دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: نویسندگان: D. Jude Hemanth سری: Advances in Science, Technology & Innovation ISBN (شابک) : 3031088581, 9783031088582 ناشر: Springer سال نشر: 2022 تعداد صفحات: 227 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Machine Learning Techniques for Smart City Applications: Trends and Solutions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های یادگیری ماشین برای برنامه های کاربردی شهر هوشمند: روندها و راه حل ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents 1 Applying Deep Learning to Predict Civic Purpose Development: Within the Smart City Context Abstract 1 Introduction 2 Methods 2.1 Dataset 2.2 Analyzed Variables 2.3 Deep Learning 2.4 Evaluation of Model Performance 2.5 Examining the Relationship Between Predictors and Predicted Outcomes 3 Experimental Results and Discussions 4 Concluding Remarks Appendix: Supplementary Methods References 2 Convolution Neural Network Scheme for Detection of Electricity Theft in Smart Grids Abstract 1 Introduction 2 Background and Related Work 3 Model Implementation Details 3.1 Convolutional Neural Network 3.2 Batch Normalization 3.3 Max-Pooling and Flatten 3.4 Dropout 3.5 Dense Layer 3.6 Optimizers and Loss Function 3.7 Activation 4 Proposed Model Implementation 4.1 Data Attributes 4.2 Data Preprocessing 4.3 Model Design 5 Results 6 Discussion 7 Conclusion References 3 Helping Hand: A GMM-Based Real-Time Assistive Device for Disabled Using Hand Gestures Abstract 1 Introduction 2 Related Work 2.1 Hand Segmentation 2.2 Hand Feature Extraction 2.3 Hand Gesture Recognition 3 Proposed System 3.1 Gaussian Mixture Model (GMM) 3.1.1 Procedure 3.2 Hough Transform for Feature Extraction 3.2.1 Procedure 3.3 K-NN Classifier 4 Result and Discussion 5 Conclusion References 4 A Review on Hand Gesture and Sign Language Techniques for Hearing Impaired Person Abstract 1 Introduction 2 Findings on Hand Gesture and Sign Language Studies 2.1 Vision Based Study 2.2 Sensor Based Study 2.3 Hybrid Approaches 3 Discussion 3.1 Image Acquisition Devices 3.2 Performance Metrics 3.3 Sign Language Dataset 4 Hand Gesture and Sign Language Prospect in Smart Health Aspect 5 Conclusion Acknowledgements References 5 DriveSense: Adaptive System for Driving Behaviour Analysis and Ranking Abstract 1 Introduction 2 Autonomous Vehicles, Smart Cities and DriveSense 3 DriveSense 4 Methodology 4.1 System Architecture 4.2 Machine-Learning Models and Algorithms 4.2.1 Decision Tree Classifier 4.2.2 Random Forest Classifier 4.2.3 Boosted Tree Classifier 4.2.4 Logistic Regression 4.2.5 SVM Classifier 5 Data Acquisition of Driving Behaviour 5.1 Use of Sensors to Determine Driving Behaviour Traits 5.2 Detecting Rash Driving Behaviour Using IMUs 6 Dataset Study 7 Machine-Learning Models 7.1 Machine-Learning Models—Virginia Dataset 7.1.1 SVM Classifier 7.2 Machine-Learning Models—Mendeley Dataset 7.2.1 Boosted Tree Classifier 7.2.2 Random Forest Classifier 7.2.3 Decision Tree 7.2.4 Logistic Classifier 8 Simulation 9 Metrics 10 Results 11 Conclusion References 6 Classification and Tracking of Vehicles Using Videos Captured by Unmanned Aerial Vehicles Abstract 1 Introduction 2 Related Work 2.1 Vehicle Detection Based on Motion Features 2.2 Vehicle Detection Based on Appearance Features 2.3 