ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Material Science and Metallurgy

دانلود کتاب علوم و متالورژی مواد

Material Science and Metallurgy

مشخصات کتاب

Material Science and Metallurgy

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9788131759110, 9789332501256 
ناشر: Pearson Education 
سال نشر: 2012 
تعداد صفحات: 552 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 19 مگابایت 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Material Science and Metallurgy به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب علوم و متالورژی مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
Preface
About the Author
Chapter 1: Atomic Structure
	1.1 Introduction
	1.2 Isotopes
	1.3 Isobars
	1.4 Avogadro’s Number
	1.5 Atomic Model
		1.5.1 Thomson Model
		1.5.2 Rutherford’s Nuclear Atomic Model
		1.5.3 Bohr Atomic Model
		1.5.4 Sommerfeld–Wilson Atomic Model
		1.5.5 Vector Model or Quantum Model
	1.6 Electron Configurations
	1.7 Periodic Table
	Multiple Choice Questions
	Review Questions
Chapter 2: Atomic Bonding and Crystal Structure
	2.1 Introduction
	2.2 Classification of Materials
	2.3 Atomic Structure
		2.3.1 Isotope
	2.4 Space Lattice
	2.5 Basis
		2.5.1 Basis for Some Materials
	2.6 Bravais Crystal Structure
	2.7 Atomic Bonding in Solids
	2.8 Primary Interatomic Bonding
		2.8.1 Ionic Bonding
		2.8.2 Covalent Bonding
		2.8.3 Metallic Bonding
		2.8.4 Molecules
		2.8.5 Van Der Waals Bonding
	2.9 Structures of Crystalline Solids
		2.9.1 Unit Cells
		2.9.2 Face-Centred Cubic (FCC) Structure
		2.9.3 Body-Centred Cubic (BCC) Structure
		2.9.4 Hexagonal Close-Packed (HCP) Structure
	2.10 Density
	2.11 Allotropy or Polymorphism
	2.12 Crystallographic Directions
		2.12.1 Crystallographic Direction in a Hexagonal Crystal
	2.13 Crystallographic Planes
	2.14 Atomic Arrangements
		2.14.1 Linear and Planar Atomic Densities
	2.15 Crystal Growth of Polycrystalline Materials
	2.16 Single Crystal
		2.16.1 Bragg’s Law
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 3: Imperfections in Solids
	3.1 Introduction
	3.2 Point Defects
		3.2.1 Schottky Defect
		3.2.2 Frenkel Defect
	3.3 Impurities in Solids
		3.3.1 Solid Solution
		3.3.2 Atom Per Cent
	3.4 Line Defects
		3.4.1 Burger’s Circuit and Burger’s Vector
		3.4.2 Screw Dislocation
	3.5 Characteristics of Dislocations
	3.6 Sources of Dislocations
	3.7 Stacking of Close-Packed Structures
	3.8 Stacking Faults
	3.9 Behaviour of Dislocations
		3.9.1 Glide Motion
		3.9.2 Dislocation Climb
		3.9.3 Cross Slip
		3.9.4 Dislocations Pile Up
		3.9.5 Jogs in Dislocations
		3.9.6 Interaction of Dislocation with Point Imperfections
		3.9.7 Frank Read Source
	3.10 Twinning
	3.11 Grain Boundaries
	3.12 Low-angle Grain Boundaries
	3.13 Volume Imperfections
	3.14 Whiskers
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 4: Plastic Deformation in Crystalline Materials
	4.1 Introduction
	4.2 Slip in Perfect Lattice
	4.3 Slip Systems
		4.3.1 HCP Crystal
	4.4 Critical Resolved Shear Stress for Slip
		4.4.1 Tensile Test on Single Crystals
	4.5 Strain Hardening of Single Crystal
		4.5.1 Bauschinger’s Effect
