دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: سایبرنتیک: هوش مصنوعی ویرایش: 1 نویسندگان: Doug Hudgeon. Richard Nichol سری: ISBN (شابک) : 1617295833, 9781617295836 ناشر: Manning Publications سال نشر: 2020 تعداد صفحات: 282 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری ماشینی برای تجارت: با استفاده از Amazon SageMaker و Jupyter`: خدمات وب آمازون، یادگیری ماشینی، پایتون، کسب و کار، یادگیری دانش، پانداها، Jupyter، سطح ورودی، اتوماسیون، آمازون SageMaker، مطالعات موردی
در صورت تبدیل فایل کتاب Machine Learning for Business: Using Amazon SageMaker and Jupyter` به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی برای تجارت: با استفاده از Amazon SageMaker و Jupyter` نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
خلاصه تصور کنید که پیشبینی کنید چه مشتریانی به فکر تغییر به یک رقیب هستند یا شکستهای فرآیند بالقوه را قبل از وقوع آنها علامتگذاری میکنند. . مزیت رقابتی تصمیمگیری را زمانی در نظر بگیرید که محتملترین رویدادهای آینده را میدانید یادگیری ماشینی میتواند این مزیتها و دیگر مزیتها را برای کسبوکار شما به ارمغان بیاورد، و شروع به کار هرگز آسانتر نبوده است! خرید کتاب چاپی شامل یک کتاب الکترونیکی رایگان در قالبهای PDF، Kindle و ePub از انتشارات منینگ است. درباره فناوری یادگیری ماشینی می تواند مزایای زیادی را برای کارهای روزمره کسب و کار به ارمغان بیاورد. با برخی راهنماییها، میتوانید خودتان بدون ریاضیات پیچیده یا مشاوران پردرآمد به آن بردهای بزرگ برسید! اگر میتوانید اعداد را در اکسل خرد کنید، میتوانید از خدمات مدرن ML برای هدایت مؤثر دلارهای بازاریابی، شناسایی و حفظ بهترین مشتریان و بهینهسازی فرآیندهای آفیس پشتیبان استفاده کنید. این کتاب به شما نشان می دهد که چگونه. درباره کتاب Machine Learning for Business تکنیک های یادگیری ماشینی کسب و کار محور را آموزش می دهد که می توانید خودتان انجام دهید. با تمرکز بر موضوعات عملی مانند حفظ مشتری، پیشبینی و فرآیندهای دفتر پشتیبان، شش پروژه را انجام خواهید داد که به شما کمک میکند یک ذهنیت ML برای کسب و کار را شکل دهید. برای تضمین موفقیت خود، از سرویس Amazon SageMaker ML استفاده خواهید کرد، که باعث می شود سؤالات شما به نتیجه تبدیل شود. آنچه در داخل است شناسایی وظایف مناسب برای یادگیری ماشینی خودکارسازی فرآیندهای پشتیبان با استفاده از ابزارهای منبع باز و مبتنی بر ابر مطالعات موردی مرتبط درباره خواننده برای متخصصان تجاری متمایل به فنی یا توسعه دهندگان برنامه های کاربردی تجاری. درباره نویسنده داگ هاجون و ریچارد نیکول در به حداکثر رساندن ارزش دادههای تجاری از طریق هوش مصنوعی و یادگیری ماشین برای شرکتهایی با هر اندازه تخصص دارند. فهرست مطالب: بخش 1 یادگیری ماشینی برای کسب و کار 1 ¦ چگونه یادگیری ماشین در کسب و کار شما اعمال می شود قسمت 2 سناریوهای ششم: یادگیری ماشینی برای کسب و کار 2 ¦ آیا باید سفارش خرید را به تایید کننده فنی ارسال کنید؟ 3 ¦ آیا باید با یک مشتری تماس بگیرید زیرا در معرض خطر سرگردانی قرار دارد؟ 4 ¦ آیا یک حادثه باید به تیم پشتیبانی شما تشدید شود؟ 5 ¦ آیا باید فاکتور ارسال شده توسط تامین کننده را زیر سوال ببرید؟ 6 ¦ پیش بینی مصرف برق ماهانه شرکت شما 7 ¦ بهبود پیش بینی مصرف برق ماهانه شرکت شما قسمت 3 یادگیری ماشین متحرک در تولید 8 ¦ ارائه پیش بینی ها از طریق وب 9 ¦ مطالعات موردی
Summary Imagine predicting which customers are thinking about switching to a competitor or flagging potential process failures before they happen Think about the benefits of forecasting tedious business processes and back-office tasks Envision quickly gauging customer sentiment from social media content (even large volumes of it). Consider the competitive advantage of making decisions when you know the most likely future events Machine learning can deliver these and other advantages to your business, and it’s never been easier to get started! