ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Nanomaterials and Environmental Biotechnology (Nanotechnology in the Life Sciences)

دانلود کتاب نانومواد و بیوتکنولوژی محیطی (نانو فناوری در علوم زیستی)

Nanomaterials and Environmental Biotechnology (Nanotechnology in the Life Sciences)

مشخصات کتاب

Nanomaterials and Environmental Biotechnology (Nanotechnology in the Life Sciences)

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 3030345432, 9783030345433 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 432 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 مگابایت 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Nanomaterials and Environmental Biotechnology (Nanotechnology in the Life Sciences) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد و بیوتکنولوژی محیطی (نانو فناوری در علوم زیستی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
Chapter 1: Nanoparticles and Plant Interaction with Respect to Stress Response
	1.1 Introduction
	1.2 The Nanoparticle and Its Role in Plant Stress
	1.3 Mechanistic Interaction of Nanoparticles in Plant Stress
		1.3.1 Phytotoxicity Mechanism of Nanoparticles
		1.3.2 Uptake Mechanism of Nanoparticles
		1.3.3 Translocation Mechanism of Nanoparticles
		1.3.4 Interaction Mechanism of Nanoparticles Leading to Stress
	1.4 Conclusions and Future Prospects
	References
Chapter 2: Nanoencapsulation Technology: Boon to Food Packaging Industries
	2.1 Introduction
	2.2 Nanomaterials Used for Food Packaging
		2.2.1 Lipid-Based Encapsulation of Essential Oils
			2.2.1.1 Emulsions
			2.2.1.2 Solid Lipid Nanoparticle (SLNs)
			2.2.1.3 Liposome as Nanocarriers of Bioactive Molecules
			2.2.1.4 Micelles
		2.2.2 Polymer-Based Encapsulation of Essential Oils
	2.3 Active Packaging of EO Nanoparticles as Food Protectant
	2.4 Mode of Action of Nanoparticles
	2.5 Factors Controlling the Stability of Nanoparticles in Food System
		2.5.1 Free Energy of Different Phases
		2.5.2 Droplet Aggregation and Particle Size
		2.5.3 Emulsifier Type
		2.5.4 Ionic Strength and pH
		2.5.5 Thermal Processing
	2.6 Nanoparticles as Active Biosensor for Detection of Food Contaminants (Chemicals and Food-Borne Pathogens)
	2.7 Application of Nanoparticles in Different Food Sectors
	2.8 Safety Issues Associated with Application of Nanotechnology in Food Packaging/Food Preservation
	2.9 Future Prospective
	References
Chapter 3: Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment
	3.1 Introduction
	3.2 Synthesis of Metallic Nanoparticles
	3.3 Application of Nanoparticles
	3.4 Toxicity of Metallic Nanoparticles
		3.4.1 Uptake of Metallic Nanoparticles
		3.4.2 Mode of Action of Nanoparticles
	3.5 Ecotoxicology Assessment and Possible Strategies
	3.6 Conclusions
	References
Chapter 4: Tripartite Interaction Among Nanoparticles, Symbiotic Microbes, and Plants: Current Scenario and Future Perspectives
	4.1 Introduction
	4.2 Nanoparticles Versus Plant Growth
	4.3 Nanoparticles Versus Soil Microorganisms
	4.4 Nanoparticles Versus Symbioses
		4.4.1 ZnO Nanoparticle Versus Symbioses
		4.4.2 Ag Nanoparticle Versus Symbioses
		4.4.3 CeO2 Nanoparticle Versus Symbioses
		4.4.4 Fe3O4 Nanoparticle Versus Symbioses
	4.5 Conclusions
	4.6 Future Perspectives
	References
Chapter 5: Effect of Nanoparticles on Plant Growth and Physiology and on Soil Microbes
	5.1 Introduction
	5.2 Effect of Nanoparticles on Plants
		5.2.1 Effects of NPs on Photosynthesis
	5.3 Effect of Nanoparticles on the Soil Microbial Community
	5.4 Impact of Carbon Nanotubes on Plants
		5.4.1 Effect of CNTs on Photosynthesis Mechanism
	5.5 Effect of CNTs on Soil Microbial Community
