دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آمار ریاضی ویرایش: 3rd نویسندگان: William M. Bolstad, James M. Curran سری: ISBN (شابک) : 9781118091562 ناشر: Wiley سال نشر: 2016 تعداد صفحات: 617 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Introduction to Bayesian Statistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مقدمه ای بر آمار بیزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
"...این نسخه در آموزش استنتاج بیزی در سطوح ابتدایی و متوسط مفید و موثر است. این کتاب به خوبی نوشته شده در استنتاج بیزی ابتدایی است و مطالب به راحتی قابل دسترسی است. هم مختصر و هم به موقع است و مجموعه خوبی از مرورها و بررسی ابزارهای مهم مورد استفاده در روش های آماری بیزی." افزایش شدیدی در استفاده از روشهای بیزی در تحلیلهای آماری کاربردی وجود دارد، با این حال اکثر متون آماری مقدماتی فقط روشهای فراوانی را ارائه میکنند. آمار بیزی دارای مزایای بسیار مهمی است که اگر دانشآموزان به سراغ رشتههایی میروند که در آن آمار مورد استفاده قرار میگیرد، باید در مورد آنها بیاموزند. در این نسخه سوم، چهار فصل جدید اضافه شده به موضوعاتی می پردازد که نشان دهنده پیشرفت های سریع در زمینه آمار بیزی است. نویسندگان به ارائه یک درمان بیزی از موضوعات آماری مقدماتی، مانند جمعآوری دادههای علمی، متغیرهای تصادفی گسسته، روشهای بیزی قوی، و رویکردهای بیزی برای استنتاج برای متغیرهای تصادفی گسسته، نسبتهای دوجملهای، پواسون و میانگینهای نرمال و رگرسیون خطی ساده ادامه میدهند. . علاوه بر این، موضوعات پیشرفته تر در این زمینه در چهار فصل جدید ارائه شده است: استنتاج بیزی برای یک نرمال با میانگین و واریانس ناشناخته. استنتاج بیزی برای بردار میانگین نرمال چند متغیره. استنتاج بیزی برای مدل رگرسیون خطی چندگانه. و آمار بیزی محاسباتی از جمله زنجیره مارکوف مونت کارلو. گنجاندن این موضوعات توانایی خوانندگان را برای پیشرفت از درک حداقلی آمار به توانایی پرداختن به موضوعات در کتابهای کاربردی تر و سطح پیشرفتهتر تسهیل میکند. ماکروهای Minitab و توابع R در وب سایت مربوط به کتاب برای کمک به تمرینات فصل در دسترس هستند. مقدمه ای بر آمار بیزی، ویرایش سوم همچنین دارای موارد زیر است: موضوعاتی از جمله تابع درستنمایی مشترک و استنتاج با استفاده از مقدمات جفریس مستقل و پیشین مزدوج پیوستن موضوع پیشرفته آمار بیزی محاسباتی در فصلی جدید، با تمرکز منحصر به فرد بر روش های مونت کارلو زنجیره مارکوف تمرینهایی در سراسر کتاب که بهروزرسانی شدهاند تا برنامههای جدید و آخرین برنامههای نرمافزاری را منعکس کنند. ضمیمههای مفصلی که خوانندگان را از طریق استفاده از نرمافزار R و Minitab برای تحلیل بیزی و شبیهسازیهای مونت کارلو، با همه ماکروهای مرتبط در وبسایت کتاب، راهنمایی میکند. Statistics, Third Edition یک کتاب درسی برای دوره های سطح فوق لیسانس یا سال اول کارشناسی ارشد در درس آمار مقدماتی با تاکید بیزی است. همچنین می تواند به عنوان یک کار مرجع برای آماردانانی که نیاز به دانش کاری از آمار بیزی دارند استفاده شود.
"...this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.
Content: Preface xiii 1 Introduction to Statistical Science 1 1.1 The Scientic Method: A Process for Learning 3 1.2 The Role of Statistics in the Scientic Method 5 1.3 Main Approaches to Statistics 5 1.4 Purpose and Organization of This Text 8 2 Scientic Data Gathering 13 2.1 Sampling from a Real Population 14 2.2 Observational Studies and Designed Experiments 17 Monte Carlo Exercises 23 3 Displaying and Summarizing Data 31 3.1 Graphically Displaying a Single Variable 32 3.2 Graphically Comparing Two Samples 39 3.3 Measures of Location 41 3.4 Measures of Spread 44 3.5 Displaying Relationships Between Two or More Variables 46 3.6 Measures of Association for Two or More Variables 49 Exercises 52 4 Logic, Probability, and Uncertainty 59 4.1 Deductive Logic and Plausible Reasoning 60 4.2 Probability 62 4.3 Axioms of Probability 64 4.4 Joint Probability and Independent Events 65 4.5 Conditional Probability 66 4.6 Bayes\' Theorem 68 4.7 Assigning Probabilities 74 4.8 Odds and Bayes Factor 75 4.9 Beat the Dealer 76 Exercises 80 5 Discrete Random Variables 83 5.1 Discrete Random Variables 84 5.2 Probability Distribution of a Discrete Random Variable 86 5.3 Binomial Distribution 90 5.4 Hypergeometric Distribution 92 5.5 Poisson Distribution 93 5.6 Joint Random Variables 96 5.7 Conditional Probability for Joint Random Variables 100 Exercises 104 6 Bayesian Inference for Discrete Random Variables 109 6.1 Two Equivalent Ways of Using Bayes\' Theorem 114 6.2 Bayes\' Theorem for Binomial with Discrete Prior 116 6.3 Important Consequences of Bayes\' Theorem 119 6.4 Bayes\' Theorem for Poisson with Discrete Prior 120 Exercises 122 Computer Exercises 126 7 Continuous Random Variables 129 7.1 Probability Density Function 131 7.2 Some Continuous Distributions 135 7.3 Joint Continuous Random Variables 