ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Moore J.H., Spencer N.D Encyclopedia of Chemical Physics and Physical Chemistry. Volumes 1-3 Institute of Physics Pub. 2001

دانلود کتاب مور J.H. ، دانشنامه Spencer N.D فیزیک شیمی و شیمی فیزیکی. جلد 1-3 موسسه میخانه فیزیک. 2001

Moore J.H., Spencer N.D Encyclopedia of Chemical Physics and Physical Chemistry. Volumes 1-3 Institute of Physics Pub. 2001

مشخصات کتاب

Moore J.H., Spencer N.D Encyclopedia of Chemical Physics and Physical Chemistry. Volumes 1-3 Institute of Physics Pub. 2001

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0750303131 
ناشر:  
سال نشر: 2001 
تعداد صفحات: 5157 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 67 مگابایت 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Moore J.H., Spencer N.D Encyclopedia of Chemical Physics and Physical Chemistry. Volumes 1-3 Institute of Physics Pub. 2001 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مور J.H. ، دانشنامه Spencer N.D فیزیک شیمی و شیمی فیزیکی. جلد 1-3 موسسه میخانه فیزیک. 2001 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مور J.H. ، دانشنامه Spencer N.D فیزیک شیمی و شیمی فیزیکی. جلد 1-3 موسسه میخانه فیزیک. 2001

دایره‌المعارف شیمی فیزیک و فیزیک شیمی حوزه‌های احتمالاً ناآشنا را معرفی می‌کند، تکنیک‌های مهم تجربی و محاسباتی را توضیح می‌دهد و تلاش‌های مدرن را توصیف می‌کند. دایره المعارف به سرعت اصول اولیه را ارائه می دهد، محدوده هر زیر رشته را تعریف می کند و نشان می دهد که برای توضیح کاملتر و دقیق تر به کجا مراجعه کنید. توجه ویژه ای به نمادها و اختصارات شده است تا این دایره المعارف کاربر پسند باشد. دقت شده است که سطح خواندن برای شیمیدان یا فیزیکدان آموزش دیده مناسب باشد. این دایره المعارف به سه بخش عمده تقسیم می شود: مبانی: مکانیک اتم ها و مولکول ها و برهم کنش های آنها، توصیف ماکروسکوپی و آماری سیستم های در حالت تعادل، و روش های اساسی درمان سیستم های واکنش دهنده. مشارکت‌های این بخش نسبت به دو بخش بعدی، مخاطبان کمی پیچیده‌تر را فرض می‌کنند. حداقل بخشی از هر مقاله به ناچار مطالبی را پوشش می دهد که ممکن است در متن شیمی فیزیک مدرن و کارشناسی نیز یافت شود. روش‌ها: ابزار دقیق و نظریه بنیادی مورد استفاده در تکنیک‌های اصلی طیف‌سنجی، ابزار تجربی برای توصیف مواد، ابزار دقیق و تئوری پایه به‌کار رفته در مطالعه سینتیک شیمیایی، و تکنیک‌های محاسباتی مورد استفاده برای پیش‌بینی خواص استاتیکی و دینامیکی مواد. کاربردها: موضوعات خاص مورد علاقه فعلی و تحقیقات فشرده. برای فیزیکدان یا شیمیدان تمرین کننده، این دایره المعارف مکانی برای شروع در هنگام مواجهه با یک مشکل جدید یا زمانی است که ممکن است از تکنیک های یک منطقه ناآشنا استفاده شود. برای یک دانشجوی فارغ التحصیل در شیمی یا فیزیک، دایره المعارف خلاصه ای از اصول اولیه و یک نمای کلی از طیف وسیعی از فعالیت هایی که در آن اصول فیزیکی برای مسائل شیمیایی اعمال می شود، ارائه می دهد. هر یک از این گروه‌ها را با بیشترین سرعت ممکن به نقاط برجسته یک حوزه جدید هدایت می‌کند و راهنمایی می‌کند که کجا درباره موضوع با جزئیات بیشتر بخوانید.


