ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب N-Sulfonated-N-Heterocycles: Synthesis, Chemistry, and Biological Applications

دانلود کتاب N-Sulfonated-N-Heterocycles: سنتز، شیمی، و کاربردهای بیولوژیکی

N-Sulfonated-N-Heterocycles: Synthesis, Chemistry, and Biological Applications

مشخصات کتاب

N-Sulfonated-N-Heterocycles: Synthesis, Chemistry, and Biological Applications

ویرایش:  
نویسندگان: , , , , , , ,   
سری:  
ISBN (شابک) : 0128221798, 9780128221792 
ناشر: Elsevier 
سال نشر: 2022 
تعداد صفحات: 521
[523] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 56 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب N-Sulfonated-N-Heterocycles: Synthesis, Chemistry, and Biological Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب N-Sulfonated-N-Heterocycles: سنتز، شیمی، و کاربردهای بیولوژیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب N-Sulfonated-N-Heterocycles: سنتز، شیمی، و کاربردهای بیولوژیکی



N-Sulfonated-N-Heterocycles سنتز، شیمی و کاربردهای بیولوژیکی این ترکیبات را پوشش می دهد، با تمرکز بر رویکردهای مصنوعی پیشگام، بینش های مکانیکی و محدودیت های آنها، و همچنین پیشرفت های اخیر در این زمینه. سنتز برخی از N-هتروسیکل های سولفونه N و تبدیل آنها به سایر ترکیبات حلقوی و غیر حلقوی مفید و همچنین استفاده از آنها به عنوان واسطه های مفید در تهیه مواد پلیمری و دارویی مورد بحث قرار گرفته است. این کتاب شامل روش‌ها و پروتکل‌های دقیق است و تمرکز بر کاربردها، این منبع را به راهنمای ضروری برای همه محققان در زمینه مطالعات مصنوعی آلی، دارویی و پلیمری تبدیل می‌کند.


توضیحاتی درمورد کتاب به خارجی

N-Sulfonated-N-Heterocycles covers the synthesis, chemistry and biological applications of these compounds, focusing on pioneering synthetic approaches, mechanistic insights and their limitations, as well as recent advances in this field. The synthesis of some of N-sulfonated N-heterocycles and their transformation to other useful cyclic and acyclic compounds are discussed, as well as their uses as useful intermediates in the preparation of polymeric and medicinal materials. This book includes detailed methods and protocols, and the focus on applications makes this resource an essential guide for all researchers in the area of organic, medicinal and polymeric synthetic study.



