دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Christos Volos (editor). Viet-Thanh Pham (editor)
سری:
ISBN (شابک) : 0128211849, 9780128211847
ناشر: Academic Press
سال نشر: 2021
تعداد صفحات: 570
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications (Advances in Nonlinear Dynamics and Chaos (ANDC)) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عناصر مم برای مدارهای نورومورفیک با کاربردهای هوش مصنوعی (پیشرفت در دینامیک غیرخطی و آشوب (ANDC)) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
عناصر مم برای مدارهای نورومورفیک با کاربردهای هوش مصنوعی پیشرفتهای اخیر در زمینه عناصر مم (ممریستور، مم خازن، ممینداکتور) و کاربردهای آنها در سیستمهای دینامیکی غیرخطی، علوم کامپیوتر، آنالوگ و سیستم های دیجیتال، و در مدارهای نورومورفیک و هوش مصنوعی. این کتاب عمدتاً به نتایج اخیر، جنبههای انتقادی و دیدگاههای تحقیقات در حال انجام در مورد موضوعات مرتبط، که همگی شامل شبکههای دستگاههای عناصر مم در کاربردهای متنوع است، اختصاص دارد. بخشها به بحث در مورد مواد و مکانیسمهای حملونقل کمک میکنند، انواع مختلفی از ساختارهای فیزیکی را ارائه میکنند که میتوانند برای تحقق بخشیدن به عناصر مم در مدارهای مجتمع و مدلسازی دستگاهها ساخته شوند.
همانطور که در دهه گذشته شاهد افزایش علاقه بودهایم. در پیشرفتهای اخیر در عناصر مم و کاربرد آنها در مدارهای نورومورفیک و هوش مصنوعی، این کتاب باعث جذب محققان در زمینههای مختلف خواهد شد.
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling.
As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields.
Front Cover Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications Copyright Contents List of contributors Preface Part 1 Mem-elements and their emulators 1 The fourth circuit element was found: a brief history 1.1 Memristor – the first step 1.2 Properties of memristor 1.2.1 Passivity criterion 1.2.2 Closure theorem 1.2.3 Existence and uniqueness theorem 1.3 Memristive systems 1.4 The first physical model of the memristor 1.5 Memristor\'s applications 1.6 Conclusion References 2 Implementing memristor emulators in hardware 2.1 Introduction 2.2 Memristor modeling framework 2.3 The fingerprints of a memristor 2.3.1 The classical requirements: explicit conditions 2.3.2 Additional requirements: implicit conditions 2.4 Designing memristor emulators 2.4.1 The diode bridge 2.4.2 A short-term memory emulator 2.4.2.1 Nonlinear resistive two-port for memristor implementation 2.4.3 A long-term memory emulator 2.4.3.1 Circuit description and operation 2.4.3.2 Physical layout 2.4.3.3 Results 2.5 Conclusion References 3 On the FPGA implementation of chaotic oscillators based on memristive circuits 3.1 Introduction 3.2 3D, 4D, and 5D memristive systems 3.3 Numerical methods 3.3.1 One-step methods 3.3.2 Multi-step methods 3.3.3 Stability of the numerical methods 3.4 Analysis of memristive-based chaotic oscillators 3.5 FPGA implementation of memristive systems 3.6 Memristive-based secure communication system 3.7 Conclusions References 4 Microwave memristive components for smart RF front-end modules 4.1 RF/microwave model of memristive switch and PIN diode 4.2 Memristive phase-shifter realization 4.2.1 Planar main-line memristor mounted type loaded-line phase shifter 4.2.2 Implementation of main-line memristor mounted type loaded-line phase shifter and results 4.3 Reconfigurable dual-band bandpass microwave filter 4.4 Dual-band bandpass filter with multilayer dual-mode resonator enhanced with RF memristor 4.4.1 Dual-mode resonator with memristor 4.4.2 Dual-band bandpass filter with multilayer dual-mode resonator enhanced with RF memristor 4.4.3 Conclusion Acknowledgments References 5 The modeling of memcapacitor oscillator motion with