143 7.4 Joint Continuous and Discrete Random Variables 144 Exercises 147 8 Bayesian Inference for Binomial Proportion 149 8.1 Using a Uniform Prior 150 8.2 Using a Beta Prior 151 8.3 Choosing Your Prior 154 8.4 Summarizing the Posterior Distribution 158 8.5 Estimating the Proportion 161 8.6 Bayesian Credible Interval 162 Exercises 164 Computer Exercises 167 9 Comparing Bayesian and Frequentist Inferences for Proportion 169 9.1 Frequentist Interpretation of Probability and Parameters 170 9.2 Point Estimation 171 9.3 Comparing Estimators for Proportion 174 9.4 Interval Estimation 175 9.5 Hypothesis Testing 178 9.6 Testing a One-Sided Hypothesis 179 9.7 Testing a Two-Sided Hypothesis 182 Exercises 187 Monte Carlo Exercises 190 10 Bayesian Inference for Poisson 193 10.1 Some Prior Distributions for Poisson 194 10.2 Inference for Poisson Parameter 200 Exercises 207 Computer Exercises 208 11 Bayesian Inference for Normal Mean 211 11.1 Bayes\' Theorem for Normal Mean with a Discrete Prior 211 11.2 Bayes\' Theorem for Normal Mean with a Continuous Prior 218 11.3 Choosing Your Normal Prior 222 11.4 Bayesian Credible Interval for Normal Mean 224 11.5 Predictive Density for Next Observation 227 Exercises 230 Computer Exercises 232 12 Comparing Bayesian and Frequentist Inferences for Mean 237 12.1 Comparing Frequentist and Bayesian Point Estimators 238 12.2 Comparing Condence and Credible Intervals for Mean 241 12.3 Testing a One-Sided Hypothesis about a Normal Mean 243 12.4 Testing a Two-Sided Hypothesis about a Normal Mean 247 Exercises 251 13 Bayesian Inference for Di erence Between Means 255 13.1 Independent Random Samples from Two Normal Distributions 256 13.2 Case 1: Equal Variances 257 13.3 Case 2: Unequal Variances 262 13.4 Bayesian Inference for Dierence Between Two Proportions Using Normal Approximation 265 13.5 Normal Random Samples from Paired Experiments 266 Exercises 272 14 Bayesian Inference for Simple Linear Regression 283 14.1 Least Squares Regression 284 14.2 Exponential Growth Model 288 14.3 Simple Linear Regression Assumptions 290 14.4 Bayes\' Theorem for the Regression Model 292 14.5 Predictive Distribution for Future Observation 298 Exercises 303 Computer Exercises 312 15 Bayesian Inference for Standard Deviation 315 15.1 Bayes\' Theorem for Normal Variance with a Continuous Prior 316 15.2 Some Specic Prior Distributions and the Resulting Posteriors 318 15.3 Bayesian Inference for Normal Standard Deviation 326 Exercises 332 Computer Exercises 335 16 Robust Bayesian Methods 337 16.1 Eect of Misspecied Prior 338 16.2 Bayes\' Theorem with Mixture Priors 340 Exercises 349 Computer Exercises 351 17 Bayesian Inference for Normal with Unknown Mean and Variance 355 17.1 The Joint Likelihood Function 358 17.2 Finding the Posterior when Independent Jeffreys\' Priors for and 2 Are Used 359 17.3 Finding the Posterior when a Joint Conjugate Prior for and 2 Is Used 361 17.4 Difference Between Normal Means with Equal Unknown Variance 367 17.5 Difference Between Normal Means with Unequal Unknown Variances 377 Computer Exercises 383 Appendix: Proof that the Exact Marginal Posterior Distribution of is Student\'s t 385 18 Bayesian Inference for Multivariate Normal Mean Vector 393 18.1 Bivariate Normal Density 394 18.2 Multivariate Normal Distribution 397 18.3 The Posterior Distribution of the Multivariate Normal Mean Vector when Covariance Matrix Is Known 398 18.4 Credible Region for Multivariate Normal Mean Vector when Covariance Matrix Is Known 400 18.5 Multivariate Normal Distribution with Unknown Covariance Matrix 402 Computer Exercises 406 19 Bayesian Inference for the Multiple Linear Regression Model 411 19.1 Least Squares Regression for Multiple Linear Regression Model 412 19.2 Assumptions of Normal Multiple Linear Regression Model 414 19.3 Bayes\' Theorem for Normal Multiple Linear Regression Model 415 19.4 Inference in the Multivariate Normal Linear Regression Model 419 19.5 The Predictive Distribution for a Future Observation 425 Computer Exercises 428 20 Computational Bayesian Statistics Including Markov Chain Monte Carlo 431 20.1 Direct Methods for Sampling from the Posterior 436 20.2 Sampling - Importance - Resampling 450 20.3 Markov Chain Monte Carlo Methods 454 20.4 Slice Sampling 470 20.5 Inference from a Posterior Random Sample 473 20.6 Where to Next? 475 A Introduction to Calculus 477 B Use of Statistical Tables 497 C Using the Included Minitab Macros 523 D Using the Included R Functions 543 E Answers to Selected Exercises 565 References 591 Index 595