فهرست مطالب

Front Cover
N-Sulfonated-N-Heterocycles
Copyright Page
Contents
About the authors
1 Synthesis of N-sulfonated aziridines
	1.1 Introduction
	1.2 Synthesis of N-sulfonated aziridines via transferring of nitrogen to alkenes
		1.2.1 The addition of nitrene species to alkenes
			1.2.1.1 Nitrene transfer reactions using sulfonylimino iodinanes as nitrene precursors
			1.2.1.2 Nitrene transfer reactions using sulfonamides as nitrene precursors
			1.2.1.3 Nitrene transfer reactions using N-sulfonyl azides as nitrene precursors
			1.2.1.4 Nitrene transfer reactions using haloamine-T as nitrene precursors
		1.2.2 The addition of nitrogen-centered radical species to alkenes
	1.3 Synthesis of N-sulfonated aziridines via transferring of carbon to N-sulfonyl imines
		1.3.1 Direct aza-Darzens reaction
		1.3.2 Reaction of N-sulfonyl imines with sulfonium ylides
	1.4 Synthesis of N-sulfonated aziridines via intramolecular cyclization of amine derivatives
	References
2 Chemistry of N-sulfonated aziridines and their use in polymerization reactions
	2.1 Introduction
	2.2 Chemistry of N-sulfonated aziridines
		2.2.1 Ring-opening of N-sulfonated aziridines to acyclic amine derivatives
			2.2.1.1 To β-phenylethylamine derivatives
			2.2.1.2 To vicinal diamines
			2.2.1.3 To allyl amines and enamines
			2.2.1.4 To Ketimines
		2.2.2 Ring-opening of N-sulfonated aziridines to other cyclic N-sulfonated aza-heterocycles
			2.2.2.1 To N-sulfonated four-membered heterocycles
			2.2.2.2 To N-sulfonated five-membered heterocyclic ring
			2.2.2.3 To N-sulfonated six-membered heterocyclic ring
			2.2.2.4 To N-sulfonated seven-membered heterocyclic ring
	2.3 Uses of N-sulfonated aziridines in living aza-anionic polymerization
		2.3.1 Bis(trimethylsilyl)amides-catalyzed anionic ring-opening polymerization of N-sulfonated aziridines
			2.3.1.1 Copolymerization of different N-sulfonylaziridine monomers
		2.3.2 Organocatalytic ring-opening polymerization of N-sulfonated aziridines
		2.3.3 Synthesis of copolymers and block copolymers of N-sulfonylaziridine monomers with different well-known monomers
		2.3.4 Functionalized poly(sulfonylaziridine)s prepared via APOR polymerization of N-sulfonylaziridine
			2.3.4.1 Polyaziridine-based linear in-chain functionalized polymers
			2.3.4.2 Polyaziridine-based linear chain-end functionalized polymers: Telechelic polyaziridines
			2.3.4.3 Recent synthetic developments of polyaziridine-based macromolecular architectural polymers
		2.3.5 Desulfonation: easy access of linear polyamides from polyaziridine prepared via the anionic polymerization of N-sulfo...
	References
3 Synthesis of N-sulfonated azetidines and β-lactemes and their applications
	3.1 Introduction
	3.2 Synthesis of sulfonyl-activated azetidines and azetidin-2-ones
		3.2.1 Ring expansion of sulfonyl-activated azidirine
			3.2.1.1 To sulfonyl-activated azetidine
			3.2.1.2 To sulfonyl-activated azetidin-2-ones (sulfonyl-activated β-lactam)
		3.2.2 Synthesis of N-sulfonylazetidines via cycloaddition reactions
		3.2.3 Synthesis of sulfonyl-activated azetidines and azetidin-2-ones via intramolecular cyclization of amine derivatives or...
			3.2.3.1 To N-sulfonyl azetidines
			3.2.3.2 N-sulfonyl azetidinone (N-sulfonyl β-lactam)
		3.2.4 Synthesis of N-sulfonyl azetidine via ring contraction of 2-pyrrol-one
		3.2.5 Synthesis of bicyclic β-lactams via a crossed-benzoin/oxy-cope rearrangement
	3.3 Chemistry of sulfonyl-activated azetidine and azetidin-2-ones