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Machine learning can deliver huge benefits for everyday business tasks. With some guidance, you can get those big wins yourself without complex math or highly paid consultants! If you can crunch numbers in Excel, you can use modern ML services to efficiently direct marketing dollars, identify and keep your best customers, and optimize back office processes. This book shows you how. About the book Machine Learning for Business teaches business-oriented machine learning techniques you can do yourself. Concentrating on practical topics like customer retention, forecasting, and back office processes, you’ll work through six projects that help you form an ML-for-business mindset. To guarantee your success, you’ll use the Amazon SageMaker ML service, which makes it a snap to turn your questions into results. What\'s inside Identifying tasks suited to machine learning Automating back office processes Using open source and cloud-based tools Relevant case studies About the reader For technically inclined business professionals or business application developers. About the author Doug Hudgeon and Richard Nichol specialize in maximizing the value of business data through AI and machine learning for companies of any size. Table of Contents: PART 1 MACHINE LEARNING FOR BUSINESS 1 ¦ How machine learning applies to your business PART 2 SIX SCENARIOS: MACHINE LEARNING FOR BUSINESS 2 ¦ Should you send a purchase order to a technical approver? 3 ¦ Should you call a customer because they are at risk of churning? 4 ¦ Should an incident be escalated to your support team? 5 ¦ Should you question an invoice sent by a supplier? 6 ¦ Forecasting your company’s monthly power usage 7 ¦ Improving your company’s monthly power usage forecast PART 3 MOVING MACHINE LEARNING INTO PRODUCTION 8 ¦ Serving predictions over the web 9 ¦ Case studies
Machine Learning for Business brief contents contents preface acknowledgments about this book Who should read this book How this book is organized: A roadmap About the code liveBook discussion forum about the authors about the cover illustration Part 1?Machine learning for business 1 How machine learning applies to your business 1.1 Why are our business systems so terrible? 1.2 Why is automation important now? 1.2.1 What is productivity? 1.2.2 How will machine learning improve productivity? 1.3 How do machines make decisions? 1.3.1 People: Rules-based or not? 1.3.2 Can you trust a pattern-based answer? 1.3.3 How can machine learning improve your business systems? 1.4 Can a machine help Karen make decisions? 1.4.1 Target variables 1.4.2 Features 1.5 How does a machine learn? 1.6 Getting approval in your company to use machine learning to make decisions 1.7 The tools 1.7.1 What are AWS and SageMaker, and how can they help you? 1.7.2 What is a Jupyter notebook? 1.8 Setting up SageMaker in preparation for tackling the scenarios in chapters 2 through 7 1.9 The time to act is now Summary Part 2?Six scenarios: Machine learning for business 2 Should you send a purchase order to a technical approver? 2.1 The decision 2.2 The data 2.3 Putting on your training wheels 2.4 Running the Jupyter notebook and making predictions 2.4.1 Part 1: Loading and examining the data 2.4.2 Part 2: Getting the data into the right shape 2.4.3 Part 3: Creating training, validation, and test datasets 2.4.4 Part 4: Training the model 2.4.5 Part 5: Hosting the model 2.4.6 Part 6: Testing the model 2.5 Deleting the endpoint and shutting down your notebook instance 2.5.1 Deleting the endpoint 2.5.2 Shutting down the notebook instance Summary 3 Should you call a customer because they are at risk of churning? 3.1 What are you making decisions about? 