	4.6 Yield Point Phenomenon
	4.7 Strain Ageing
	4.8 Hardening Due to Point Defects
	4.9 Mechanism of Strengthening in Metals
		4.9.1 Grain Size Reduction
		4.9.2 Solid Solution Alloying
		4.9.3 Strain Hardening
		4.9.4 Precipitation Hardening
	4.10 Recovery, Recrystallization and Grain Growth
		4.10.1 Recovery
		4.10.2 Recrystallization
		4.10.3 Laws of Crystallization
		4.10.4 Grain Growth
	Multiple Choice Questions
	Review Questions
Chapter 5: Mechanical Properties
	5.1 Introduction
	5.2 Tension Test
		5.2.1 Yield Strength
		5.2.2 Tension Strength
		5.2.3 Percentage Elongation
		5.2.4 Reduction in Area
		5.2.5 Modulus of Elasticity
		5.2.6 Resilience
		5.2.7 Toughness
		5.2.8 True Stress–Strain Curve
	5.3 Hardness
		5.3.1 Brinell Hardness Test
		5.3.2 Vicker’S Hardness Test
		5.3.3 Rockwell Hardness Test
		5.3.4 Superficial Tests
		5.3.5 Microhardness Tests
	5.4 Fracture
		5.4.1 Theoretical Cohesive Strength
	5.5 Fracture Mechanics
		5.5.1 Griffith Theory of Brittle Fracture
		5.5.2 Stress Analysis of Cracks
	5.6 Impact Fracture Testing
		5.6.1 Transition
	5.7 Temper Embrittlement
	5.8 Hydrogen Embrittlement
	5.9 Fatigue
		5.9.1 Stress Cycles
		5.9.2 S–N Curve
		5.9.3 Crack Initiation and Propagation
		5.9.4 Factors Affecting Fatigue Behaviour
		5.9.5 Understressing
	5.10 Creep
		5.10.1 Creep Curve
		5.10.2 Stress Rupture Test
		5.10.3 Low-Temperature Creep
		5.10.4 Engineering Creep Data
		5.10.5 Creep-Resistant Alloys
	5.11 Stress Relaxation
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 6: Diffusion
	6.1 Introduction
	6.2 Diffusion Couple
	6.3 Grain Boundary Diffusion and Surface Diffusion
	6.4 Types of Diffusion
		6.4.1 Vacancy Diffusion
		6.4.2 Interstitial Diffusions
	6.5 Factors Affecting Diffusion
	6.6 Laws of Diffusion
	6.7 Fick’s Second Law
	6.8 Depth of Case Carburization
	6.9 Impurity Diffusion
	6.10 Diffusion-controlled Applications
		6.10.1 Sintering
		6.10.2 Case Carburization
		6.10.3 Decarburization of Steel
		6.10.4 Doping of Semiconductors
		6.10.5 Conducting Ceramics
		6.10.6 Annealing and Normalizing
		6.10.7 Optical Fibres Coating
		6.10.8 Turbine Blade Coating
		6.10.9 Moisture Absorption
	6.11 Kirkendal Effect
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 7: Phase Diagrams
	7.1 Introduction
	7.2 Phases
	7.3 Solidification of a Metal in an Ingot Mould
		7.3.1 Dendritic Growth
		7.3.2 Solidification of a Pure Metal
	7.4 Types of Phase Diagrams
	7.5 Binary Amorphous Alloys
		7.5.1 Lever Rule
	7.6 Development of Microstructure in Amorphous Alloy
	7.7 Non-equilibrium cooling—Development of Microstructure in Binary Amorphous Alloy
	7.8 Binary Eutectic Systems
		7.8.1 Lead–Tin Eutectic System
	7.9 Development of Microstructure in Eutectic Alloys
		7.9.1 Eutectic Microstructure
	7.10 Equilibrium Diagrams Having Intermediate Phases or Compounds
	7.11 Eutectoid or Peritectic Reactions
		7.11.1 Eutectoid Phase Diagram
	7.12 Gibb’s Phase Rule
	7.13 Iron Carbon System
		7.13.1 Phases Fe and Fe3C
	7.14 Microstructural Developments
		7.14.1 Iron–Carbon Alloys
		7.14.2 Hypereutectoid Steels
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 8: Phase Transformations
