Students Through the Biography Approach
			29.4.4 Type 4.0: Book Length Presentations of Some Aspect of the History of Science
				29.4.4.1 Impact on Students Through the Book Approach
			29.4.5 Type 5.0: Role-Playing and Related Activities with Respect to Historical Personages
				29.4.5.1 Impact on Students Through the Role-Playing Approach
			29.4.6 Type 6.0: Textbook Inclusions Related to the History of Science
				29.4.6.1 Impact on Students Through the Textbook HOS Inclusion Approach
			29.4.7 Type 7.0: Experimental Reenactments and Other “Hands-On” Approaches for Engagement with Various Historical Aspects of Science
				29.4.7.1 Impact on Students Through the Experimental Reenactment Approach
		29.5 Considering the History of Science in Science Education
		29.6 Challenges Faced in Incorporating HOS in Science Instruction
		References
	Chapter 30: Using Anecdotes from the History of Biology, Chemistry, Geology, and Physics to Illustrate General Aspects of Nature of Science
		30.1 Introduction to the History of Science Anecdote Approach
		30.2 Science Relies on Empirical Evidence
			30.2.1 Biology
			30.2.2 Chemistry
			30.2.3 Geology
			30.2.4 Physics
		30.3 Historical Examples Demonstrating That There Are Shared Methods But No Step-by-Step Method Used by All Scientists
			30.3.1 Biology
			30.3.2 Chemistry
			30.3.3 Geology
			30.3.4 Physics
		30.4 Historical Illustrations to Show That Laws and Theories Are Distinct and Not Hierarchically Related Kinds of Scientific Knowledge
			30.4.1 Biology
			30.4.2 Chemistry
			30.4.3 Geology
			30.4.4 Physics
		30.5 Using the History of Science to Show the Creative Aspect of Science
			30.5.1 Biology
			30.5.2 Chemistry
			30.5.3 Geology
			30.5.4 Physics
		30.6 Using the History of Science to Demonstrate the Subjective Element of Science
			30.6.1 Biology
			30.6.2 Chemistry
			30.6.3 Geology
			30.6.4 Physics
		30.7 Using the History of Science to Illustrate the Historical, Cultural, Political, and Social Influences on Science
			30.7.1 Biology
			30.7.2 Chemistry
			30.7.3 Geology
			30.7.4 Physics
		30.8 Science, Engineering, and Technology Influence Each Other But Are Not the Same
			30.8.1 Biology
			30.8.2 Chemistry
			30.8.3 Geology
			30.8.4 Physics
		30.9 Scientific Knowledge Is Tentative But Durable and Self-Correcting
			30.9.1 Biology
			30.9.2 Chemistry
			30.9.3 Geology
			30.9.4 Physics
		30.10 Science Cannot Answer All Questions
			30.10.1 Biology
			30.10.2 Chemistry
			30.10.3 Geology
			30.10.4 Physics
		30.11 Conclusions
		References
	Chapter 31: Using the Pendulum to Teach Aspects of the History and Nature of Science
		31.1 The Pendulum and the Foundation of Modern Science
		31.2 Galileo and the Pendulum
		31.3 A New Science and New Nature of Science: Galileo’s Methodological Innovation
		31.4 Huygens Refinement of Galileo’s Claims
		31.5 Huygens Pendulum Clock
		31.6 The Proposal of an International Length Standard
		31.7 Using the Pendulum to Determine the Shape of the Earth
		31.8 The Nature of Science Illustrated in the Testing of the Spherical Earth Theory
		31.9 The Pendulum in Newton’s Physics
		31.10 Conclusion
		References
	Chapter 32: Historical Inquiry Cases for Teaching Nature of Science Analytical Skills
