دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: A. K. Tyagi, Raghumani S. Ningthoujam سری: ISBN (شابک) : 9789811618062, 9789811618079 ناشر: سال نشر: 2021 تعداد صفحات: 691 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 Mb
در صورت تبدیل فایل کتاب Handbook on Synthesis Strategies for Advanced Materials, Volume-I: Techniques and Fundamentals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب راهبردهای سنتز برای مواد پیشرفته، جلد اول: تکنیک ها و مبانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پوشش پیشرفته سنتز مواد کاربردی پیشرفته را ارائه می دهد. مسیرهای مصنوعی نامتعارف نقش مهمی در سنتز مواد پیشرفته ایفا میکنند، زیرا بسیاری از مواد جدید غیرپایدار هستند و نمیتوانند با روشهای مرسوم سنتز شوند. این کتاب روشهای مختلف سنتز مانند روش حالت جامد معمولی، روش احتراق، طیف وسیعی از روشهای شیمیایی نرم، سنتز الگو، روش پیشساز مولکولی، سنتز مایکروویو، روش سونوشیمیایی و سنتز فشار بالا را ارائه میکند. این یک مرور کلی از روشهای سنتز ارائه میکند و مواد مختلفی از جمله سرامیک، فیلم، شیشه، مواد مبتنی بر کربن و مواد فلزی را پوشش میدهد. بسیاری از تکنیکها برای پردازش و عاملسازی سطح نیز مورد بحث قرار گرفتهاند. چندین جنبه مهندسی سنتز مواد نیز گنجانده شده است. مطالب این کتاب برای محققان و متخصصانی که در زمینه مواد و شیمی کار می کنند مفید است.
This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.
Series Editor’s Preface Preface Contents About the Editors 1 Solid State Synthesis of Materials Abstract 1.1 Introduction 1.1.1 History and Background 1.1.2 What Is Solid State Synthesis? 1.1.3 Materials Synthesized by Solid State that Shaped up World of Materials: Rational and Serendipitous 1.2 Concepts of Solid State Synthesis 1.2.1 Different Types of Pestle–Mortars, Ball Mills, Grinding Media and Pellet Press 1.2.2 Different Types of Heating Elements of Resistance Furnaces and Thermocouples 1.2.3 Selection of Crucible Materials 1.2.4 Selection of Reactants and Their Preheat Treatment 1.2.5 Selection of Temperature, Heating/Cooling Rates, Intermittent Grindings and Atmosphere 1.2.6 Mechanism of Solid State Reactions 1.2.7 Basic Thermodynamics of Solid State Reactions: Enthalpy or Entropy Driven? 1.2.8 Methods to Introduce Non-stoichiometry 1.2.9 Solid Solutions (Substitutional, Interstitial) 1.2.9.1 Tailoring of Magnetic Properties and Band Gap 1.2.9.2 Tailoring of Dielectric Properties 1.2.9.3 Tailoring of Ionic Conductivity 1.2.9.4 Tailoring of Thermal Expansion Behaviour 1.3 Different Variations of Solid State Synthesis 1.3.1 Solid State Metathesis 1.3.2 Microwave Solid State Synthesis 1.3.3 Spark Plasma Sintering (SPS) 1.3.4 Solid State Synthesis by Flux Route 1.3.5 High-Pressure Synthesis 1.3.6 Precursor Routes 1.4 Specific Classes of Materials Synthesized by Solid State Route 1.4.1 Synthesis of Fluorite-Based Materials 1.4.2 Synthesis of Pyrochlores 1.4.3 Synthesis of Perovskite-Based Materials 1.4.4 Layered Perovskites 1.4.4.1 Ruddlesden–Popper (R-P) Phase 1.4.4.2 Aurivillius Phase 1.4.4.3 Dion–Jacobson (D-J) Phase 1.4.4.4 Brownmillerite Structure 1.4.5 Spinel Structure 1.4.6 Hexaferrite Synthesis 1.4.7 Tungsten Bronze 1.4.8 High Tc Oxides 1.4.9 GMR Materials 1.4.10 Energy Storage Materials 1.4.11 Negative Thermal Expansion Materials 1.5 Solid State Organic Synthesis 1.5.1 Solid Phase Organic Synthesis Without Any Solvent 1.5.2 Organic Synthesis Using a Solid Support 1.6 Metastable Materials 1.6.1 Typical Examples of Metastable