		3.3.1 To acyclic amine derivatives
		3.3.2 To benzosultams
	3.4 Sulfonyl-activated azetidine and azetidin-2-ones in polymerization application
		3.4.1 Synthesis of poly(N-sulfonylaziridine)s via anionic polymerization
		3.4.2 Synthesis of β-lactam-containing polymers via metathesis polymerization
	References
4 N-Sulfonated N-azoles: Synthesis, chemistry and biological applications
	4.1 Introduction
	4.2 N-Sulfonated pyrroles
		4.2.1 Synthesis
			4.2.1.1 N-Sulfonyl triazole as a α-imino metallocarbene precursor in the synthesis of N-sulfonyl pyrroles and their derivatives
			4.2.1.2 Transannulation reactions of N-sulfonyl triazoles with alkynes
			4.2.1.3 Transannulation reactions of N-sulfonyl triazoles with alkenes
			4.2.1.4 N-sulfonyl aziridines as a precursor for synthesis N-sulfonyl pyrroles and their derivatives
			4.2.1.5 N-Sulfonyl ynamides as a precursor in the synthesis of fused N-sulfonyl pyrroles and their derivatives
		4.2.2 Biological activity of N-tosyl pyrroles
			4.2.2.1 Anticancer activity
			4.2.2.2 Antiviral activity
	4.3 Synthesis of N-tosyl isoxazoles and their derivatives
		4.3.1 Synthesis
	4.4 Synthesis of N-tosyl oxazoles and their derivatives
		4.4.1 Synthesis
	4.5 Synthesis of N-tosyl-1,2-thiazole and its derivatives
		4.5.1 Synthesis
	4.6 Synthesis of N-tosyl thiazole and its derivatives
		4.6.1 Synthesis
	References
5 Synthesis of N-sulfonated N-diazoles, their chemistry and biological assessments
	5.1 Introduction
	5.2 Synthesis of N-sulfonylimidazole and its derivatives
	5.3 Uses of N-sulfonylimidazole derivatives
	5.4 Chemistry of N-sulfonylpyrazoles
		5.4.1 Synthesis of N-sulfonylated pyrazoles
	5.5 Chemistry of N-sulfonylthiadiazole derivatives
		5.5.1 Chemistry of thiadiazole moiety
	5.6 Synthesis of 1,3,4-thiadiazole and 1,2,3-thiadiazole derivatives
	5.7 Chemistry of N-sulfonyl-1,3,4-oxadiazoles
	References
6 Synthesis, chemistry and uses of N-sulfonated N-triazoles and N-tetrazoles
	6.1 Introduction
	6.2 Synthesis of N-sulfonyl-1,2,3-triazoles
	6.3 Reactions of N-sulfonyl-1,2,3-triazoles
		6.3.1 Reactions with alcoholic compounds
		6.3.2 Reactions with ketones
		6.3.3 Reactions with substituted ether
		6.3.4 Reaction with cyclohexane
		6.3.5 Reactions with different amines
		6.3.6 Reaction with bromocyanide
		6.3.7 Hydrolysis
		6.3.8 Miscellaneous reactions
		6.3.9 Ring expansion
	6.4 Chemistry of 1,2,4-triazoles
		6.4.1 Synthesis of N-sulfonylated 1,2,4-triazoles
	6.5 Biological activity of some N-sulfonyltriazoles
	6.6 Chemistry of N-sulfonyl-1,2,3,4-tetrazoles
		6.6.1 Synthesis of N-sulfonyl-1,2,3,4-tetrazoles
	References
7 Synthetic approaches and biological evaluation of N-sulfonated N-azines
	7.1 Introduction
	7.2 Synthesis of N-sulfonyl pyridinone derivatives and their biological activities
		7.2.1 Synthesis of N-sulfonyl 2-pyridinones
		7.2.2 Synthesis of N-sulfonyl dihydro 2-pyridinones
		7.2.3 Synthesis of N-sulfonyl tetrahydro 2-pyridinones
		7.2.4 Synthesis of N-sulfonyl 3-pyridinones
		7.2.5 Synthesis of N-sulfonyl 4-pyridinones
		7.2.6 Synthesis of N-sulfonyl 2-quinolone and their derivatives
		7.2.7 Synthesis of N-sulfonyl isoquinolone and their derivatives
		7.2.8 Synthesis of N-sulfonyl pyridinone-fused heterocycles
	7.3 Synthesis of N-sulfonyl pyridine derivatives and their biological activities
		7.3.1 Synthesis of N-sulfonyl di- and tetrahydropyridines
		7.3.2 Synthesis of N-sulfonyl pipyridines