	5.6 Future Possibilities
	References
Chapter 6: Recent Trends and Advancement Toward Phyto-mediated Fabrication of Noble Metallic Nanomaterials: Focus on Silver, Gold, Platinum, and Palladium
	6.1 Introduction
	6.2 An Overview on Phyto-mediated Fabrication of Metallic NMs/Noble Metallic NMs
	6.3 Recent Fabrication Trends of Silver, Gold, Platinum, and Palladium NMs Using Plant System
	6.4 General Mechanism of Silver, Gold, Platinum, and Palladium NM Fabrication in Plant System
	6.5 Key Factors/Parameters for Optimal Fabrication of Silver, Gold, Platinum, and Palladium
	6.6 Characterization of Metallic NMs (Silver, Gold, Platinum, and Palladium)
	6.7 Conclusions and Future Perspective
	References
Chapter 7: Development of Environmental Biosensors for Detection, Monitoring, and Assessment
	7.1 Introduction
	7.2 Biosensing Techniques
		7.2.1 Biosensor System
		7.2.2 Classification of Biosensors
			7.2.2.1 On the Basis of Bio-recognition Element
				Immunosensors
				Enzymatic Biosensors
				Whole-Cell Based Biosensors
				Genosensors
				Aptasensors
				Biomimetic Biosensors
			7.2.2.2 On the Basis of the Transduction Principle
				Electrochemical Biosensors
				Optical Biosensors
				Piezoelectric Biosensors
				Thermometric Biosensors
				Magnetic Biosensors
	7.3 Environmental Biosensors
		7.3.1 Pesticides
		7.3.2 Pathogens
		7.3.3 Potentially Toxic Elements or Heavy Metals
		7.3.4 Toxins
		7.3.5 Endocrine-Disrupting Chemicals (EDCs)
		7.3.6 Other Environmental Compounds
	7.4 Summary
	References
Chapter 8: Nano-Based Materials and Their Synthesis
	8.1 Introduction
	8.2 Green Synthesis of MNPs (Biological/Bioreduction)
	8.3 Green Synthesis of Metallic Nanoparticles Using Plant Extracts
	8.4 Nanoparticle Synthesis Using Microorganisms
	8.5 Conclusion
	References
Chapter 9: Nano-based Composites and Their Synthesis
	9.1 Introduction
	9.2 Synthesis of Nanocomposites
		9.2.1 Ceramic Matrix Nanocomposites (CMNC)
			9.2.1.1 Synthesis of Ceramic CNT Nanocomposites
		9.2.2 Metal Matrix Nanocomposites
			9.2.2.1 Synthesis of CNT-Reinforced Metal Matrix Composites
		9.2.3 Polymer Nanocomposites
			9.2.3.1 In Situ Polymerization
			9.2.3.2 Melt Processing
			9.2.3.3 Solution Blending
			9.2.3.4 Other Techniques
			9.2.3.5 Synthesis of Polymer-CNT Nanocomposites
	9.3 Conclusion
	References
Chapter 10: Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation
	10.1 Chitosan
	10.2 Why Chitosan Is Useful in Enzyme Immobilization
	10.3 Nanoparticles
		10.3.1 Methods of Preparation of Nanoparticles
		10.3.2 Methods of Preparation of Chitosan Nanoparticles for Enzyme Immobilization
			10.3.2.1 Reverse Micelle Method
			10.3.2.2 Ionic Cross-Linking Method
			10.3.2.3 Coprecipitation Method
			10.3.2.4 Emulsion Cross-Linking Method
			10.3.2.5 Ionotropic Gelation Method
	10.4 Enzyme Immobilization
		10.4.1 Methods of Preparation of Immobilized Enzymes
			10.4.1.1 Support Binding
			10.4.1.2 Cross-Linking
			10.4.1.3 Entrapment
		10.4.2 Supports to the Enzymes
			10.4.2.1 Classic Materials
				Inorganic Materials
				Mineral Materials
				Carbon-Based Materials
				Organic Materials
			10.4.2.2 New Materials
				Synthetic Materials
				Biopolymers
		10.4.3 Immobilization of Enzyme Through Chitosan Nanoparticles
			10.4.3.1 β-Galactosidase
			10.4.3.2 Cellulase
			10.4.3.3 Glucose Oxidase
			10.4.3.4 Invertase
			10.4.3.5 Glucoamylase
			10.4.3.6 Glucosidase
			10.4.3.7 Xylanase
			10.4.3.8 α-Amylase
			10.4.3.9 Pectinase
			10.4.3.10 Laccase
			10.4.3.11 Lipase
			10.4.3.12 Protease
			10.4.3.13 Alcohol Dehydrogenase
			10.4.3.14 Penicillin G Acylase
			10.4.3.15 Serratiopeptidase