ANN and its nonlinear control application 5.1 Introduction 5.2 Chaotic memcapacitor oscillator and its dynamical analysis 5.2.1 Equilibrium points 5.2.2 Bifurcation analysis 5.3 Nonlinear feedback control 5.4 Chaotic motion extraction from video and ANN 5.4.1 Perceptron architecture 5.4.2 Multilayer artificial neural networks 5.4.3 Delayed artificial neural networks 5.4.4 Training artificial neural networks 5.5 Identification of memcapacitor system with ANN 5.6 Conclusions References 6 Rich dynamics of memristor based Liénard systems 6.1 Introduction 6.2 Model system 6.2.1 Stability analysis 6.2.2 Hidden attractors 6.3 Mixed-mode oscillations 6.3.1 Frequency scanning 6.3.2 Amplitude scanning 6.3.3 Successive period-adding sequence of MMOs 6.4 Higher dimensional torus and large expanded chaotic attractor 6.5 Conclusion Acknowledgment References 7 Hidden extreme multistability generated from a novel memristive two-scroll chaotic system 7.1 Introduction 7.2 Memristive two-scroll chaotic system and its basic properties 7.3 Dynamical analysis of memristive two-scroll chaotic system 7.3.1 Two-parameter Lyapunov exponents analysis 7.3.2 One parameter bifurcation analysis 7.3.3 Emergence of hidden extreme multistability 7.3.4 Remerging period-doubling bifurcation 7.3.5 Offset boosting control 7.4 Circuit design and experimental measurements 7.5 Conclusion References 8 Extreme multistability, hidden chaotic attractors and amplitude controls in an absolute memristor Van der Pol–Duffing circuit: dynamical analysis and electronic implementation 8.1 Introduction 8.2 Theoretical analysis of an absolute memristor autonomous Van der Pol–Duffing circuit 8.3 Electronic implementation of an absolute memristor autonomous Van der Pol–Duffing circuit 8.4 Conclusion References 9 Memristor-based novel 4D chaotic system without equilibria 9.1 Introduction 9.1.1 Literature survey 9.1.2 Application of memristor and memristive circuit 9.2 Brief introduction to flux- and charge-controlled memristor models and novel chaotic system 9.2.1 Introduction to flux- and charge-controlled memristor models 9.2.2 Flux-controlled memristor-based novel chaotic system 9.3 Properties and behaviors of memristor-based novel chaotic system 9.3.1 Symmetry and invariance 9.3.2 Dissipation 9.3.3 Lyapunov spectrum 9.3.4 Bifurcation diagram 9.3.5 Kaplan–Yorke dimension 9.3.6 Poincaré section 9.4 Projective synchronization between the memristor-based chaotic systems 9.5 Simulation results and discussion 9.6 Conclusions and future scope References 10 Memristor Helmholtz oscillator: analysis, electronic implementation, synchronization and chaos control using single controller 10.1 Introduction 10.2 Design and analysis of the proposed memristor Helmholtz oscillator 10.2.1 Equilibrium points and their stabilities 10.2.2 Dynamical analysis of memristor Helmholtz oscillator 10.3 Electronic circuit simulations of the proposed memristor Helmholtz oscillator 10.4 Chaos synchronization of unidirectional coupled identical chaotic memristor Helmholtz oscillators 10.5 Chaos control of memristor Helmholtz oscillator using single controller 10.6 Conclusion References 11 Design guidelines for physical implementation of fractional-order integrators and its application in memristive systems 11.1 Introduction 11.2 Fractional-order calculus preliminaries 11.2.1 Grünwald–Letnikov definition 11.3 Fractional-order memristive systems 11.4 Continued fraction expansion (CFE) 11.4.1 CFE error analysis 11.5 Implementation of fractional-order integrators using FPAAs 11.5.1 Fractional-order integrator based on a first order