دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: G. R. Sinha, Ahmed Sirajuddin, Chamorshikar Rajesh, Choubey Siddharth, Choubey Abha سری: ISBN (شابک) : 0750324023, 9780750324021 ناشر: IOP Publishing سال نشر: 2020 تعداد صفحات: 433 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 47 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Modern Optimization Methods for Science, Engineering and Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای بهینهسازی مدرن برای علوم، مهندسی و فناوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مبانی، پیشینه و مفاهیم نظری اصول بهینهسازی را به صورت جامع همراه با کاربردهای پتانسیل و استراتژیهای پیادهسازی آنها بررسی میکند. این کتاب برای طیف وسیعی از خوانندگان هدف مانند محققان پژوهشی، دانشگاهیان و متخصصان صنعت بسیار مفید خواهد بود.
This book reviews the fundamentals, background and theoretical concepts of optimization principles in comprehensive manner along with their potentials applications and implementation strategies. The book will be very useful for wide spectrum of target readers such as research scholars, academia, and industry professionals.
PRELIMS.pdf Preface Acknowledgements Editor biography G R Sinha List of contributors CH001.pdf Chapter 1 Introduction and background to optimization theory 1.1 Historical development 1.1.1 Robustness and optimization 1.2 Definition and elements of optimization 1.2.1 Design variables and parameters 1.2.2 Objectives 1.2.3 Constraints and bounds 1.3 Optimization problems and methods 1.3.1 Workflow of optimization methods 1.3.2 Classification of optimization methods 1.4 Design and structural optimization methods 1.4.1 Structural optimization 1.4.2 Design optimization 1.5 Optimization for signal processing and control applications 1.5.1 Signal processing optimization 1.5.2 Communication and control optimization 1.6 Design vectors, matrices, vector spaces, geometry and transforms 1.6.1 Linear algebra, matrices and design vectors 1.6.2 Vector spaces 1.6.3 Geometry, transforms, binary and fuzzy logic References CH002.pdf Chapter 2 Linear programming 2.1 Introduction 2.2 Applicability of LPP 2.2.1 The product mix problem 2.2.2 Diet problem 2.2.3 Transportation problem 2.2.4 Portfolio optimization 2.3 The simplex method 2.4 Artificial variable techniques 2.5 Duality 2.6 Sensitivity analysis 2.7 Network models 2.7.1 Shortest path problem 2.8 Dual simplex method 2.9 Software packages to solve LPP Further reading CH003.pdf Chapter 3 Multivariable optimization methods for risk assessment of the business processes of manufacturing enterprises 3.1 Introduction 3.2 A mathematical model of a business process 3.3 The market and specific risks, the features of their account 3.4 Measurement of the risk of using the discount rate, expert assessments and indicators of sensitivity 3.5 Conclusion References CH004.pdf Chapter 4 Nonlinear optimization methods—overview and future scope 4.1 Introduction 4.1.1 Optimization 4.1.2 NLP 4.1.3 Nonlinear optimization problem and models 4.2 Convex analysis 4.2.1 Sets and functions 4.2.2 Convex cone 4.2.3 Concave function 4.2.4 Nonlinear optimization: the interior-point approach 4.3 Applications of nonlinear optimizations techniques 4.3.1 LOQO: an interior-point code for NLP 4.3.2 Digital audio filter 4.4 Future research scope References CH005.pdf Chapter 5 Implementing the traveling salesman problem using a modified ant colony optimization algorithm 5.1 ACO and candidate list 5.2 Description of candidate lists 5.3 Reasons for the tuning parameter 5.4 The improved ACO algorithm 5.4.1 Dynamic candidate set based on nearest neighbors 5.4.2 Heuristic parameter updating 5.5 Improvement strategy 5.5.1 2-Opt local search 5.6 Procedure of IACO 5.7 Flow of IACO 5.8 IACO for solving the TSP 5.9 Implementing the IACO algorithm 5.10 Experiment and performance evaluation 5.10.1 Evaluation criteria 5.10.2 Path evaluation