دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Benjamin S. Baumer
سری: Texts in statistical science
ISBN (شابک) : 9780367191498, 0367745445
ناشر: CRC Press
سال نشر: 2021
تعداد صفحات: 650
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 89 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Modern data science with R به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب علم داده مدرن با R نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Contents About the Authors Preface I. Part I: Introduction to Data Science 1. Prologue: Why data science? 1.1. What is data science? 1.2. Case study: The evolution of sabermetrics 1.3. Datasets 1.4. Further resources 2. Data visualization 2.1. The 2012 federal election cycle 2.2. Composing data graphics 2.3. Importance of data graphics: Challenger 2.4. Creating effective presentations 2.5. The wider world of data visualization 2.6. Further resources 2.7. Exercises 2.8. Supplementary exercises 3. A grammar for graphics 3.1. A grammar for data graphics 3.2. Canonical data graphics in R 3.3. Extended example: Historical baby names 3.4. Further resources 3.5. Exercises 3.6. Supplementary exercises 4. Data wrangling on one table 4.1. A grammar for data wrangling 4.2. Extended example: Ben’s time with the Mets 4.3. Further resources 4.4. Exercises 4.5. Supplementary exercises 5. Data wrangling on multiple tables 5.1. inner_join() 5.2. left_join() 5.3. Extended example: Manny Ramirez 5.4. Further resources 5.5. Exercises 5.6. Supplementary exercises 6. Tidy data 6.1. Tidy data 6.2. Reshaping data 6.3. Naming conventions 6.4. Data intake 6.5. Further resources 6.6. Exercises 6.7. Supplementary exercises 7. Iteration 7.1. Vectorized operations 7.2. Using across() with dplyr functions 7.3. The map() family of functions 7.4. Iterating over a one-dimensional vector 7.5. Iteration over subgroups 7.6. Simulation 7.7. Extended example: Factors associated with BMI 7.8. Further resources 7.9. Exercises 7.10. Supplementary exercises 8. Data science ethics 8.1. Introduction 8.2. Truthful falsehoods 8.3. Role of data science in society 8.4. Some settings for professional ethics 8.5. Some principles to guide ethical action 8.6. Algorithmic bias 8.7. Data and disclosure 8.8. Reproducibility 8.9. Ethics, collectively 8.10. Professional guidelines for ethical conduct 8.11. Further resources 8.12. Exercises 8.13. Supplementary exercises II. Part II: Statistics and Modeling 9. Statistical foundations 9.1. Samples and populations 9.2. Sample statistics 9.3. The bootstrap 9.4. Outliers 9.5. Statistical models: Explaining variation 9.6. Confounding and accounting for other factors 9.7. The perils of p-values 9.8. Further resources 9.9. Exercises 9.10. Supplementary exercises 10. Predictive modeling 10.1. Predictive modeling 10.2. Simple classification models 10.3. Evaluating models 10.4. Extended example: Who has diabetes? 10.5. Further resources 10.6. Exercises 10.7. Supplementary exercises 11. Supervised learning 11.1. Non-regression classifiers 11.2. Parameter tuning 11.3. Example: Evaluation of income models redux 11.4. Extended example: Who has diabetes this time? 11.5. Regularization 11.6. Further resources 11.7. Exercises 11.8. Supplementary exercises 12. Unsupervised learning 12.1. Clustering 12.2. Dimension reduction 12.3. Further resources 12.4. Exercises 12.5. Supplementary exercises 13. Simulation 13.1. Reasoning in reverse 13.2. Extended example: Grouping cancers 13.3. Randomizing functions 13.4. Simulating variability 13.5. Random networks 13.6. Key principles of simulation 13.7. Further resources 13.8. Exercises 13.9. Supplementary exercises III. Part III: Topics in Data Science 14. Dynamic and customized data graphics 14.1. Rich Web content using D3.js and htmlwidgets 14.2. Animation 14.3. Flexdashboard 14.4. Interactive web apps with Shiny 14.5. Customization of ggplot2 graphics 14.6. Extended example: Hot dog eating 14.7. Further resources 14.8. Exercises 14.9. Supplementary exercises 15. Database querying using SQL 15.1. From dplyr to SQL 15.2. Flat-file databases 15.3. The SQL universe 15.4. The SQL data manipulation language 15.5. Extended example: FiveThirtyEight flights 15.6. SQL vs. R 15.7. Further resources 15.8. Exercises 15.9. Supplementary exercises 16. Database administration 16.1. Constructing efficient SQL databases 16.2. Changing SQL data 16.3. Extended example: Building a database 16.4. Scalability 16.5. Further resources 16.6. Exercises 16.7. Supplementary exercises 17. Working with geospatial data 17.1. Motivation: What’s so great about geospatial data? 17.2. Spatial data structures 17.3. Making maps 17.4. Extended example: Congressional districts 17.5. Effective maps: How (not) to lie 17.6. Projecting polygons 17.7. Playing well with others 17.8. Further resources 17.9. Exercises 17.10. Supplementary exercises 18. Geospatial computations 18.1. Geospatial operations 18.2. Geospatial aggregation 18.3. Geospatial joins 18.4. Extended example: Trail elevations at MacLeish 18.5. Further resources 18.6. Exercises 18.7. Supplementary exercises 19. Text as data 19.1. Regular expressions using Macbeth 19.2. Extended example: Analyzing textual data from arXiv.org 19.3. Ingesting text 19.4. Further resources 19.5. Exercises 19.6. Supplementary exercises 20. Network science 20.1. Introduction to network science 20.2. Extended example: Six degrees of Kristen Stewart 20.3. PageRank 20.4. Extended example: 1996 men’s college basketball 20.5. Further resources 20.6. Exercises 20.7. Supplementary exercises 21. Epilogue: Towards “big data” 21.1. Notions of big data 21.2. Tools for bigger data 21.3. Alternatives to R 21.4. Closing thoughts 21.5. Further resources IV. Part IV: Appendices A. Packages used in this book A.1. The mdsr package A.2. Other packages A.3. Further resources B. Introduction to R and RStudio B.1. Installation B.2. Learning R B.3. Fundamental structures and objects B.4. Add-ons: Packages B.5. Further resources B.6. Exercises B.7. Supplementary exercises C. Algorithmic thinking C.1. Introduction C.2. Simple example C.3. Extended example: Law of large numbers C.4. Non-standard evaluation C.5. Debugging and defensive coding C.6. Further resources C.7. Exercises C.8. Supplementary exercises D. Reproducible analysis and workflow D.1. Scriptable statistical computing D.2. Reproducible analysis with R Markdown D.3. Projects and version control D.4. Further resources D.5. Exercises D.6. Supplementary exercises E. Regression modeling E.1. Simple linear regression E.2. Multiple regression E.3. Inference for regression E.4. Assumptions underlying regression E.5. Logistic regression E.6. Further resources E.7. Exercises E.8. Supplementary exercises F. Setting up a database server F.1. SQLite F.2. MySQL F.3. PostgreSQL F.4. Connecting to SQL Bibliography Indices Subject index R index