3.2 The process flow 3.3 Preparing the dataset 3.3.1 Transformation 1: Normalizing the data 3.3.2 Transformation 2: Calculating the change from week to week 3.4 XGBoost primer 3.4.1 How XGBoost works 3.4.2 How the machine learning model determines whether the function is getting better or getting worse AUC 3.5 Getting ready to build the model 3.5.1 Uploading a dataset to S3 3.5.2 Setting up a notebook on SageMaker 3.6 Building the model 3.6.1 Part 1: Loading and examining the data 3.6.2 Part 2: Getting the data into the right shape 3.6.3 Part 3: Creating training, validation, and test datasets 3.6.4 Part 4: Training the model 3.6.5 Part 5: Hosting the model 3.6.6 Part 6: Testing the model 3.7 Deleting the endpoint and shutting down your notebook instance 3.7.1 Deleting the endpoint 3.7.2 Shutting down the notebook instance 3.8 Checking to make sure the endpoint is deleted Summary 4 Should an incident be escalated to your support team? 4.1 What are you making decisions about? 4.2 The process flow 4.3 Preparing the dataset 4.4 NLP (natural language processing) 4.4.1 Creating word vectors 4.4.2 Deciding how many words to include in each group 4.5 What is BlazingText and how does it work? 4.6 Getting ready to build the model 4.6.1 Uploading a dataset to S3 4.6.2 Setting up a notebook on SageMaker 4.7 Building the model 4.7.1 Part 1: Loading and examining the data 4.7.2 Part 2: Getting the data into the right shape 4.7.3 Part 3: Creating training and validation datasets 4.7.4 Part 4: Training the model 4.7.5 Part 5: Hosting the model 4.7.6 Part 6: Testing the model 4.8 Deleting the endpoint and shutting down your notebook instance 4.8.1 Deleting the endpoint 4.8.2 Shutting down the notebook instance 4.9 Checking to make sure the endpoint is deleted Summary 5 Should you question an invoice sent by a supplier? 5.1 What are you making decisions about? 5.2 The process flow 5.3 Preparing the dataset 5.4 What are anomalies 5.5 Supervised vs. unsupervised machine learning 5.6 What is Random Cut Forest and how does it work? 5.6.1 Sample 1 5.6.2 Sample 2 5.7 Getting ready to build the model 5.7.1 Uploading a dataset to S3 5.7.2 Setting up a notebook on SageMaker 5.8 Building the model 5.8.1 Part 1: Loading and examining the data 5.8.2 Part 2: Getting the data into the right shape 5.8.3 Part 3: Creating training and validation datasets 5.8.4 Part 4: Training the model 5.8.5 Part 5: Hosting the model 5.8.6 Part 6: Testing the model 5.9 Deleting the endpoint and shutting down your notebook instance 5.9.1 Deleting the endpoint 5.9.2 Shutting down the notebook instance 5.10 Checking to make sure the endpoint is deleted Summary 6 Forecasting your company?s monthly power usage 6.1 What are you making decisions about? 6.1.1 Introduction to time-series data 6.1.2 Kiara?s time-series data: Daily power consumption 6.2 Loading the Jupyter notebook for working with time-series data 6.3 Preparing the dataset: Charting time-series data 6.3.1 Displaying columns of data with a loop 6.3.2 Creating multiple charts 6.4 What is a neural network? 6.5 Getting ready to build the model 6.5.1 Uploading a dataset to S3 6.5.2 Setting up a notebook on SageMaker 6.6 Building the model 6.6.1 Part 1: Loading and examining the data 6.6.2 Part 2: Getting the data into the right shape 6.6.3 Part 3: Creating training and testing datasets 6.6.4 Part 4: Training the model 6.6.5 Part 5: Hosting the model 6.6.6 Part 6: Making predictions and plotting results 6.7 Deleting the endpoint and shutting down your notebook instance 6.7.1 Deleting the endpoint 6.7.2 Shutting down the notebook instance 6.8 Checking to