		7.3.3 Synthesis of N-sulfonyl quinolines
		7.3.4 Synthesis of N-sulfonyl isoquinolines and their derivatives
		7.3.5 Synthesis of N-sulfonyl pyridine-fused heterocycles
	7.4 Synthesis of N-sulfonyl oxazine derivatives and their biological activities
		7.4.1 Synthesis of N-sulfonyl 1,4-oxazines
			7.4.1.1 Synthesis of N-sulfonyl di- and tetrahydro-1,4-oxazines
			7.4.1.2 Synthesis of N-sulfonyl 1,4-benzoxazines
		7.4.2 Synthesis of N-sulfonyl 1,3-oxazines
	7.5 Synthesis of N-sulfonyl thiazine derivatives
		7.5.1 Synthesis of N-sulfonyl 1,4-thiazines
		7.5.2 Synthesis of N-sulfonyl 1,4-benzothiazines
	References
8 Synthesis of N-sulfonated N-diazines, N-triazines and N-tetrazines; their uses and biological applications
	8.1 Introduction
	8.2 N-Sulfonyldiazines
		8.2.1 N-Sulfonyl-1,4-diazines (N-sulfonyl pyrazines)
		8.2.2 N-Sulfonyl-1,2-diazines (N-sulfonyl pyridazines)
		8.2.3 N-Sulfonyl-1,3-diazines (N-sulfonyl pyrimidines)
	8.3 N-Sulfonyl-triazines
		8.3.1 N-Sulfonyl-1,2,4-triazines
		8.3.2 N-Sulfonyl-1,3,5-triazines
		8.3.3 N-Sulfonyl-1,2,3-triazines
	8.4 N-Sulfonated tetrazines
	References
9 Synthesis of N-sulfonated N-azepines
	9.1 Introduction
	9.2 N-Sulfonyl azepines
		9.2.1 Metal-catalyzed intermolecular cyclization
			9.2.1.1 Palladium-catalyzed reactions
			9.2.1.2 Copper-catalyzed reactions
			9.2.1.3 Silver catalyzed reactions
		9.2.2 Metal-catalyzed intramolecular cyclization
			9.2.2.1 Palladium-catalyzed reactions
			9.2.2.2 Gold catalyzed reactions
			9.2.2.3 Iridium catalyzed reactions
		9.2.3 Other synthetic pathways
	9.3 N-Sulfonyl dihydroazepines
		9.3.1 Metal-catalyzed intermolecular cyclization
			9.3.1.1 Palladium-catalyzed reactions
			9.3.1.2 Silver catalyzed reactions
			9.3.1.3 Rhodium-catalyzed reactions
		9.3.2 Metal-catalyzed intramolecular cyclization
			9.3.2.1 Palladium-catalyzed reactions
			9.3.2.2 Gold catalyzed reactions
			9.3.2.3 Silver catalyzed reactions
			9.3.2.4 Rhodium-catalyzed reactions
			9.3.2.5 Ruthenium catalyzed reactions
			9.3.2.6 Platinum-catalyzed reactions
		9.3.3 Other synthetic pathways
	9.4 N-Sulfonyl tetrahydroazepines
		9.4.1 Metal-catalyzed intermolecular cyclization
			9.4.1.1 Rhodium-catalyzed reactions
		9.4.2 Metal-catalyzed intramolecular cyclization
			9.4.2.1 Pallidum catalyzed reactions
			9.4.2.2 Gold catalyzed reactions
			9.4.2.3 Rhodium-catalyzed reactions
			9.4.2.4 Ruthenium catalyzed reactions
			9.4.2.5 Molybdenum catalyzed reactions
			9.4.2.6 Silver catalyzed reactions
		9.4.3 Other synthetic pathways
	References
10 Synthesis of N-sulfonated N-benzoazoles and their use in medicinal chemistry
	10.1 Introduction
	10.2 Chemistry of N-sulfonyl indoles
		10.2.1 Biological activities of N-sulfonated indoles
			10.2.1.1 Antiparasitic effect
			10.2.1.2 5-HT6-antagonism
			10.2.1.3 Anti-apoptotic effect
			10.2.1.4 Retinoic acid receptor-related orphan receptor γ (ROR γ) agonists
			10.2.1.5 Antipsychotics activity
			10.2.1.6 anti-HIV-1 activity
	10.3 Synthesis of N-sulfonyl benzoxazole
		10.3.1 Synthesis of N-sulfonyl-1,2-benzoxazole
		10.3.2 Synthesis of N-sulfonyl-1,3-benzoxazole
	10.4 Synthesis of N-sulfonyl benzothiazoles
		10.4.1 Synthesis of N-sulfonyl-1,2-benzothiazoles
		10.4.2 Synthesis of N-sulfonyl-1,3-benzothiazoles
	References
11 N-Sulfonated N-benzodiazoles and N-benzotriazoles: Synthesis and medicinal activity
	11.1 Introduction
	11.2 N-Sulfonyl benzimidazole
		11.2.1 Synthesis of N- sulfonyl benzimidazole