	8.1 Introduction
	8.2 Solidification of Metal in Ingot Mould
		8.2.1 Cavities
		8.2.2 Gas Holes
		8.2.3 Segregation
	8.3 Types of Phase Transformations
	8.4 Nucleation and Growth Kinetics
		8.4.1 Kinetics of Solid State Reaction
	8.5 Multiphase Transformations
	8.6 Pearlitic Transformation
		8.6.1 Coarse Pearlite
		8.6.2 Fine Pearlite
	8.7 Bainite Transformation
		8.7.1 Spheroidite
	8.8 Martensitic Transformation
	8.9 Formation of Austenite
		8.9.1 Grain Size of Austenite
		8.9.2 Grain Size Measurement
	8.10 Precipitation and Age Hardening
		8.10.1 Precipitation in Al–4 Wt% Cu Alloy (Duralumin)
	8.11 Continuous Cooling Transformation Curve
	8.12 Mechanical Behaviour of Iron–Carbon Alloys
		8.12.1 Pearlite
		8.12.2 Spheroidite
		8.12.3 Bainite
		8.12.4 Martensite
		8.12.5 Tempered Martensite
		8.12.6 Temper Embrittlement
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 9: Heat Treatment of Steels
	9.1 Introduction
	9.2 Heat Treatment Processes
	9.3 Temperature Ranges of Various Heat Treatment Processes
		9.3.1 Critical Temperatures
	9.4 Annealing
		9.4.1 Spheroidize Annealing
		9.4.2 Diffusion Annealing
	9.5 Normalizing
	9.6 Hardening
	9.7 Hardenability
		9.7.1 End Quench Test
	9.8 Hardening Methods
		9.8.1 Austempering or Isothermal Quenching
	9.9 Tempering
	9.10 Subzero Treatment of Steel
	9.11 Diffusion Treatments
		9.11.1 Carburizing
		9.11.2 Case Depth
		9.11.3 Nitriding
		9.11.4 Carbonitriding
		9.11.5 Cyaniding
	9.12 Surface Hardening Techniques
		9.12.1 Flame Hardening
		9.12.2 Induction Hardening
		9.12.3 Surface Hardening by Laser and Electron Beams
	9.13 Special Purpose Heat Treatments
		9.13.1 Ferritic Nitrocarbonizing
		9.13.2 Cementation
		9.13.3 Boronizing
		9.13.4 Metalliding
		9.13.5 Toyota Diffusion
		9.13.6 Vacuum Carburizing
		9.13.7 Salt Nitriding
	Multiple Choice Questions
	Review Questions
Chapter 10: Metals and Alloys
	10.1 Introduction
	10.2 Types of Ferrous Alloys
	10.3 Plain Carbon Steels
		10.3.1 Types of Steels
		10.3.2 Specifications of Steels
		10.3.3 Low and Medium Alloy Steels with 10 Per Cent Alloy Content
	10.4 Alloy Steels
		10.4.1 Miscellaneous Alloy Steels
		10.4.2 Applications of Alloy Steels
	10.5 Stainless Steels
		10.5.1 Applications
	10.6 Cast Irons
		10.6.1 Rate of Cooling
		10.6.2 Effect of Chemical Compositions
		10.6.3 Formation of Graphite
		10.6.4 Ductile or Nodular Iron
		10.6.5 Malleable Iron and White Cast Iron
		10.6.6 High Strength Cast Irons
	10.7 Non-ferrous Alloys
	10.8 Copper and its Alloys
	10.9 Aluminium and its Alloys
		10.9.1 Aluminium–Lithium Alloys
	10.10 Nickel Base Alloys
	10.11 Magnesium and its Alloys
	10.12 Titanium and its Alloys
	10.13 Zinc
		10.13.1 Die Castings
		10.13.2 Zinc Coatings
	10.14 Refractory Metals
	10.15 Superalloys
	10.16 Bearing Metals
	10.17 Aircraft Materials
		10.17.1 Special Steels
		10.17.2 Nickel Alloys
		10.17.3 Copper and Its Alloys
		10.17.4 Wrought Aluminium Alloys
		10.17.5 Magnesium Alloys
		10.17.6 Plastics
		10.17.7 Glass
		10.17.8 Rubber
	Multiple Choice Questions
	Review Questions
Chapter 11: Organic Materials