model 5.10.3 Evaluation of solution quality 5.11 TSPLIB and experimental results 5.11.1 Experiment 1 (analysis of tour length results) 5.11.2 Experiment 2 (comparison of convergence speed) 5.12 Comparison experiment 5.13 Analysis on varying number of ants 5.13.1 Analysis of ants starting at different cities versus the same city 5.13.2 Analysis on an increasing number of ants versus number of iterations 5.14 IACO comparison results 5.15 Conclusions References CH006.pdf Chapter 6 Application of a particle swarm optimization technique in a motor imagery classification problem 6.1 Introduction 6.1.1 Literature review 6.1.2 Motivation and requirements 6.2 Particle swarm optimization 6.2.1 The mathematical model of PSO 6.2.2 Constraint-based optimization 6.3 Proposed method 6.3.1 Materials and methods 6.3.2 Classification 6.4 Results 6.5 Conclusion References CH007.pdf Chapter 7 Multi-criterion and topology optimization using Lie symmetries for differential equations 7.1 Introduction 7.2 Fundamentals of topological manifolds 7.2.1 Analytic manifolds 7.2.2 Lie groups and vector fields 7.3. Differential equations, groups and the jet space 7.3.1 Prolongation of group action and vector fields 7.3.2 Total derivatives of vector fields and general prolongation formula 7.3.3 Criterion of maximal rank and infinitesimal invariance for differential equations 7.3.4 Differential equations and symmetry groups 7.3.5 Differential invariants and the group invariant solutions 7.4 Classification of the group invariant solutions and optimal solutions 7.4.1 Adjoint representation for the cKdV and optimization of the group generators 7.4.2 Calculation of the optimal group invariant solutions for the cKdV 7.5 Concluding remarks References CH008.pdf Chapter 8 Learning classifier system 8.1 Introduction 8.2 Background 8.3 Classification learner tools 8.3.1 MATLAB®: classification learner app 8.3.2 BigML® 8.3.3 Microsoft® AzureML® 8.4 Sample dataset 8.4.1 Splitting the dataset 8.5 Learning classifier algorithms 8.5.1 Logistic regression classifiers 8.5.2 Decision tree classifiers 8.5.3 Discriminant analysis classifiers 8.5.4 Support vector machine classifiers 8.5.5 Nearest neighbor classifiers 8.5.6 Ensemble classifiers 8.6 Performance 8.6.1 Confusion matrix 8.6.2 Receiver operating characteristic 8.6.3 Parallel plot 8.7 Conclusion Acknowledgments References CH009.pdf Chapter 9 A case study on the implementation of six sigma tools for process improvement 9.1 Introduction 9.1.1 Generation and cleaning of BF gas 9.2 Problem overview 9.3 Project phase summaries 9.3.1 Definition 9.3.2 Measurement 9.3.3 Analyze and improvement 9.3.4 Control 9.4 Conclusion 9.4.1 Financial benefits 9.4.2 Non-financial benefits CH010.pdf Chapter 10 Performance evaluation and measures 10.1 Performance measurement models 10.1.1 Fuzzy sets 10.2 AHP and fuzzy AHP 10.2.1 Fuzzy AHP 10.2.2 Linear programming method 10.3 Performance measurement in the production approach 10.3.1 Free disposability hull 10.4 Data envelopment analysis 10.4.1 CCR model 10.4.2 BCC model 10.4.3 Other models 10.5 R as a tool for DEA References CH011.pdf Chapter 11 Evolutionary techniques in the design of PID controllers 11.1 PID controller 11.1.1 Design procedure 11.1.2 Method 1: PID controller design using PSO 11.1.3 Method 2: PID controller design using BBBC 11.2 FOPID controller 11.2.1 Statement of the problem 11.2.2 BBBC aided tuning of FOPID controller parameters 11.2.3 Illustrative examples 11.3 Conclusion References CH012.pdf Chapter 12 A variational approach to substantial efficiency for linear multi-objective optimization problems with implications for market problems 12.1 Introduction 12.2 Background 12.3 A review of substantial efficiency 12.4 New results and examples 12.5 Conclusion References CH013.pdf Chapter 13 A machine learning approach for engineering optimization tasks 13.1 Optimization: classification hierarchy 13.2 Optimization problems in machine learning 13.3 Optimization in supervised learning 13.3.1 Bayesian optimization 13.3.2 Bayesian optimization for weight computation: a case study 13.3.3 Bayesian optimal classification: a case study 13.3.4 Bayesian optimization via binary classification: a case study 13.4 Optimization for feature selection 13.4.1 Feature extraction using precedence relations: a case study 13.4.2 Feature extraction via ensemble pruning: a case study 13.4.3 Feature-vector ranking metrics References CH014.pdf Chapter 14 Simulation of the formation process of spatial fine structures in environmental safety management systems and optimization of the parameters of dispersive devices 14.1 The use of spatial finely dispersed multiphase structures in ensuring ecological and technogenic safety 14.1.1 Analysis of recent research and publications 14.1.2 Statement of the problem and its solution 14.2 Physical and mathematical simulation of the creation process of spatial finely dispersed structures 14.2.1 Gas phase study and mathematical model description 14.2.2 Dispersed phase study and mathematical model description 14.2.3 Mathematical model of interfacial interaction 14.3 Numerical simulation of the formation of spatial dispersed structures and the determination of the most effective ways of supplying fluid to eliminate various hazards 14.3.1 Ensuring numerical solution stability, convergence and accuracy 14.3.2 Description of the numerical integration method of the dispersed phase equations 14.3.3 Results of numerical simulation of a spatial finely dispersed structure creation process which suppresses dust 14.3.4 Results of numerical simulation of the spatial finely dispersed structure creation process, which instantly reduces the gas stream temperature 14.4 General conclusions References CH015.pdf Chapter 15 Future directions: IoT, robotics and AI based applications 15.1 Introduction 15.1.1 The impact of AI and robotics in medicine and healthcare 15.1.2 Advances in AI technology and their impact on the workforce 15.1.3 AI technologies and human intelligence 15.2 Cloud robotics, remote brains and their implications 15.2.1 Cloud computing and the RoboEarth project 15.2.2 The DAvinCi platform as a service (PaaS) surgical robot 15.3 AI and innovations in industry 15.3.1 Watson Analytics and data science 15.4 Innovative solutions for a smart society using AI, robotics and the IoT 15.4.1 Cyber-physical systems (CPSs) 15.4.2 IoT architecture, its enabling technologies, security and privacy, and applications 15.4.3 The Internet of robotic things (IoRT) and Industry 4.0 15.4.4 Cloud robotics and Industry 4.0 15.4.5 Opportunities, challenges and future directions 15.5 The human 4.0 or the Internet of skills (IoS) and the tactile Internet (zero delay Internet) 15.6 Future directions in robotics, AI and the IoT References CH016.pdf Chapter 16 Efficacy of genetic algorithms for computationally intractable problems 16.1 Introduction 16.2 Genetic algorithm implementation 16.3 Convergence analysis of the genetic algorithm 16.4 Key factors 16.4.1 Exploitation and exploration 16.4.2 Constrained optimization 16.4.3 Multimodal optimization 16.4.4 Multi-objective optimization 16.5 Concluding remarks References CH017.pdf Chapter 17 A novel approach for QoS optimization in 4G cellular networks 17.1 Mobile generations 17.2 OFDMA networks 17.2.1 Limitations of FDMA, TDMA and WCDMA networks 17.2.2 Features of OFDMA networks 17.2.3 Quality of service in OFDMA networks 17.2.4 QoS improvement techniques in OFDMA networks 17.3 Simulation model and parameters 17.3.1 Simulation topology 17.3.2 Performance metrics 17.4 Adaptive rate scheduling in OFDMA networks 17.4.1 Introduction 17.4.2 Adaptive rate scheduling algorithm 17.4.3 Average scheduling delay estimation for the ARS scheme 17.5 Conclusions References