Vehicle Detection with Deep Learning 2.4 Vehicle Tracking 3 Metrics 3.1 Object Detection Metrics 3.2 Tracking Metrics 4 The UTUAV Urban Traffic Dataset 4.1 UTUAV-A Dataset 4.2 UTUAV-B Dataset 4.3 UTUAV-C Dataset 5 Methodology for Urban Vehicles Detection and Tracking 5.1 Light Vehicles 5.2 Motorcycles 5.3 Heavy Vehicles 6 Experiments 6.1 Detection and Classification 6.2 Vehicle Tracking 7 Discussion 8 Conclusion and Future Work Acknowledgements References 7 Tracking Everyone and Everything in Smart Cities with an ANN Driven Smart Antenna Abstract 1 Introduction 2 Smart City and Intelligent Communications 3 5G/6G Systems and Other Communications Systems in Smart City with Research Challenges 3.1 5G/6G Systems for Smart Cities 3.2 Other Communications Networks 3.3 Research Challenges for Smart Cities 4 A Fast and Light ANN Enabled Antenna for Internet of Everything for a Smart City 4.1 ANN Antenna Model 4.2 Localization with ANN Enabled Antenna 4.3 Beamforming with SNWOM 4.4 Tracking with ANN Enabled Smart Antenna 4.5 Application of ANN Smart Antennas in Smart Cities 4.5.1 Smart Energy with ANN Enabled Smart Antennas 4.5.2 Smart Transportation with ANN Enabled Smart Antennas 4.5.3 Sensing Human Activity with ANN Enabled Smart Antennas 5 Summary References 8 Wavelet-Based Saliency and Ensemble Classifier for Pedestrian Detection in Infrared Images Abstract 1 Introduction 2 Proposed Methodology 2.1 Wavelet Decomposition and Feature Map Generation 2.2 Local Denary Pattern 2.3 Overlapping Pedestrian Detection 2.4 LogitBoost Classifier 2.5 Performance Measures 3 Results and Discussion 3.1 Wavelet Transform-Based Saliency Region Construction—Results 3.2 Pedestrian and Non-Pedestrian Classification Results 4 Conclusion References 9 A Survey of Emerging Applications of Machine Learning in the Diagnosis and Management of Sleep Hygiene and Health in the Elderly Population Abstract 1 Introduction 2 Etiology of Sleep 3 Types of Sleep Disorders 3.1 Insomnia 3.2 Sleep-Related Breathing Disorders (SRBD) 3.3 Central Disorders of Hypersomnolence 3.4 Circadian Rhythm Sleep–Wake Disorders 3.5 Parasomnias 3.6 Sleep-Related Movement Disorders 4 Aging-Related Sleep Disorders 4.1 Trends in Analysis of Sleep Disorders 4.1.1 Subjective Assessment of Sleep: Survey Questionnaire 4.1.2 Objective Assessment of Sleep: Polysomnography—The Gold Standard Test 4.1.3 Automated and Intelligent Machine Learning Systems for Sleep Assessment 4.1.4 Non-Contact and Unobtrusive Methods of Sleep Assessment in the Elderly 5 Conclusions and Future Scope References 10 Smart City Traffic Patterns Prediction Using Machine Learning Abstract 1 Introduction 2 Related Works 3 Methodology 3.1 Machine Learning Algorithms 3.1.1 Bagging (BAG) 3.1.2 K-Nearest Neighbor (KNN) 3.1.3 Multivariate Adaptive Regression Spline (MARS) 3.1.4 Bayesian Generalized Linear Model (BGLM) 3.1.5 Generalized Linear Model (GLM) 3.2 Performance Evaluation 3.3 Proposed Traffic Pattern Prediction System 4 Results and Discussion 5 Conclusion References 11 Emergency Department Management Using Regression Models Abstract 1 Introduction 2 Literature Survey 2.1 Types of Queuing Model Used 2.2 Hospital Beds’ Allotment 2.3 Outpatient Queuing 2.4 Patient Flow Management 2.5 External Factors 2.6 COVID-19 Pandemic and Its Impact