	11.1 Introduction
	11.2 Types of Organic Materials
		11.2.1 Monomers
	11.3 Types of Polymers
	11.4 Degree of Polymerization
	11.5 Geometry of Polymeric Chains
		11.5.1 Molecular Structure
	11.6 Mechanism of Polymerization
	11.7 Homopolymerization and Copolymerization
	11.8 Condensation Polymerization
	11.9 Additives in Polymers
		11.9.1 Fillers
		11.9.2 Plasticizers
		11.9.3 Stabilizers
		11.9.4 Catalysts
		11.9.5 Initiators
		11.9.6 Colourants
		11.9.7 Flame Retardants
	11.10 Strengthening Mechanisms of Polymers
		11.10.1 Graft Copolymers
		11.10.2 Deformation of Polymers
	11.11 Stereotactic Synthesis
	11.12 Plastics
	11.13 Fibers and Filaments
	11.14 Elastomers and Rubbers
		11.14.1 Vulcanization
		11.14.2 Synthetic Rubbers
	11.15 Mechanical and Thermal Behavior of Polymers
		11.15.1 Thermal Behaviour
	11.16 Special Purpose Plastics
		11.16.1 Conducting Polymers
		11.16.2 Expanding Plastics
		11.16.3 Plastics in Electronics
		11.16.4 Thermoplast–Thermoset Plastics
		11.16.5 Liquid Crystal Polymers (LCP)
		11.16.6 Biomedical Polymers
		11.16.7 Polymer Foams
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 12: Ceramic Materials
	12.1 Introduction
	12.2 Classification of Ceramics
	12.3 Refractories
	12.4 Silicates and Silica
		12.4.1 Silica
	12.5 Structure of Glasses
	12.6 Glasses
	12.7 Thermal Behavior of Glasses
		12.7.1 Glass Transition Temperature, Tg
	12.8 Lime
	12.9 Polymorphs of Carbon
		12.9.1 Diamond
		12.9.2 Graphite
		12.9.3 Siliconized Grades
		12.9.4 Fullerenes
	12.10 Carbon Products and Hard Ceramics
		12.10.1 Cemented Carbides
		12.10.2 Aluminium Oxide (Al2O3)
		12.10.3 Silicon Carbide
		12.10.4 Silicon Nitride (SI3N4)
		12.10.5 Partially Stabilized Zirconia (PSZ)
	12.11 Clay-based Ceramics
	12.12 Cement
	12.13 Concrete
	Multiple Choice Questions
	Review Questions
Chapter 13: Composite Materials
	13.1 Introduction
	13.2 Types of Composites
	13.3 Large Particle Composites
	13.4 Dispersion-strengthened Composites
	13.5 Fiber-reinforced Composites
		13.5.1 Effect of Fibre Length
		13.5.2 Stress–Strain Diagram (Composite)
		13.5.3 Stage I of Deformation (OA)
		13.5.4 Stage II (A to B)
		13.5.5 Law of Mixture
		13.5.6 Transverse Modulus
		13.5.7 Discontinuous and Aligned Fibre Composites
	13.6 Fiber Phase
		13.6.1 Wires
	13.7 Matrix Phase
	13.8 Polymer Matrix Composites
		13.8.1 Matrix Materials
		13.8.2 Reinforcements
		13.8.3 Fabrication Techniques
		13.8.4 Continuous Pultrusion
		13.8.5 Vacuum Bag Forming
	13.9 Ceramic Matrix Composites
		13.9.1 Transformation Toughening
	13.10 Carbon–carbon Composites
	13.11 Metal Matrix Composites
		13.11.1 Applications of MMC
	13.12 Hybrid Composites
	13.13 Structural Composites
		13.13.1 Sandwich Panels
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 14: Wear of Materials
	14.1 Introduction
	14.2 History of Friction and Wear
	14.3 Contact Mechanics
		14.3.1 Two Surfaces are Flat
		14.3.2 One Flat and Other Curved Surface
		14.3.3 Two Curved Surfaces in Contact
	14.4 Friction
	14.5 Measurements
	14.6 Definition of Wear
	14.7 Forms of Wear
		14.8.1 Adhesive
		14.8.2 Galling
		14.8.3 Scuffing
		14.8.4 Oxidative Wear