		11.2.2 Biological activities of N-sulfonyl benzimidazole derivatives
			11.2.2.1 Antiinflammatory activity
			11.2.2.2 Antitumor activity
			11.2.2.3 Antitrypanosoma cruzi activity
			11.2.2.4 Antiviral activity
			11.2.2.5 5HT6 receptor antagonists
			11.2.2.6 Antibacterial and urease inhibitory activity
			11.2.2.7 Antimycobacterium activity
			11.2.2.8 Anti-HIV mutant strains
			11.2.2.9 Apoptosis enhancement activity
			11.2.2.10 Inhibitors of NOD1-induced nuclear factor-jB activation
			11.2.2.11 Anti-hepatitis B virus activity
	11.3 N-Sulfonyl indazoles
		11.3.1 Chemistry of N-sulfonyl indazoles
		11.3.2 Biological activities of N-sulfonyl benzimidzole
			11.3.2.1 5-HT6 antagonists
			11.3.2.2 Antiepilepsy
			11.3.2.3 HDAC inhibitor activity
	11.4 N-Sulfonyl triazoles
		11.4.1 Chemistry of N-sulfonyl triazoles
		11.4.2 Biological activities of N-sulfonyl benzotriazoles
			11.4.2.1 Sodium hydrogen exchanger inhibitory activity
			11.4.2.2 Platelet aggregation inhibition activity
			11.4.2.3 Antibacterial activity
	References
12 N-Sulfonated N-benzoazines: Synthesis and medicinal chemistry
	12.1 Introduction
	12.2 N-Sulfonyl-cinnolines
		12.2.1 Medicinal chemistry aspects
		12.2.2 Synthetic aspects
	12.3 N-Sulfonyl-phthalazine
		12.3.1 Medicinal chemistry aspects
		12.3.2 Synthetic aspects
			12.3.2.1 Synthesis of N-methyl/phenylsulfonyl phthalazine
			12.3.2.2 Synthesis of 3,4-dihydrobenzo[f]phthalazines
	12.4 N-Sulfonyl-quinazolines
		12.4.1 Medicinal chemistry aspects
		12.4.2 Synthetic aspects
			12.4.2.1 The preparation of dihydroquinazolines via metal-free [4+2] cycloaddition of ynamides with nitriles
			12.4.2.2 Synthesis of imidazo- and pyrimido [1,2-b]-1,2-benzothiazine-6,6-dioxides
	12.5 N-Sulfonyl-quinolines, – isoquinolines and their derivatives
		12.5.1 Medicinal chemistry aspects
		12.5.2 Synthetic aspects
	12.6 N-Sulfonyl-quinolinones
		12.6.1 Medicinal chemistry aspects
		12.6.2 Synthetic aspects
			12.6.2.1 Sulfonyl chalcones and their quinolinone derivatives
			12.6.2.2 One-pot synthesis of aryl-sulfonyl quinolone derivatives
			12.6.2.3 Synthesis of N-sulfonyl γ and δ-lactams via transition metal-free oxidative catalysis
			12.6.2.4 Synthesis of N-sulfonyl-oxoquinoline heterocycles
	12.7 N-Sulfonyl quinoxaline
		12.7.1 Medicinal chemistry aspect
		12.7.2 Synthetic aspects
			12.7.2.1 Synthesis N-arylsulfonylquinoxaline
			12.7.2.2 Synthesis of N1-arylsulfonyl-2-quinoxalinones
			12.7.2.3 Synthesis of multisubstituted dihydroquinoxalin-2-one
	References
13 Patents and applications of N-sulfonated N-heterocycles
	13.1 Introduction
	13.2 Three membered N-sulfonyl heterocycles
		13.2.1 N-Sulfonyl aziridine
	13.3 Four-membered N-sulfonyl heterocycles
		13.3.1 N-Sulfonyl-azetidine and azetidine derivatives
			13.3.1.1 Medical applications of azetidine derivatives
			13.3.1.2 N-Sulfonyl azetidine derivatives for the treatment of hyperlipidemia
			13.3.1.3 N-Sulfonyl azetidine derivatives for the treatment of muscular degradation disorders
			13.3.1.4 N-Sulfonyl azetidine derivatives for the treatment of cardiac diseases
			13.3.1.5 N-Sulfonyl azetidine derivatives for the treatment of cancer
			13.3.1.6 N-Sulfonyl azetidine derivatives for the treatment of inflammation and related disorders
	13.4 Five membered N-sulfonyl heterocycles
		13.4.1 N-Sulfonyl imidazole and imidazoline derivatives
			13.4.1.1 Medical applications of imidazole and imidazoline derivatives