توضیحاتی درمورد کتاب به خارجی

The Encyclopedia of Physical Chemistry and Chemical Physics introduces possibly unfamiliar areas, explains important experimental and computational techniques, and describes modern endeavors. The encyclopedia quickly provides the basics, defines the scope of each subdiscipline, and indicates where to go for a more complete and detailed explanation. Particular attention has been paid to symbols and abbreviations to make this a user-friendly encyclopedia. Care has been taken to ensure that the reading level is suitable for the trained chemist or physicist. The encyclopedia is divided in three major sections: FUNDAMENTALS: the mechanics of atoms and molecules and their interactions, the macroscopic and statistical description of systems at equilibrium, and the basic ways of treating reacting systems. The contributions in this section assume a somewhat less sophisticated audience than the two subsequent sections. At least a portion of each article inevitably covers material that might also be found in a modern, undergraduate physical chemistry text. METHODS: the instrumentation and fundamental theory employed in the major spectroscopic techniques, the experimental means for characterizing materials, the instrumentation and basic theory employed in the study of chemical kinetics, and the computational techniques used to predict the static and dynamic properties of materials. APPLICATIONS: specific topics of current interest and intensive research. For the practicing physicist or chemist, this encyclopedia is the place to start when confronted with a new problem or when the techniques of an unfamiliar area might be exploited. For a graduate student in chemistry or physics, the encyclopedia gives a synopsis of the basics and an overview of the range of activities in which physical principles are applied to chemical problems. It will lead any of these groups to the salient points of a new field as rapidly as possible and gives pointers as to where to read about the topic in more detail.



فهرست مطالب

Preface
Volume I. Fundamentals
	Part A1. Microscopics
		A 1.1 The quantum mechanics of atoms and molecules
			A1.1.1 Introduction
			A1.1.2 Concepts of quantum mechanics
			A1.1.3 Quantum mechanics of many-particle systems
			A1.1.4 Approximating eigenvalues of the Hamiltonian
			Further Reading
		A 1.2 Internal molecular motions
			A 1.2.1 Introduction
			A 1.2.2 Quantum theory of atomic and molecular structure and motion
			A 1.2.3 The molecular potential energy surface
			A 1.2.4 Anharmonicity
			A 1.2.5 Polyatomic molecules
			A 1.2.6 Anharmonic normal modes
			A 1.2.7 Spectra that are not so regular
			A 1.2.8 Resonance couplings
			A 1.2.9 Polyad number
			A 1.2.10 Spectral pattern of the Darling–Dennison Hamiltonian
			A 1.2.11 Fermi resonances
			A 1.2.12 More subtle energy level patterns
			A 1.2.13 Multiple resonances in polyatomics
			A 1.2.14 Potential and experiment: closing the circle
			A 1.2.15 Polyad quantum numbers in larger systems
			A 1.2.16 Isomerization spectra
			A 1.2.17 Breakdown of the polyad numbers
			A 1.2.18 Classical versus non-classical effects
			A 1.2.19 Molecules in condensed phase
			A 1.2.20 Laser control of molecules
			A 1.2.21 Larger molecules
			A 1.2.22 Protein folding
			A 1.2.23 Outlook
			References
			Further Reading
		A 1.3 Quantum mechanics of condensed phases
			A1.3.1 Introduction
			A1.3.2 Many-body wavefunctions in condensed phases
			A1.3.3 Density functional approaches to quantum descriptions of condensed phases
			A1.3.4 Electronic states in periodic potentials: Bloch’s theorem
			A1.3.5 Energy bands for crystalline solids
			A1.3.6 Examples for the electronic structure and energy bands of crystals
			A1.3.7 Non-crystalline matter
			References
			Further Reading
		A 1.4 The symmetry of molecules
			A1.4.1 Introduction
			A1.4.2 Group theory
			A1.4.3 Symmetry operations and symmetry groups
			A1.4.4 The molecular symmetry group