	10.5 Probiotics
		10.5.1 Probiotic Encapsulation
		10.5.2 Methods of Encapsulation
		10.5.3 Techniques of Coated Capsules
		10.5.4 Probiotics Encapsulation in Chitosan-Based Nanomaterials
	10.6 Conclusion
	References
Chapter 11: Nano-Based Drug Delivery Tools for Personalized Nanomedicine
	11.1 Introduction
	11.2 Applications of Nanotechnology in Biological Sciences
		11.2.1 Drug Delivery in Cancer
			11.2.1.1 Gelatin Nanoparticle
			11.2.1.2 PEGylated Liposomes
			11.2.1.3 Nanovaccines
		11.2.2 Phytochemical-Based Nanodrugs
			11.2.2.1 Nanocurcumin
			11.2.2.2 Nano-ginseng
			11.2.2.3 Nano-quercetin
			11.2.2.4 pH-Dependent Nanotools
	11.3 Disease Diagnostics
		11.3.1 Magnetic and Electrochemical-Based Nanoparticles
		11.3.2 Gold Nanoparticles
		11.3.3 Nitric Oxide-Embedded Nanoparticles
		11.3.4 Sunscreen
		11.3.5 Personalized Nanomedicine
		11.3.6 Personalized Nanodevices
		11.3.7 Microfluidic Channels on Bar Charts of Glass Chip
		11.3.8 Proteinticles
		11.3.9 Aptamers
	11.4 Conclusion
	References
Chapter 12: Nanotechnology as Potential and Innovative Platform Toward Wastewater Treatment: An Overview
	12.1 Introduction
	12.2 Fabrication of Nanoparticles: Physical, Chemical, and Biogenic Approaches
	12.3 Characterization Techniques of Fabricated Nanoparticles
	12.4 Nanoparticles: Potential Platform for the Removal of Water Contaminants
	12.5 Limitations of Nanoparticle-Based Wastewater Treatment
	12.6 Conclusion
	References
Chapter 13: Solid Lipid Nanoparticles
	13.1 Introduction
	13.2 Composition of Solid Lipid Nanoparticles
		13.2.1 Lipids
		13.2.2 Surface-Active Compounds (SACs)
	13.3 Techniques Used for Preparation
		13.3.1 High-Pressure Homogenization
			13.3.1.1 Hot Homogenization
			13.3.1.2 Cold Homogenization
		13.3.2 Ultrasound Dispersion/Ultrasonication
		13.3.3 Solvent Emulsification/Evaporation
		13.3.4 Microemulsion-Based Technique
		13.3.5 Double Emulsion Method
		13.3.6 Membrane Contactor Technique
		13.3.7 Supercritical Fluid (SCF) Technology
	13.4 Characterization of Solid Lipid Nanoparticles
		13.4.1 Physical Properties
			13.4.1.1 Size and Its Distribution
				Photon Correlation Spectroscopy
				Laser Diffraction (LD) Spectroscopy
		13.4.2 Microscopic Methods
			13.4.2.1 Shape and Surface Morphology
				Electron Microscopy
				Atomic Force Microscopy
		13.4.3 Surface Charge
		13.4.4 Drug Encapsulation and Loading Capacity
			13.4.4.1 Determination of Incorporated Drug
		13.4.5 Drug Localization and Drug Release
	13.5 Applications of Solid Lipid Nanoparticles
		13.5.1 Parenteral Delivery
		13.5.2 Oral Delivery
		13.5.3 Transdermal and Topical Use
		13.5.4 Pulmonary, Nasal and Ocular Administration
	13.6 SLNs as a Carrier for Site-Specific Delivery
		13.6.1 Application in Gene Delivery
		13.6.2 SLN as Carriers for Peptides and Protein Drugs
		13.6.3 Lipid Nanoparticle as a Carrier for Vaccine
	13.7 Stability
	13.8 Conclusions
	References
Chapter 14: Nanotechnology Applications and Synthesis of Graphene as Nanomaterial for Nanoelectronics
	14.1 Introduction
		14.1.1 Types of Nanomaterials
		14.1.2 Applications of Nanotechnology
		14.1.3 Advantages of Nanotechnology
	14.2 Graphene as Nanotechnology Material
	14.3 Graphene and Its Future Aspects
		14.3.1 Properties of Graphene
		14.3.2 Different Types of Nanostructures and Methods of Graphene Preparation
		14.3.3 Characterization of Graphene Material
		14.3.4 Potential Applications of Graphene (Hua-Qiang et al. 2013; Awano 2009; Lam and Liang 2011)
	14.4 CNT and Its Growing Demand
	14.5 Conclusion
	References
Chapter 15: Efficiency Enhancement of Renewable Energy Systems Using Nanotechnology