in EDs 3 Methodology 4 Results and Discussion 5 Challenges 6 Conclusion References 12 Machine Learning in Wind Energy: Generation to Supply Abstract 1 Introduction 2 Need for Windfarms 3 Smart Cities and Wind Power 4 Methodology 5 Wind Forecasting 6 WindFarm Optimization 6.1 Optimization Using Random Search 6.2 Optimization Using Genetic Algorithm 6.3 Optimization Using Nelder-Mead and PSO 6.4 Novel Approach: Optimization Using Nelder-Mead and Genetic Algorithm 7 Fault Diagnosis in Transmission Line 8 Metrics 9 Results and Discussion 10 Conclusion References 13 Multi-class Segmentation of Trash in Coastal Areas Using Encoder-Decoder Architecture Abstract 1 Introduction 2 Proposed Methodology 3 Data 3.1 Study Area 3.2 UAV Details 3.3 Real Data 3.4 Synthetic Data 3.5 Randomly Generated Data (RGD) 4 Data Preprocessing 5 Deep Learning and Segmentation 6 Encoder-Decoder Architectures 6.1 ResNet—50 (Backbone) 6.2 U-Net 6.3 SegNet 7 Loss Function 7.1 Weighted Categorical Cross-Entropy 7.2 Dice Loss 7.3 Focal Tversky Loss 8 Evaluation Metrics 8.1 IoU 8.2 Dice Coefficient 9 Training 10 Results 11 Localization 12 Discussion 12.1 Architecture 12.2 Loss Functions 12.3 Segmentation Results 13 Summary 14 Conclusion References 14 Learning Analytics for Smart Classroom System in a University Campus Abstract 1 Introduction 2 Related Work 3 Proposed System 4 Learning Analytics in Smart Classroom 4.1 Application of ML Algorithms for Prediction 4.2 Techniques Used to Train the Model 5 Performance Evaluation and Model Selection 6 System Prototype 6.1 Hardware and Software Used 6.2 Implementation of Different Modules 7 System Evaluation 8 Conclusion and Future Works References 15 Predictive Analytics for Smart Health Monitoring System in a University Campus Abstract 1 Introduction 2 Related Work 3 Proposed System 4 Predictive Analytics in Smart Health 4.1 Applying Machine Learning Algorithms for Disease Prediction 4.2 Dataset Construction 5 Performance Evaluation of Each Model and Selection 5.1 Cold Flu Model 5.2 Hypertension Model 5.3 Diabetes Model 6 System Prototype 7 System Evaluation 8 Conclusion and Future Works References 16 SysML-Based Design of Autonomous Multi-robot Cyber-Physical System Using Smart IoT Modules: A Case Study Abstract 1 Introduction 2 Machine Learning-CPS-Related Research 3 System Description and Requirements 4 SysML Modeling of Autonomous Mobile Robots System 4.1 System Package Diagram 4.2 System Requirements Diagram 4.3 System Block Definition Diagram 4.4 System Internal Block Diagrams 4.5 System Activity Diagrams 4.6 System State Machine Diagrams 4.7 System Parametric Diagrams 5 Conclusions and Remarks References 17 Vulnerabilities and Ethical Issues in Machine Learning for Smart City Applications Abstract 1 Introduction 2 Vulnerabilities of ML in Smart City 2.1 Privacy 2.2 Data Security 2.3 Privacy and Public Administration 2.4 Scarcity of Skillful Professionals 2.5 Huge Capital 2.6 Unemployment 2.7 Economic Disparity 2.8 Artificial Stupidity 2.8.1 Racist Robots 2.8.2 Lack of Security 2.8.3 Robot Rights 3 Ethical Issues 3.1 Water Monitoring System 3.2 100 Smart Cities 3.3 Crime Prediction 3.4 Smart Grid 3.5 Occupancy Counting 3.6 GPS Tracking 3.7 Autonomous Transportation 3.8 Drone Applications 4 Discussions and Conclusion References