			A1.4.5 The molecular point group
			Acknowledgments
			References
			Further Reading
		A 1.5 Intermolecular interactions
			A1.5.1 Introduction
			A1.5.2 Long-range forces
			A1.5.3 Short- and intermediate-range forces
			A1.5.4 Experimental information
			A1.5.5 Model interaction potentials
			References
			Further Reading
		A 1.6 Interaction of light with matter: a coherent perspective
			A1.6.1 The basic matter–field interaction
			A1.6.2 Coherence properties of light and matter
			A1.6.3 The field transfers its coherence to the matter
			A1.6.4 Coherent nonlinear spectroscopy
			A1.6.5 Coherent control of molecular dynamics
			References
			Further Reading
		A 1.7 Surfaces and interfaces
			A1.7.1 Introduction
			A1.7.2 Clean surfaces
			A1.7.3 Adsorption
			A1.7.4 Preparation of clean surfaces
			A1.7.5 Techniques for the investigation of surfaces
			A1.7.6 Liquid–solid interface
			References
	Part A2. Thermodynamics and Statistical Mechanics
		A 2.1 Classical thermodynamics
			A2.1.1 Introduction
			A2.1.2 The zeroth law
			A2.1.3 The first law
			A2.1.4 The second law
			A2.1.5 Open systems
			A2.1.6 Applications
			A2.1.7 The third law
			A2.1.8 Thermodynamics and statistical mechanics
			References
			Further Reading
		A 2.2 Statistical mechanics of weakly interacting systems
			A2.2.1 Introduction
			A2.2.2 Mechanics, microstates and the degeneracy function
			A2.2.3 Statistical ensembles
			A2.2.4 Canonical ensemble
			A2.2.5 Grand canonical ensemble
			A2.2.6 Summary
			References
			Further Reading
		A 2.3 Statistical mechanics of strongly interacting systems: liquids and solids
			A2.3.1 Introduction
			A2.3.2 Classical non-ideal fluids
			A2.3.3 Ensembles
			A2.3.4 Correlation functions of simple fluids
			A2.3.5 Equilibrium properties of non-ideal fluids
			A2.3.6 Perturbation theory
			A2.3.7 Solids and alloys
			A2.3.8 Mean-field theory and extensions
			A2.3.9 High- and low-temperature expansions
			A2.3.10 Exact solutions to the Ising model
			A2.3.11 Summary
			References
			Further Reading
		A 2.4 Fundamentals of electrochemistry
			A 2.4.1 The elementary theory of liquids
			A 2.4.2 Ionic solutions
			A2.4.3 Ionic conductivity
			A2.4.4 Ionic interactions
			A 2.4.5 The electrified double layer
			A 2.4.6 Thermodynamics of electrified interfaces
			A 2.4.7 Electrical potentials and electrical current
			References
		A 2.5 Phase transitions and critical phenomena
			A2.5.1 One-component first-order transitions
			A2.5.2 Phase transitions in two-component systems
			A2.5.3 Analytic treatment of critical phenomena in fluid systems. The van der Waals equation
			A2.5.4 Analytic treatments of other critical phenomena
			A2.5.5 The experimental failure of the analytic treatment
			A2.5.6 The Ising model and the gradual solution of the problem
			A2.5.7 The current status of the Ising model; theory and experiment
			A2.5.8 Other examples of second-order transitions
			A2.5.9 Multicritical points
			A2.5.10 Higher-order phase transitions
			Acknowledgments
			References
			Further Reading
	Part A3. Dynamical Processes
		A 3.1 Kinetic theory: transport and fluctuations
			A3.1.1 Introduction
			A3.1.2 The informal kinetic theory for the dilute gas
			A3.1.3 The Boltzmann transport equation
			A3.1.4 Fluctuations in gases
			References
			Further Reading
		A 3.2 Non-equilibrium thermodynamics
			A3.2.1 Introduction
			A3.2.2 General stationary Gaussian–Markov processes
			A3.2.3 Onsager’s theory of non-equilibrium thermodynamics
			A3.2.4 Applications
			A3.2.5 Linear response theory
			A3.2.6 Prospects
			References
			Further Reading
		A 3.3 Dynamics in condensed phase (including nucleation)
			A3.3.1 Introduction
			A3.3.2 Equilibrium systems: thermal fluctuations and spatio-temporal correlations
			A3.3.3 Non-equilibrium time-evolving systems
			A3.3.4 Late-stage growth kinetics and Ostwald ripening
			A3.3.5 Nucleation kinetics—metastable systems
			A3.3.6 Summary
			References