	15.1 Introduction
	15.2 Origin of Nanotechnology: The Science of Small Where Small Is Effective
	15.3 Rise of Nanomaterials and Its Applications in Diverse Areas
	15.4 Nanotechnology: The Future of Renewable Energy
		15.4.1 Benefits and Applications of Nanotechnology in the Renewable Energy Sector
		15.4.2 Solar Energy
		15.4.3 Solar Photovoltaic Cells
	15.5 Nanofluids for Solar Energy Applications
		15.5.1 Solar Cells
		15.5.2 Dye-Sensitized Solar Cells (DSSC/DSC/DYSC/Grätzel Cell)
		15.5.3 Dye-Sensitized Nanocrystalline Solar Cells
		15.5.4 Organic Polymer-Derived PV Solar Cell (OPV)
		15.5.5 Hot Carrier Solar Cells
	15.6 Hydrogen Energy
		15.6.1 Fuel Cells
		15.6.2 Diesel Engine
		15.6.3 Biomass/Bioenergy
		15.6.4 Bio-oil
		15.6.5 Bio-diesel
		15.6.6 Wind Energy
		15.6.7 Geothermal Energy
		15.6.8 Tidal Energy
	15.7 Conclusions
	References
Chapter 16: Wastewater and Industrial Effluent Treatment by Using Nanotechnology
	16.1 Introduction
	16.2 Existing Pollutants and Their Traditional Treatment Technologies
	16.3 Advanced Technologies for Wastewater Treatment
		16.3.1 Membrane Filtration
		16.3.2 Nanotechnology
		16.3.3 Automatic Variable Filtration (AVF) Technology
		16.3.4 Advanced Photo-Oxidation Process (APOP)
		16.3.5 Microbial Fuel Cells
		16.3.6 New Urban Sanitation Technology
		16.3.7 Natural Treatment Systems (NTSs)
		16.3.8 Coke Oven (CO) By-Product Wastewater Treatment
		16.3.9 Urine Separating Process
	16.4 Nanotechnology
		16.4.1 What Is Nanotechnology?
		16.4.2 Nanotechnology in Wastewater Treatment
			16.4.2.1 Adsorption
			16.4.2.2 Nanofiltration
			16.4.2.3 Nanofiber
			16.4.2.4 Photocatalysis
			16.4.2.5 Nanocatalysts
			16.4.2.6 Sensing and Monitoring
	16.5 Pros and Cons of Nanotechnology
	16.6 Future Aspects
	References
Chapter 17: Biomolecular and Cellular Manipulation and Detection (Nanofluidics and Micro- and Nanotechnologies in Integrative Biology)
	17.1 General Introduction
	17.2 Buckyballs and Nanotubes
		17.2.1 Application of Nanotubes in Integrative Biology
			17.2.1.1 Sending Signals to Nerve Cells via Nanotubes/Neuron-Nanotube Electric Interface
			17.2.1.2 Cell Membrane Interaction with Nanotube Transistor
			17.2.1.3 Artificial Retina
	17.3 Nanobots
	17.4 Nanoactuators
	17.5 Nanobombs
	17.6 Nanowires
	17.7 Lab-on-Chip
	17.8 Organs-on-Chip
	17.9 Conclusion
	References
Chapter 18: Bio-Based Nano-Lubricants for Sustainable Manufacturing
	18.1 Introduction
		18.1.1 Types of Cutting Fluids
			18.1.1.1 Neat Cutting Oils
			18.1.1.2 Water-Soluble Fluids