make sure the endpoint is deleted Summary 7 Improving your company?s monthly power usage forecast 7.1 DeepAR?s ability to pick up periodic events 7.2 DeepAR?s greatest strength: Incorporating related time series 7.3 Incorporating additional datasets into Kiara?s power consumption model 7.4 Getting ready to build the model 7.4.1 Downloading the notebook we prepared 7.4.2 Setting up the folder on SageMaker 7.4.3 Uploading the notebook to SageMaker 7.4.4 Downloading the datasets from the S3 bucket 7.4.5 Setting up a folder on S3 to hold your data 7.4.6 Uploading the datasets to your AWS bucket 7.5 Building the model 7.5.1 Part 1: Setting up the notebook 7.5.2 Part 2: Importing the datasets 7.5.3 Part 3: Getting the data into the right shape 7.5.4 Part 4: Creating training and test datasets 7.5.5 Part 5: Configuring the model and setting up the server to build the model 7.5.6 Part 6: Making predictions and plotting results 7.6 Deleting the endpoint and shutting down your notebook instance 7.6.1 Deleting the endpoint 7.6.2 Shutting down the notebook instance 7.7 Checking to make sure the endpoint is deleted Summary Part 3?Moving machine learning into production 8 Serving predictions over the web 8.1 Why is serving decisions and predictions over the web so difficult? 8.2 Overview of steps for this chapter 8.3 The SageMaker endpoint 8.4 Setting up the SageMaker endpoint 8.4.1 Uploading the notebook 8.4.2 Uploading the data 8.4.3 Running the notebook and creating the endpoint 8.5 Setting up the serverless API endpoint 8.5.1 Setting up your AWS credentials on your AWS account 8.5.2 Setting up your AWS credentials on your local computer 8.5.3 Configuring your credentials 8.6 Creating the web endpoint 8.6.1 Installing Chalice 8.6.2 Creating a Hello World API 8.6.3 Adding the code that serves the SageMaker endpoint 8.6.4 Configuring permissions 8.6.5 Updating requirements.txt 8.6.6 Deploying Chalice 8.7 Serving decisions Summary 9 Case studies 9.1 Case study 1: WorkPac 9.1.1 Designing the project 9.1.2 Stage 1: Preparing and testing the model 9.1.3 Stage 2: Implementing proof of concept (POC) 9.1.4 Stage 3: Embedding the process into the company?s operations 9.1.5 Next steps 9.1.6 Lessons learned 9.2 Case study 2: Faethm 9.2.1 AI at the core 9.2.2 Using machine learning to improve processes at Faethm 9.2.3 Stage 1: Getting the data 9.2.4 Stage 2: Identifying the features 9.2.5 Stage 3: Validating the results 9.2.6 Stage 4: Implementing in production 9.3 Conclusion 9.3.1 Perspective 1: Building trust 9.3.2 Perspective 2: Geting the data right 9.3.3 Perspective 3: Designing your operating model to make the most of your machine learning capability 9.3.4 Perspective 4: What does your company look like once you are using machine learning everywhere? Summary Appendix A?Signing up for Amazon AWS A.1 Signing up for AWS A.2 AWS Billing overview Appendix B?Setting up and using S3 to store files B.1 Creating and setting up a bucket in S3 B.1.1 Step 1: Naming your bucket B.1.2 Step 2: Setting properties for your bucket B.1.3 Step 3: Setting permissions B.1.4 Step 4: Reviewing settings B.2 Setting up folders in S3 B.3 Uploading files to S3 Appendix C?Setting up and using AWS SageMaker to build a machine learning system C.1 Setting up C.2 Starting at the Dashboard C.3 Creating a notebook instance C.4 Starting the notebook instance C.5 Uploading the notebook to the notebook instance C.6 Running the notebook Appendix D?Shutting it all down D.1 Deleting the endpoint D.2 Shutting down the notebook instance Appendix E?Installing Python index Symbols A B C D E F G H I J K L M N O P Q R S T U V W X Z