			13.4.1.2 N-Sulfonyl imidazole and imidazoline derivatives for the treatment of cancer
		13.4.2 N-Sulfonyl pyrazole derivatives
			13.4.2.1 Medical applications of pyrazole derivatives
		13.4.3 N-sulfonated pyrrole and pyrrolidine
			13.4.3.1 Medical applications of pyrrole and pyrrolidine derivatives
			13.4.3.2 N-Sulfonyl pyrrole for pain management
			13.4.3.3 N-Sulfonyl dihydro pyrrole and pyrrolidine for cancer treatment
	13.5 Six membered N-sulfonyl heterocycles
		13.5.1 N-Sulfonyl piperazine derivatives
			13.5.1.1 Medical applications of piperazine derivatives
			13.5.1.2 N-Sulfonyl piperazine for pain management
			13.5.1.3 N-Sulfonyl piperazine for the treatment of Alzheimer’s disease
			13.5.1.4 Treatment of diseases correlated to the production of reactive oxygen species
		13.5.2 N-Sulfonyl piperidine derivatives
			13.5.2.1 Medical applications of piperazine derivatives
			13.5.2.2 N-Sulfonyl piperidine for the treatment of Alzheimer’s disease
			13.5.2.3 N-Sulfonyl piperidine as ATP citrate lyase inhibitors
		13.5.3 N-Sulfonyl pyrazine derivatives
			13.5.3.1 Medical applications of pyrazine derivatives
			13.5.3.2 N-Sulfonyl pyrazine derivatives for pain management
	13.6 Fused N-sulfonyl heterocycles
		13.6.1 N-Sulfonyl azaindoles
			13.6.1.1 Medical applications of azaindole derivatives
			13.6.1.2 N-Sulfonyl azaindole derivatives for treatment of inflammation
			13.6.1.3 N-Sulfonyl azaindoles for treatment of HIV
			13.6.1.4 N-sulfonyl azaindole for pain management
		13.6.2 N-Sulfonyl benzimidazole
			13.6.2.1 Medical applications of benzimidazole derivatives
			13.6.2.2 N-Sulfonyl benzimidazole derivatives for the treatment of obesity
			13.6.2.3 N-Sulfonyl benzimidazole derivatives as anticancer agents
			13.6.2.4 N-Sulfonyl benzimidazole derivatives as antibacterial agents
			13.6.2.5 N-Sulfonyl benzimidazole derivatives as antiviral agents
			13.6.2.6 N-Sulfonyl benzimidazole derivative as immuno-modulators
		13.6.3 N-Sulfonyl benzotriazole derivatives
			13.6.3.1 Medical applications of benzotriazole derivatives
			13.6.3.2 N-Sulfonyl benzotriazole derivatives as anticancer agents
			13.6.3.3 N-Sulfonyl benzotriazole derivatives for treatment of HIV
			13.6.3.4 N-Sulfonyl benzotriazole derivatives as phosphate transport inhibitors
			13.6.3.5 N-Sulfonyl benzotriazole derivatives as human melanin-concentrating hormone receptor antagonists
			13.6.3.6 N-Sulfonyl benzotriazole derivatives in the industry
				13.6.3.6.1 Manufacturing a photo thermographic film
				13.6.3.6.2 Process for manufacturing novel colorant compound
		13.6.4 N-Sulfonyl indole derivatives
			13.6.4.1 Medical applications of indole derivatives
			13.6.4.2 N-Sulfonyl indole for inflammation-related disorders
			13.6.4.3 N-Sulfonyl indole derivatives for the treatment of peptic ulcer
			13.6.4.4 N-Sulfonyl indole derivatives for the treatment of Hepatitis B
			13.6.4.5 N-Sulfonyl indole derivatives as anticancer agents
			13.6.4.6 N-Sulfonyl indole derivatives for the treatment of Parkinson’s disease
			13.6.4.7 N-Sulfonyl indole derivatives for the treatment of obesity
			13.6.4.8 Other medical uses of N-sulfonyl indole
		13.6.5 N-Sulfonyl quinoline and N-sulfonyl isoquinoline derivatives
			13.6.5.1 Medical applications of quinoline and isoquinoline derivatives
			13.6.5.2 N-Sulfonyl quinoline and N-sulfonyl isoquinoline derivatives for the treatment of cancer
		13.6.6 Other N-Sulfonyl heterocycles
	References
Index
Back Cover




نظرات کاربران