			18.1.1.3 Emulsifiable Oils
			18.1.1.4 Chemical (Synthetic Fluids)
			18.1.1.5 Semisynthetic Fluids
		18.1.2 Methods of Application of Cutting Fluids in Conventional Machining
			18.1.2.1 Cryogenic Cooling
			18.1.2.2 Solid Lubricant/Coolant
			18.1.2.3 High-Pressure Cooling Technique
			18.1.2.4 Air/Vapour/Gas Cooling
			18.1.2.5 Minimum Quantity Lubrication
			18.1.2.6 Nano-Enriched Cutting Fluids
		18.1.3 MQL (Minimum Quantity Lubrication) Application Technique
			18.1.3.1 Internal Application
			18.1.3.2 External Application
	18.2 Vegetable Oil-Based Lubricants
		18.2.1 Physicochemical Properties of Vegetable Oil-Based Lubricants
			18.2.1.1 Viscosity
			18.2.1.2 Viscosity Index
			18.2.1.3 Flash Point
			18.2.1.4 Pour Point
			18.2.1.5 Oxidation Stability
	18.3 Role of Nanoparticles in Cutting Fluids
		18.3.1 Mechanism of Nanolubrication
			18.3.1.1 Ball Bearing/Rolling/Sliding Effect
			18.3.1.2 Polishing Mechanism
			18.3.1.3 Mending Mechanism
			18.3.1.4 Formation of Tribofilm
		18.3.2 Preparation of Nanofluids
			18.3.2.1 Two-Step Method
			18.3.2.2 One-Step Method
		18.3.3 Importance of Nanofluid Stability
	18.4 Nanoparticle-Enriched Cutting Using MQL
		18.4.1 MQL-Assisted Drilling with Nanoparticles
		18.4.2 MQL-Assisted Grinding with Nanoparticles
		18.4.3 MQL-Assisted Turning with Nanoparticles
		18.4.4 MQL-Assisted Milling with Nanoparticles
	18.5 Future Scope
	References
Chapter 19: Nanomaterials Used for Delivery of Bioactives
	19.1 Introduction
	19.2 Classification of Nanocarriers
		19.2.1 Liposomes
	19.3 Particulate Carriers
		19.3.1 Polymeric Nanoparticles
		19.3.2 Solid Lipid Nanoparticles (SLNs)
	19.4 Inorganic Nanocarriers
		19.4.1 Silica Nanoparticles
		19.4.2 Gold Nanoparticles
		19.4.3 Calcium Phosphate Nanoparticles
	19.5 Concluding Remarks
	References
Chapter 20: Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects
	20.1 Phytochemicals and Nano-phytochemicals as Potent Anticancer Agents
	20.2 The Advantage of Nano-phytochemicals Over Pure Phytochemicals
		20.2.1 Role of Nanoform Phytochemicals in Cancer Research
			20.2.1.1 Broccoli Gold Nanoparticles
			20.2.1.2 Gold Quercetin Nanoparticles
			20.2.1.3 Curcumin Nanoparticles
			20.2.1.4 Selaginella doederleinii Leaf Nanoparticles
			20.2.1.5 Nigella sativa Nanoformulation
			20.2.1.6 Honokiol Nanoparticle
			20.2.1.7 Silibinin-Loaded Nanoparticle
			20.2.1.8 Ursolic Acid Nanoparticle
			20.2.1.9 β-Lapachone Nanoparticle
			20.2.1.10 Ferulic Acid Nanoparticles
	20.3 Conclusion
	References
Index




نظرات کاربران