			Further Reading
		A 3.4 Gas-phase kinetics
			A3.4.1 Introduction
			A3.4.2 Definitions of the reaction rate
			A3.4.3 Empirical rate laws and reaction order
			A3.4.4 Elementary reactions and molecularity
			A3.4.5 Theory of elementary gas-phase reactions
			A3.4.6 Transition state theory
			A3.4.7 Statistical theories beyond canonical transition state theory
			A3.4.8 Gas-phase reaction mechanisms
			A3.4.9 Summarizing overview
			References
			Further Reading
		A 3.5 Ion chemistry
			A3.5.1 Introduction
			A3.5.2 Methodologies
			A3.5.3 Applications
			References
			Further Reading
		A 3.6 Chemical kinetics in condensed phases
			A3.6.1 Introduction
			A3.6.2 Static solvent effects
			A3.6.3 Transport effects
			A3.6.4 Selected reactions
			References
		A 3.7 Molecular reaction dynamics in the gas phase
			A3.7.1 Introduction
			A3.7.2 Theoretical background: the potential energy surface
			A3.7.3 Experimental techniques in reaction dynamics
			A3.7.4 Case study: the F + H2 reaction
			A3.7.5 Conclusions and perspectives
			References
		A 3.8 Molecular reaction dynamics in condensed phases
			A3.8.0 Introduction
			A3.8.1 The reactive flux
			A3.8.2 The activation free energy and condensed phase effects
			A3.8.3 The dynamical correction and solvent effects
			A3.8.4 Quantum activated rate processes and solvent effects
			A3.8.5 Solvent effects in quantum charge transfer processes
			A3.8.6 Concluding remarks
			References
		A 3.9 Molecular reaction dynamics: surfaces
			A3.9.1 Introduction
			A3.9.2 Reaction mechanisms
			A3.9.3 Collision dynamics and trapping in nonreactive systems
			A3.9.4 Molecular chemisorption and scattering
			A3.9.5 Dynamics of dissociation reactions
			A3.9.6 Eley–Rideal dynamics
			A3.9.7 Photochemistry
			A3.9.8 Outlook
			References
			Further Reading
		A 3.10 Reactions on surfaces: corrosion, growth, etching and catalysis
			A3.10.1 Introduction
			A3.10.2 Corrosion
			A3.10.3 Growth
			A3.10.4 Etching
			A3.10.5 Catalytic reactions
			References
		A 3.11 Quantum mechanics of interacting systems: scattering theory
			A3.11.1 Introduction
			A3.11.2 Quantum scattering theory for a one-dimensional potential function
			A3.11.3 Multichannel quantum scattering theory; scattering in three dimensions
			A3.11.4 Computational methods and strategies for scattering problems
			A3.11.5 Cumulative reaction probabilities
			A3.11.6 Classical and semiclassical scattering theory
			References
			Further Reading
		A 3.12 Statistical mechanical description of chemical kinetics: RRKM
			A3.12.1 Introduction
			A3.12.2 Fundamental assumption of RRKM theory: microcanonical ensemble
			A3.12.3 The RRKM unimolecular rate constant
			A3.12.4 Approximate models for the RRKM rate constant
			A3.12.5 Anharmonic effects
			A3.12.6 Classical dynamics of intramolecular motion and unimolecular decomposition
			A3.12.7 State-specific unimolecular decomposition
			A3.12.8 Examples of non-RRKM decomposition
			Acknowledgments
			References
			Further Reading
		A 3.13 Energy redistribution in reacting systems
			A 3.13.1 Introduction
			A 3.13.2 Basic concepts for inter- and intramolecular energy transfer
			A 3.13.3 Collisional energy redistribution processes
			A 3.13.4 Intramolecular energy transfer studies in polyatomic molecules
			A 3.13.5 IVR in the electronic ground state: the example of the CH chromophore
			A 3.13.6 Statistical mechanical master equation treatment of intramolecular energy redistribution in reactive molecules
			A 3.13.7 Summarizing overview on energy redistribution in reacting systems
			References
			Further Reading
		A 3.14 Nonlinear reactions, feedback and self-organizing reactions
			A3.14.1 Introduction
			A3.14.2 Clock reactions, chemical waves and ignition
			A3.14.3 Oscillations and chaos
			A3.14.4 Targets and spiral waves
			A3.14.5 Turing patterns and other structures
			A3.14.6 Theoretical methods
			References
			Further Reading
Volume II. Methods