transfer function 11.6 Electronic implementation of a fractional-order memristive system 11.7 Conclusions Acknowledgments References 12 Control of bursting oscillations in memristor based Wien-bridge oscillator 12.1 Introduction 12.2 Mathematical model of LC network based diode bridge memristor 12.3 Memristive Wien-bridge oscillator 12.4 Chaotic and periodic bursting oscillations (BOs) 12.5 Control of active states and quiescent states in BOs 12.6 Control of amplitude in BOs 12.6.1 Amplitude increasing in BOs 12.6.2 Amplitude decreasing in BOs 12.7 Conclusion Acknowledgments References Part 2 Applications of mem-elements 13 Memristor, mem-systems and neuromorphic applications: a review 13.1 Introduction 13.2 Memristor and mem-systems 13.2.1 Memristor 13.2.2 Memristive systems 13.3 Neuromorphic systems 13.3.1 Neuron model 13.3.2 Synapse 13.3.3 Neural network 13.4 Reservoir computing 13.5 Conclusion Acknowledgment References 14 Guidelines for benchmarking non-ideal analog memristive crossbars for neural networks 14.1 Introduction 14.2 Basic concepts 14.2.1 Memristor simplified 14.2.2 Crossbar simplified 14.2.3 Analog neural networks simplified 14.3 Non-idealities of memristors 14.3.1 Aging 14.3.2 Electromagnetics and signal integrity 14.3.3 Conductance variabilities 14.3.4 Noise effects 14.3.5 System implementations 14.4 Applications 14.4.1 Programmable logic 14.4.2 Neuromorphic accelerators 14.5 Conclusions References 15 Bipolar resistive switching in biomaterials: case studies of DNA and melanin-based bio-memristive devices 15.1 Introduction 15.2 Brief overview of resistive switching and memristive devices 15.3 Materials for resistive switching application 15.4 Biomaterial-based memristive devices 15.4.1 Case study 1: DNA-based memristive device 15.4.1.1 Materials and methods 15.4.1.2 Results and discussion 15.4.1.3 Summary 15.4.2 Case study 2: melanin-based memristive device 15.4.2.1 Materials and methods 15.4.2.2 Results and discussion 15.4.2.3 Summary 15.5 Conclusion and future outlook Acknowledgments References 16 Nonvolatile memristive logic: a road to in-memory computing 16.1 Introduction 16.2 Memristive logic gates in crossbar array 16.3 R-R logic gate 16.3.1 Material implication logic (IMPLY or IMP) 16.3.2 Variants of IMP — NOR logic gate 16.3.3 Variants of IMP – NAND and AND logic gates 16.3.4 Memristor-aided logic (MAGIC) 16.3.5 Hyperdimensional computing in 3D RRAM 16.3.6 R-R logic based on neural networks 16.3.7 Conclusion of memristive R-R logic 16.4 Memristive V-R logic 16.4.1 Memristive sequential logic based on a single device 16.4.2 Four-variables methods 16.4.2.1 A four-variable method using a single BRS in a crossbar array 16.4.2.2 A four-variable method using a one-transistor–one-resistor (1T1R) cell 16.4.3 Other memristive V-R logic methods 16.4.4 Conclusion of the memristive V-R logic 16.5 Challenges and outlooks Acknowledgments References 17 Implementation of organic RRAM with ink-jet printer: from design to using in RFID-based application 17.1 Introduction 17.2 Design process 17.3 Fabrication process 17.4 A practical application example 17.5 Conclusion References 18 Neuromorphic vision networks for face recognition 18.1 Introduction 18.2 Preliminaries 18.3 Model description 18.4 Template formation 18.5 Face recognition 18.6 Memristive threshold logic (MTL) 18.7 Edge detection with memristive threshold logic (MTL) cells 18.8 Circuit realization 18.8.1 Edge detection and template formation 18.9 Experimental setup 18.10 Results and discussion 18.11 Future research directions 18.12 Conclusion 18.13 Key terms and definitions