		32.1 Science in Action and History
		32.2 History and Science-in-the-Making
		32.3 Posing Authentic NOS Questions
		32.4 Developing Lifelong NOS Analytical Skills
		32.5 Resources
		References
	Chapter 33: Teaching About Nature of Science Through Historical Experiments
		33.1 Introduction
		33.2 School Children Building Science Instruments
		33.3 Exchanges with Historical Experimenters and the Incomplete Story
		33.4 Explorations with Light in Response to Historical Observations and Experiments
		33.5 Teaching University Students About NOS Through Historical Experiments
		33.6 Using the Historical Approach to Encourage Students’ Own Research Projects
		33.7 Concluding Remarks
		References
	Chapter 34: Teaching the Limits of Science with Card-Sorting Activities
		34.1 Introduction: The Limits of Science Are Part of Nature of Science
		34.2 Classroom Activities: Considering the Limits of Science
			34.2.1 Activity 1: What Characterizes Scientifically Appropriate Questions?
				34.2.1.1 Specific Instructions for the Activity
					Phase 1: Sorting the Questions (Group Work)
					Phase 2: Formulating Reasons for the Sorting (Group Work)
					Phase 3: Whole Class Discussion
				34.2.1.2 Examples of Issues to Focus on During Whole Class Discussion
			34.2.2 Activity 2: On What Presuppositions Is Science Based?
				34.2.2.1 Specific Instructions for the Activity
					Phase 1: Sorting of Cards (Group Work)
					Phase 2: Whole Class Discussion
				34.2.2.2 Examples of Issues to Focus on During Whole Class Discussion
		34.3 Concluding Remarks
		References
	Chapter 35: Supporting Science Teachers’ Nature of Science Understandings Through a Specially Developed Philosophy of Science Course
		35.1 Introduction
		35.2 Philosophy of Science and Nature of Science
		35.3 A Philosophy of Science Course for Science Teachers
			35.3.1 Class 1: The Relevance of Philosophy of Science to Science Instruction
			35.3.2 Class 2: Key Concepts in Philosophy of Science
			35.3.3 Class 3: Science and Epistemology
			35.3.4 Class 4: Causation and Explanation
			35.3.5 Class 5: Scientific Evidence and Theorizing
			35.3.6 Class 6: Scientific Realism/Models/Representation
			35.3.7 Classes 7 and 8: Methodological and Epistemic Characteristics of Experimental and Historical Science
			35.3.8 Class 9: Conceptual Change in Science
			35.3.9 Classes 10 and 11: Science and Ethics/Science and Religion; Philosophy of Science and History of Science
			35.3.10 The Microteaching Sessions
		35.4 Some Conclusions from the Implementation of the Course
		35.5 Conclusions and Implications
		References
	Chapter 36: Learning Aspects of Nature of Science Through Authentic Research Experiences
		36.1 Introduction
		36.2 Aspects of Authentic Investigations in K-12 Learning Settings
		36.3 Adapting Primary Literature
		36.4 Authentic Research Lab (ARL)
		36.5 Research Apprenticeships in Professional Contexts
		36.6 Resolving Challenges to NOS Instruction in Authentic Environments
		36.7 Conclusions
		References
	Chapter 37: Strengthening Future Science Teachers’ Understanding of Nature of Science: The Role of an Embedded Research Experience in Teacher Preparation
		37.1 Rationales and Key Elements for a New Science Methods Course
		37.2 The Course Strategy Is Supported by Education Research
		37.3 The Elements of a Successful SM-CURE
			37.3.1 Information Provided to PSTs During an Orientation Meeting
			37.3.2 Preparing the Research Mentors
		37.4 SM-CURE Course Assignments
		37.5 Description of SM-CURE Assignments as they Relate to NOS Learning
			37.5.1 Research Apprenticeships in Support of NOS Learning
			37.5.2 Research Posters and Their Role in NOS Learning
			37.5.3 Preservice Science Teacher Research Symposium & Reception
			37.5.4 The Research Paper
			37.5.5 Preparation of a Standards-Based Research Lesson
			37.5.6 Fostering Explicit-Reflective Instruction About NOS
			37.5.7 NOS in Small Group and Whole Class Discussions
		37.6 Changes in the Views PSTs Hold About Nature of Science
		37.7 Conclusions
		References
	Chapter 38: Introducing the Human Elements of Science Through a Context-Rich Thematic Project
		38.1 Introduction
		38.2 A Thematic Project on the Topic of Sugar and Sweeteners
			38.2.1 Introduction to the Thematic Project
			38.2.2 Reading and Discussing About the Sugar/Sweetener Debate
			38.2.3 Panel Debate
			38.2.4 Planning and Performing an Investigation (2 Sessions)
		38.3 Conclusions
		References
	Chapter 39: Informal Learning Sites and Their Role in Communicating the Nature of Science
		39.1 What Is Informal Learning?
		39.2 Learning in Schools and in Non-school Settings
		39.3 Opportunities and Challenges: NOS Learning in Informal Environments
			39.3.1 Teaching Aspects of NOS in Schools and Beyond
		39.4 Case Studies of NOS in Diverse Informal Environments: Possibilities for Practice
			39.4.1 NOS Learning in Museums
			39.4.2 Museums and the Nature of Science: Unfortunate and Encouraging Examples
		39.5 A Question of Truth: NOS at the Ontario Science Centre
		39.6 Scientist for a Day: Thinking About NOS at the Science Centre Singapore
		39.7 Learning Science in the Field
		39.8 Learning About NOS Holistically: Gaining a Sense of Process and Place
			39.8.1 Charles Darwin: An Example of Process and Place
		39.9 Concluding Thoughts
		References
About the Contributors




نظرات کاربران