	Part B1. Determining Materials and Molecular Properties
		B1.1 Electronic spectroscopy
			B1.1.1 Introduction
			B1.1.2 Experimental methods
			B1.1.3 Theory
			B1.1.4 Examples
			References
			Further Reading
		B1.2 Vibrational spectroscopy
			B1.2.1 Introduction
			B1.2.2 Theory
			B1.2.3 Spectrometers
			B1.2.4 Typical examples
			B1.2.5 Conclusions and future prospects
			References
			Further Reading
		B1.3 Raman spectroscopy
			B1.3.1 Introduction
			B1.3.2 Theory
			B1.3.3 Raman spectroscopy in modern physics and chemistry
			B1.3.4 Applications
			B1.3.5 A snapshot of Raman activity in 1998
			Appendix
			Acknowledgments
			Appendix
			Acknowledgments
			References
			Further Reading
		B1.4 Microwave and terahertz spectroscopy
			B1.4.1 Introduction
			B1.4.2 Incoherent THz sources and broadband spectroscopy
			B1.4.3 Coherent THz sources and heterodyne spectroscopy
			B1.4.4 Spectroscopy with tunable microwave and THz sources
			B1.4.5 Outlook
			References
			Further Reading
		B1.5 Nonlinear optical spectroscopy of surfaces and interfaces
			B1.5.1 Introduction
			B1.5.2 Theoretical considerations
			B1.5.3 Experimental considerations
			B1.5.4 Applications
			B1.5.5 Conclusion
			References
			Further Reading
		B1.6 Electron-impact spectroscopy
			B1.6.0 Introduction
			B1.6.1 Technology
			B1.6.2 Theory
			B1.6.3 Applications
			References
			Further Reading
		B1.7 Mass spectrometry
			B1.7.1 Introduction
			B1.7.2 Ion sources
			B1.7.3 Magnetic sector instruments
			B1.7.4 Quadrupole mass filters, quadrupole ion traps and their applications
			B1.7.5 Time-of-flight mass spectrometers
			B1.7.6 Fourier transform ion cyclotron resonance mass spectrometers
			References
			Further Reading
		B1.8 Diffraction: x-ray, neutron and electron
			B1.8.1 Introduction
			B1.8.2 Principles of diffraction
			B1.8.3 Structure determination
			B1.8.4 Experimental techniques
			B1.8.5 Frontiers
			References
			Further Reading
		B1.9 Scattering: light, neutrons, X-rays
			B1.9.1 Introduction
			B1.9.2 Interaction of radiation and matter
			B1.9.3 Light scattering
			B1.9.4 X-ray scattering
			B1.9.5 Neutron scattering
			B1.6.1 Concluding remarks
			References
		B1.10 Coincidence techniques
			B1.10 Introduction
			B1.10.2 Statistics
			B1.10.3 Time-of-flight experiments
			B1.10.4 Lifetime measurements
			B1.10.5 Coincidence experiments
			B1.10.6 Anti-coincidence
			References
		B1.11 NMR of liquids
			B1.11.1 Introduction
			B1.11.2 Nuclear spins
			B1.11.3 The NMR experiment
			B1.11.4 Quantitation
			B1.11.5 Chemical shifts
			B1.11.6 The detection of neighbouring atoms–couplings
			B1.11.7 Two-dimensional methods
			B1.11.8 Spatial correlations
			References
			Further Reading
		B1.12 NMR of solids
			B1.12.1 Introduction
			B1.12.2 Fundamentals
			B1.12.3 Instrumentation
			B1.12.4 Experimental techniques
			References
			Further Reading
		B1.13 NMR relaxation rates
			B1.13.1 Introduction
			B1.13.2 Relaxation theory
			B1.13.3 Experimental methods
			B1.13.4 Applications
			Acknowledgments
			References
			Further Reading
		B1.14 NMR imaging (diffusion and flow)
			B1.14.1 Introduction
			B1.14.2 Fundamentals of spatial encoding
			B1.14.3 Contrasts in MR imaging
			B1.14.4 Flow and diffusion
			References
			Further Reading
		B1.15 EPR methods
			B1.15.1 Introduction
			B1.15.2 EPR background
			B1.15.3 EPR instrumentation
			B1.15.4 Time-resolved CW EPR methods
			B1.15.5 Multiple resonance techniques
			B1.15.6 Pulsed EPR spectroscopy
			B1.15.7 High-field EPR spectroscopy
			References
		B1.16 Chemically-induced nuclear and electron polarization (CIDNP and CIDEP)
			B1.16.1 Introduction
			B1.16.2 CIDNP
			B1.16.3 CIDEP
			References
			Further Reading
		B1.17 Microscopy: electron (SEM and TEM)
			Abbreviations
			B1.17.1 Introduction
			B1.17.2 Interaction of electrons with matter and imaging of the scattering distribution
			B1.17.3 Instrumentation
			B1.17.4 Specimen preparation
			B1.17.5 Image formation and image contrast