References 19 Synaptic devices based on HfO2 memristors 19.1 Introduction 19.2 HfO2-based resistive switching structures 19.3 Demonstration of learning rules in memristor devices to mimic biological synapses 19.4 Stability and reliability issues of resistive synaptic devices 19.5 Physical simulation of memristors 19.5.1 Simulation schemes for the description of memristor physics 19.5.2 Kinetic Monte Carlo simulation approach 19.5.3 Kinetic Monte Carlo simulation of conductive-bridge RAMs 19.5.4 Valence change memories kinetic Monte Carlo simulation 19.6 Memristor compact modeling 19.6.1 VCM compact modeling 19.6.2 Compact modeling of CBRAMs 19.7 Memristor random telegraph noise 19.7.1 Numerical procedures to analyze random telegraph signals 19.7.1.1 Current versus time trace representation 19.7.1.2 Time lag plot (TLP) representation 19.7.1.3 Color code time lag plot (CCTLP) 19.7.1.4 Radius time lag plot (RTLP) 19.7.1.5 Weighted time lag plot (WTLP) 19.7.1.6 Locally weighted time lag plot (LWTLP) 19.7.1.7 Differential locally weighted time lag plot (DLWTLP) 19.8 Conclusion Acknowledgments References 20 Analog circuit integration of backpropagation learning in memristive HTM architecture 20.1 Introduction 20.2 What is HTM? 20.3 Memristive HTM architectures 20.4 Analog backpropagation circuit integration in memristive HTM 20.5 Discussion and open problems 20.6 Conclusions References 21 Multi-stable patterns coexisting in memristor synapse-coupled Hopfield neural network 21.1 Introduction 21.2 Memristor synapse-coupled HNN with three neurons 21.3 Bifurcation behaviors with multi-stability 21.3.1 Dynamics depended on the coupling strength k 21.3.2 Dynamics depended on the synaptic weights 21.3.2.1 2-dimensional bifurcation diagrams 21.3.2.2 Dynamics depended on the synaptic self-connection weight w11 21.3.2.3 Dynamics depended on the synaptic inter-connection weight w23 21.3.3 Dynamics depended on the initial conditions 21.3.4 Long-term transient chaotic behaviors 21.4 Circuit synthesis and PSIM simulation 21.5 Conclusion Acknowledgment References 22 Fuzzy memristive networks 22.1 Introduction 22.2 Requirement 22.2.1 Fuzzy calculus concepts 22.2.2 Fractional calculation concepts 22.3 Memristive fuzzy logic systems 22.4 Delay memristive fuzzy systems 22.5 Fractional memristive fuzzy systems 22.6 General overview of the area and future trends References 23 Fuzzy integral sliding mode technique for synchronization of memristive neural networks 23.1 Introduction 23.2 Model description 23.3 Controller design 23.3.1 ISMC 23.3.2 FISMC 23.4 Numerical results 23.4.1 Memristive neural network without controller 23.4.2 Stabilization and comparison of the proposed method with the ISMC 23.4.3 Synchronization of uncertain memristive neural networks 23.5 Conclusions References 24 Robust adaptive control of fractional-order memristive neural networks 24.1 Introduction 24.2 Model of the system and preliminary concepts 24.3 Controller design 24.4 Simulation results 24.4.1 Synchronization of fractional-order memristive neural networks 24.4.2 Comparison of the proposed adaptive controller method with PI control 24.5 Conclusion References 25 Learning memristive spiking neurons and beyond 25.1 Introduction 25.2 Spike domain data processing and learning 25.3 Learning in memristive neuromorphic architectures 25.3.1 Spiking neural networks 25.3.2 Complex SNN typologies: long-short term memory and hierarchical temporal memory 25.3.3 Recent advances in memristor-based SNN architectures 25.4 Open problems and research directions 25.5 Conclusion References Index Back Cover