		14.8.5 Fretting
	14.8 Sliding Contact Wear
	14.9 Abrasive Wear
		14.9.1 Low-Stress Abrasion
		14.9.2 High-Stress Abrasion
		14.9.3 Gouging Abrasion
		14.9.4 Polishing Abrasion
	14.10 Types of Erosion
		14.10.1 Solid Erosion
		14.10.2 Slurry Erosion
		14.10.3 Liquid Impact Erosion
		14.10.4 Liquid Erosion
		14.10.5 Cavitation
	14.11 Surface Fatigue
	14.12 Protection Against Wear
		14.12.1 Electroplating
		14.12.2 Anodizing
		14.12.3 Diffusion
		14.12.4 Metal Spraying
		14.12.5 Hard Facing
	14.13 Hard Facing
	14.14 Bearings
	14.15 Lubrication
		14.15.1 Oils
		14.15.2 Greases
		14.15.3 Solid Film Lubricants
	Multiple Choice Questions
	Review Questions
Chapter 15: Corrosion and Oxidation
	15.1 Introduction
	15.2 Electrochemical Reaction
	15.3 Electrochemical Process
		15.3.1 Standard Hydrogen Reference Electrode
	15.4 Electrolytes
	15.5 Galvanic Cell
	15.6 Types of Corrosion
	15.7 Laws of Corrosion
	15.8 Corrosion Rate
	15.9 Dry Corrosion
		15.9.1 Scale Types
		15.9.2 Kinetics
	15.10 Rusting of Steel
	15.11 Various Forms of Corrosion
		15.11.1 Uniform Corrosion
		15.11.2 Pitting
		15.11.3 Crevice
		15.11.4 Galvanic Corrosion
		15.11.5 Stress Corrosion Cracking
		15.11.6 Hydrogen Embrittlement
		15.11.7 Intergranular Attack
		15.11.8 Dealloying
	15.12 Factors Affecting Corrosion
		15.12.1 Redox Potential
		15.12.2 Metallurgical Effects
		15.12.3 Passivity
		15.12.4 Chemical Nature
		15.12.5 Operating Conditions
		15.12.6 Polarization
	15.13 Corrosion Fatigue
	15.14 Corrosion of Ceramic Materials
	15.15 Degradation of Polymers
	15.16 Guidelines for Protection Against Corrosion and Oxidation
		15.16.1 Metals and Alloys
		15.16.2 Environmental Control
		15.16.3 Inhibitors
		15.16.4 Design
	Multiple Choice Questions
	Review Questions
Chapter 16: Thermal Properties
	16.1 Introduction
	16.2 Temperature Scale
	16.3 Melting Point
	16.4 Heat Capacity
	16.5 Temperature Dependence of Heat Capacity
	16.6 Thermal Shock
	16.7 Thermal Conductivity
		16.7.1 Weidemann–Franz Law
		16.7.2 Polymers
	16.8 Thermal Expansion
		16.8.1 Metals
		16.8.2 Ceramics
		16.8.3 Polymers
	16.9 Thermal Stresses
		16.9.1 Restrained Thermal Expansion or Contraction
		16.9.2 Stresses Due to Temperature Gradients
		16.9.3 Thermal Stresses in Components of Two Dissimilar Metals
	16.10 Materials for High-temperature Applications
	16.11 Materials for Low-temperature Applications
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 17: Electrical Conductivity and Insulating Properties
	17.1 Introduction
	17.2 Ohm’s Law
		17.2.1 Electrical Conductivity
	17.3 Commonly Used Conducting Materials
	17.4 High-resistivity Materials
	17.5 Electron Configuration
	17.6 Electron Energy Band
		17.6.1 Fermi Energy Level
	17.7 Different Types of Band Structures
	17.8 Band and Atomic Bonding Model for Conduction
		17.8.1 Insulators and Semiconductors
	17.9 Electron Mobility
	17.10 Electrical Resistivity of Metals
		17.10.1 Influence of Temperature
		17.10.2 Influence of Impurities
		17.10.3 Influence of Plastic Deformation
	17.11 Electronic and Ionic Conduction
	17.12 Commercial Alloys
	17.13 Insulation