			B1.17.6 Analytical imaging, spectroscopy, and mass measurements
			B1.17.7 3D object information
			Unknown
			References
		B1.18 Microscopy: light
			B1.18.1 Introduction
			B1.18.2 Magnification, resolution and depth of focus
			B1.18.3 Contrast enhancement
			B1.18.4 Scanning microscopy
			B1.18.5 Confocal scanning microscopy
			References
			Further Reading
		B1.19 Scanning probe microscopies
			B1.19.1 Introduction
			B1.19.2 Scanning tunnelling microscopy
			B1.19.3 Force microscopy
			B1.19.4 Scanning near-field optical microscopy and other SPMs
			B1.19.5 Outlook
			References
		B1.20 The surface forces apparatus
			B1.20.1 Introduction
			B1.20.2 Principles
			B1.20.3 Applications
			References
			Further Reading
		B1.21 Surface structural determination: diffraction methods
			B1.21.1 Introduction
			B1.21.2 Fundamentals of surface diffraction methods
			B1.21.3 Statistics of full structural determinations
			B1.21.4 Two-dimensional ordering and nomenclature
			B1.21.5 Surface diffraction pattern
			B1.21.6 Diffraction pattern of disordered surfaces
			B1.21.7 Full structural determination
			B1.21.8 Present capabilities and outlook
			Acknowledgments
			References
			Further Reading
		B1.22 Surface characterization and structural determination: optical methods
			B1.22.1 Introduction
			B1.22.2 IR spectroscopy
			B1.22.3 Laser-based spectroscopies
			B1.22.4 X-ray diffraction and x-ray absorption
			B1.22.5 Other optical techniques
			References
		B1.23 Surface structural determination: particle scattering methods
			B1.23.1 Introduction
			B1.23.2 Basic physics underlying keV ion scattering and recoiling
			B1.23.3 Instrumentation
			B1.23.4 Computer simulation methods
			B1.23.5 Elemental analysis from scattering and recoiling
			B1.23.6 Structural analysis from TOF-SARS
			B1.23.7 Structural analysis from SARIS
			B1.23.8 Ion–surface electron exchange
			B1.23.9 Role of scattering and recoiling among surface science techniques
			B1.23.10 Low-energy scattering of light atoms
			B1.23.11 Summary
			References
			Further Reading
		B1.24 Rutherford backscattering, resonance scattering, PIXE and forward (recoil) scattering
			B1.24.1 Introduction
			B1.24.2 Rutherford backscattering spectrometry (RBS)
			B1.24.3 In situ real-time RBS
			B1.24.4 Channelling
			B1.24.5 Resonances
			B1.24.6 Particle-induced x-ray emission (PIXE)
			B1.24.7 Nuclear microprobe (NMP)
			B1.24.8 Forward recoil spectrometry (FRS)
			References
			Further Reading
		B1.25 Surface chemical characterization
			B1.25.1 Introduction
			B1.25.2 Electron spectroscopy (XPS, AES, UPS)
			B1.25.3 Secondary ion mass spectrometry (SIMS)
			B1.25.4 Temperature programmed desorption (TPD)
			B1.25.5 Electron energy loss spectroscopy (EELS)
			References
			Further Reading
		B1.26 Surface physical characterization
			B1.26.1 Introduction
			B1.26.2 The Brunauer–Emmett–Teller (BET) method
			B1.26.3 Ellipsometry
			B1.26.4 Work-function measurements
			References
		B1.27 Calorimetry
			B1.27.1 Introduction
			B1.27.2 Relationship between thermodynamic functions and calorimetry
			B1.27.3 Operating principle of a calorimeter
			B1.27.4 Classification of calorimeters
			B1.27.5 Calorimeters for specific applications
			B1.27.6 Differential scanning calorimetry
			B1.27.7 Accelerating rate calorimetry
			B1.27.8 Specialized calorimeters
			B1.27.9 Recent developments
			References
			Further Reading
			Further Reading
		B1.28 Electrochemical methods
			B1.28.1 Introduction
			B1.28.2 Introduction to electrode reactions
			B1.28.3 Transient techniques
			B1.28.4 Steady-state techniques
			B1.28.5 Electrochemical impedance spectroscopy
			B1.28.6 Photoelectrochemistry
			B1.28.7 Spectroelectrochemistry
			References
			Further Reading
		B1.29 High-pressure studies
			B1.29.1 Introduction
			B1.29.2 What is pressure?
			B1.29.3 What pressures are high?
			B1.29.4 How are high pressures achieved?
			B1.29.5 How are high pressures measured?
			B1.29.6 High-pressure forms of familiar or useful materials: diamond, fluid metallic hydrogen, metallic oxygen, ionic carbon dioxide, gallium nitride
			B1.29.7 Spectroscopy at high pressures
			References
			Further Reading
	Part B2. Dynamic Measurements
		B 2.1 Ultrafast spectroscopy
			B2.1.1 Introduction
			B2.1.2 Femtosecond light sources
			B2.1.3 Femtosecond time-resolved spectroscopy
			References
			Further Reading
		B 2.2 Electron, ion and atom scattering
			B2.2.1 Introduction
			B2.2.2 Collisions
			B2.2.3 Macroscopic rate coefficients
			B2.2.4 Quantal transition rates and cross sections
			B2.2.5 Born cross sections
			B2.2.6 Quantal potential scattering
			B2.2.7 Collisions between identical particles
			B2.2.8 Quantal inelastic heavy-particle collisions
			B2.2.9 Electron–atom inelastic collisions
			B2.2.10 Semiclassical inelastic scattering
			B2.2.11 Long-range interactions
			References
			Further Reading
		B 2.3 Reactive scattering
			B2.3.1 Introduction
			B2.3.2 Crossed-beams method
			B2.3.3 Optical detection of the reaction products
			B2.3.4 Conclusion
			References
			Further Reading
		B 2.4 NMR methods for studying exchanging systems
			B2.4.1 Introduction
			B2.4.2 Intermediate exchange
			B2.4.3 Fast exchange
			B2.4.4 Slow exchange
			B2.4.5 Exchange in solids
			B2.4.6 Conclusions
			References
			Further Reading
		B 2.5 Gas-phase kinetics studies
			B2.5.1 Introduction
			B2.5.2 Flow tubes
			B2.5.3 Relaxation methods
			B2.5.4 Flash photolysis with flash lamps and lasers
			B2.5.5 Multiphoton excitation
			B2.5.6 Chemical activation
			B2.5.7 Line-shape methods
			B2.5.8 Intramolecular kinetics from high-resolution spectroscopy
			B2.5.9 Summarizing overview on gas-phase kinetics studies
			References
			Further Reading
	Part B3. Techniques for Applying Theory
		B 3.1 Quantum structural methods for atoms and molecules
			B3.1.1 What does quantum chemistry try to do?
			B3.1.2 Why is it so difficult to calculate electronic energies and wavefunctions with reasonable accuracy?
			Unknown
			B3.1.4 How to introduce electron correlation via configuration mixing
			B3.1.5 The single-configuration picture and the HF approximation
			B3.1.6 Methods for treating electron correlation
			B3.1.7 There are methods that calculate energy differences rather than energies
			B3.1.8 Summary of ab initio methods
			References
		B 3.2 Quantum structural methods for the solid state and surfaces
			B3.2.1 Introduction
			B3.2.2 Tight-binding methods
			B3.2.3 First-principles electronic structure methods
			B3.2.4 Quantum structural methods for solid surfaces
			B3.2.5 Outlook
			Acknowledgments
			References
			Further Reading
		B 3.3 Statistical mechanical simulations
			B3.3.1 Introduction
			B3.3.2 Simulation and statistical mechanics
			B3.3.3 Molecular dynamics
			B3.3.4 Monte Carlo
			B3.3.5 Simulation in different ensembles
			B3.3.6 Free energies, chemical potentials and weighted sampling
			B3.3.7 Configuration-biased MC
			B3.3.8 Phase transitions
			B3.3.9 Rare events
			B3.3.10 Quantum simulation using path integrals
			B3.3.11 Car–Parrinello simulations
			B3.3.12 Parallel simulations
			B3.3.13 Outlook
			References
			Further Reading
		B 3.4 Quantum dynamics and spectroscopys
			B3.4.1 Introduction
			B3.4.2 Quantum motion on a single electronic surface
			B3.4.3 Scattering
			B3.4.4 Arrangement decoupling by absorbing potentials
			B3.4.5 Coarse information
			B3.4.6 Photo–dissociation
			B3.4.7 Bound states and resonances–extraction
			B3.4.8 Beyond grids
			B3.4.9 Non–adiabatic effects
			B3.4.10 Controlling molecular motion
			References
		B 3.5 Optimization and reaction path algorithms
			B 3.5.1 Introduction
			B 3.5.2 Overview of techniques for local optimization
			B 3.5.3 The optimization of wavefunctions
			B 3.5.4 Optimization of molecular geometries
			B 3.5.5 Optimization of transition states
			B 3.5.6 Simultaneous optimization of geometries and wavefunctions
			B 3.5.7 Reaction path algorithms
			B 3.5.8 Global optimization
			References
			Further Reading