	17.14 High-voltage Insulators
	17.15 Insulation of Antennas
	17.16 Insulation of Electrical Apparatus
	17.17 Class I and Class II Insulation
	17.18 Properties of Insulating Materials
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 18: Semiconductors
	18.1 Introduction
	18.2 Semiconduction
		18.2.1 Intrinsic Semiconductors
	18.3 Temperature Effect on Intrinsic Semiconductor
	18.4 Extrinsic Semiconductors
		18.4.1 N-Type Semiconductors
		18.4.2 P-Type Extrinsic Semiconductors
	18.5 Hall Effect
	18.6 Variation of Conductivity with Temperature and Carrier 
Concentration
		18.6.1 Extrinsic Conductivity
	18.7 Semiconductor Devices
		18.7.1 Forward Bias
		18.7.2 Reverse Bias
	18.8 Infrared Detectors and Photoconductors
	18.9 Thermoelectrics
	18.10 Transistors
		18.10.1 Junction Transistor
		18.10.2 Mosfet
	18.11 Microelectronic Circuitry
	18.12 Applications of Semiconductors
		18.12.1 III–V Semiconductors
		18.12.2 II–VI Semiconductors
		18.12.3 Miscellaneous Oxides
		18.12.4 Organic Semiconductors
		18.12.5 Magnetic Semiconductors
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 19: Dielectric Properties
	19.1 Introduction
	19.2 Dielectric Behaviour
	19.3 Dipole Moment and Polarization
	19.4 Polarization of an Electric Field
		19.4.1 Electronic Polarization
		19.4.2 Ionic Polarization
		19.4.3 Orientation Polarization
	19.5 Frequency Dependence of Dielectric Constant
	19.6 Effect of Temperature on Dielectric Constant
	19.7 Dielectric Losses
	19.8 Dielectric Breakdown
	19.9 Ferroelectricity
	19.10 Piezoelectricity
	19.11 Dielectric Materials
	19.12 Practical Dielectrics
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 20: Magnetic Properties
	20.1 Introduction
	20.2 Magnetism
		20.2.1 Magnetic Behaviour
	20.3 Magnetic Field Vectors
		20.3.1 Magnetic Moments
	20.4 Magnetization Curves
		20.4.1 Paramagnetism
	20.5 Ferromagnetism
		20.5.1 Anti-Ferromagnetism
	20.6 Ferrimagnetism
		20.6.1 Spinal and Garnet Ferrites
	20.7 Magnetostriction
	20.8 Effect of Temperature on Magnetic Behaviour
	20.9 Domains
	20.10 Hysteresis
	20.11 Soft Magnetic Materials
	20.12 Hard Magnetic Materials
		20.12.1 High-Energy Hard Magnetic Materials
	20.13 Magnetic Storage
	20.14 Commonly Used Magnetic Materials
	20.15 Superconductivity
		20.15.1 Applications of Superconductors
	Multiple Choice Questions
	Review Questions
	Practice Problems
Chapter 21: Optical Properties of Materials
	21.1 Introduction
		21.1.1 the Particle Characteristic of EM Waves
		21.1.2 Waves of Electric and Magnetic Fields
	21.2 Electromagnetic Wave Propagation in Solids
	21.3 Reflection and Refraction at the Interface
	21.4 The Electromagnetic Spectrum
	21.5 Absorption and Scattering
		21.5.1 Scattering
		21.5.2 Selective Absorption
	21.6 Colour
	21.7 Fluorescence, Phosphorescence and Luminescence
	21.8 Laser
		21.8.1 Ruby Laser
		21.8.2 Hene Laser
		21.8.3 CO2 Laser
		21.8.4 Dye Laser
		21.8.5 Semiconductor Laser
		21.8.6 Properties of Laser Light
		21.8.7 Applications of Laser
	21.9 The Fibre Optic Communication
	Multiple Choice Questions
	Review Questions
	Practice Problems
Index




نظرات کاربران