		B 3.6 Mesoscopic and continuum models
			B3.6.1 Introduction
			B3.6.2 Polymeric systems
			B3.6.3 Amphiphilic models
			B3.6.4 Applications to dynamic phenomena
			References
			Further Reading
Volume III. Applications
	Part C1. Microscopic Systems
		C 1.1 Clusters
			C1.1.1 Clusters
			C1.1.2 Techniques for cluster generation and detection in the gas phase
			C1.1.3 Metal clusters
			C1.1.4 Semiconductor clusters
			C1.1.5 Ionic clusters and mixed clusters
			C1.1.6 Rare-gas clusters and other weakly bonded molecular clusters
			C1.1.7 Outlook
			References
			Further Reading
		C 1.2 Fullerenes
			Introduction
			C1.2.1 Structure
			C1.2.2 Crystal structure
			C1.2.3 Electronic configuration
			c1.2.4 Thin films
			C1.2.5 Doping of fullerenes and superconductivity
			C1.2.6 Fullerene polymers
			C1.2.7 Langmuir–Blodgett films
			C1.2.8 Electrochemistry
			C1.2.9 Solubility
			C1.2.10 Photoexcited states
			C1.2.11 p-radical anions
			C1.2.12 Electron transfer reactions
			C1.2.13 Endohedral fullerenes
			C1.2.14 Concluding remarks
			References
			Further Reading
		C 1.3 Van der Waals molecules
			C1.3.1 Introduction
			C1.3.2 Types of spectroscopy
			C1.3.3 Examples
			References
			Further Reading
		C 1.4 Atom traps and studies of ultracold systems
			C1.4.1 Introduction
			C1.4.2 The physics of neutral-atom traps
			C1.4.3 Inelastic exoergic collisions in MOTs
			References
			Further Reading
		C 1.5 Single molecule spectroscopy
			C1.5.1 Introduction
			C1.5.2 History
			C1.5.3 Principles and techniques of single-molecule optical
			C1.5.4 Systems and phenomena
			C1.5.5 Conclusion
			Acknowledgments
			References
	Part C2. Extended and Macroscopic Systems
		C2.1 Polymers
			C2.1.1 Introduction
			C2.1.2 Polymer synthesis
			C2.1.3 Conformation of a single chain
			C2.1.4 Solution, melt and glass
			C2.1.5 Thermodynamics and phase transition of polymer mixtures
			C2.1.6 Partially crystalline polymers
			C2.1.7 Polymer dynamics and mechanical behaviour
			C2.1.8 Nonlinear mechanical behaviour
			C2.1.9 Diffusion in polymers
			C2.1.10 Computer simulations
			References
			Further Reading
		C2.2 Liquid crystals
			Introduction
			c2.2.1 Types of liquid crystal
			C2.2.2 Characteristices of liquid crystal phases
			C2.2.3 Theory
			C2.2.4 Applications of liquid crystals
			acknowledgments
			References
			Further Reading
		C2.3 Micelles
			C2.3.1 Introduction
			c2.3.2 Historical overview
			c2.3.3 Surfactants
			C2.3.4 Experimental methods for examining micelles and micellization
			c2.3.5 Thermodynamics of micellization
			C2.3.6 Morphology and structure
			c2.3.7 Statistical mechanical simulations
			C2.3.8 Reverse micelles
			C2.3.9 Solubilization and partitioning
			C2.3.10 Micellar catalysis
			C2.3.11 Microemulsions
			c2.3.12 Emulsion polymerization
			c2.3.13 Micellar and microemulsion polymerization
			c2.3.14 Micelle-based mesophases
			c2.3.15 Adsorbed micelles
			c2.3.16 Micelle–Polymer interactions
			References
		C2.4 Organics films (Langmuir-Blodgett films and self-assembled monolayers)
			C2.4.0 Introduction
			C2.4.1 Langmuir–Blodgett films
			C2.4.2 Self-assembled monolayers (SAMs)
			References
		C2.5 Introducing protein folding using simple models
			C2.5.1 Introduction
			C2.5.2 Random heteropolymer as a caricature of proteins
			C2.5.3 Lattice models of proteins
			Acknowledgments
			Appendix C2.5.A
			Appendix C2.5.B
			References
		C2.6 Colloids
			C2.6.1 Introduction
			C2.6.2 Model colloids
			C2.6.3 Properties and characterization methods
			C2.6.4 Particle interactions
			C2.6.5 Colloid stability and aggregation
			C2.6.6 Behaviour of concentrated suspensions
			Acknowledgments
			References
			Further Reading
		C2.7 Catalysis
			C2.7.1 Introduction
			C2.7.2 Classification of catalysts and catalysis
			C2.7.3 A bit of history—the ammonia synthesis reaction
			C2.7.4 Catalytic cycles
			C2.7.5 Macroscopic physical properties of catalysts
			C2.7.6 Examples of catalysis
			References
			Further Reading
		C2.8 Corrosion
			C2.8.1 Introduction
			C2.8.2 Electrochemical fundamentals [




نظرات کاربران