Materials 1.6.2 Origin for Metastability 1.6.3 Synthesis of Metastable Materials 1.7 Common Characterization Techniques 1.7.1 X-ray Diffraction 1.7.2 Thermal Techniques 1.8 Merits and Demerits of Solid State Method 1.9 Summary and Future Scope References 2 Combustion Synthesis: A Versatile Method for Functional Materials Abstract 2.1 Introduction 2.2 History 2.3 Concepts of Combustion Synthesis 2.3.1 Self-Propagating High-Temperature Synthesis (SHS) [9] 2.3.2 Volume Combustion Synthesis (VCS) [9] 2.4 Classical Combustion Reaction 2.4.1 Metallothermic Combustion or Thermite Reduction [11] 2.4.2 Sol–Gel Combustion 2.4.2.1 Preparation of Fuel-Oxidant Precursor/Gel Formation 2.4.2.2 Combustion of the Fuel-Oxidant Precursor or Auto-Ignition 2.5 Oxidant in the Gel Combustion 2.5.1 Desired Characteristic of Oxidants 2.6 Fuel in the Gel Combustion 2.6.1 Desired Characteristic of Fuel 2.6.1.1 Glycine (NH2CH2COOH) 2.6.1.2 Citric Acid (C6H8O7) 2.6.1.3 Ascorbic Acid (C6H8O6) [17] and Tartaric Acid (C4H6O6) [18] 2.6.1.4 Hydrazine Hydrate (N2H4·H2O) [19] 2.6.1.5 Hexamethylene Tetramine ((CH2)6N4) (HMTA) [20] 2.6.1.6 Aspartic Acid (C4H7NO4) [21] and Glutamic Acid (C5H9NO4) [22] 2.6.1.7 Arginine (C6H14N4O2) [23] 2.6.1.8 Tryptophan (C10H10N2O2) [24] 2.6.1.9 Valine (C5H11NO2) [25] and Phenyl Alanine (C9H11NO2) [25] 2.6.1.10 Urea (CH4N2O) and Dimethyl Urea (C3H8N2O) [25] 2.6.1.11 Ethylene Diamine Tetra Acetic Acid (EDTA) (C10H16N2O8) [27] 2.7 Role of Fuel 2.8 Selection of Fuel 2.9 Amount of Fuel 2.10 Selection of Fuel to Oxidant Ratio 2.10.1 Extreme Fuel-Deficient Gel-Combustion Reaction 2.10.2 Fuel-Deficient Gel Combustion 2.10.3 Stoichiometric Gel Combustion 2.10.4 Slight Fuel Excess Gel-Combustion Reaction 2.10.5 Extreme-Fuel Excess Gel-Combustion Reaction 2.11 Selection of Reaction Vessels 2.12 Role of PH 2.13 Modified Gel-Combustion Method 2.14 Precautions and Limitations 2.15 Typical Examples of Materials Synthesized by Gel-Combustion Route 2.16 Comparison of Solid-State Reaction and Combustion Reaction 2.17 Merits and Demerits of Gel-Combustion Process 2.18 Sinterability and Nanopowders 2.19 Conclusions and Future Scope References 3 Microwave-Assisted Synthesis of Inorganic Nanomaterials Abstract 3.1 Introduction 3.1.1 Effect of Microwaves in Chemical Reaction 3.1.2 Microwave Heating Vis-à-Vis Conventional Heating 3.1.3 Effect of Solvents in Microwave Synthesis 3.1.4 Microwave-Assisted Hydro/Solvothermal Synthesis 3.2 Components of a Microwave Reactor 3.2.1 Power Source 3.2.2 Waveguide 3.2.3 Oven Cavity 3.2.4 Reaction Vessel 3.3 Synthesis of Nanostructures Using Microwave 3.3.1 Metals, Non-metals, and Alloys 3.3.2 Metal Oxides 3.3.3 Metal Chalcogenides 3.3.4 Inorganic Biomaterials 3.3.5 Miscellaneous Compounds 3.3.6 Inorganic–Inorganic Nanocomposites 3.3.7 Inorganic–Organic Nanocomposites 3.4 Safety Precautions While Using Microwaves 3.5 Conclusions and Future Prospects References 4 Sonochemical Synthesis of Inorganic Nanomaterials Abstract 4.1 Introduction 4.1.1 Principle of Sonochemistry 4.1.2 Effect of Ultrasound on Chemical Reaction 4.1.3 Effect of Various Parameters on Sonochemical Synthesis 4.2 Design of Ultrasonic Reactors 4.2.1 Ultrasonication Bath 4.2.2 Ultrasonication Probe 4.2.3 Batch Flow and Continuous Flow Ultrasonicators 4.3 Synthesis of Nanostructures Using High Intensity Ultrasound 4.3.1 Metals, Non-metals and Alloys 4.3.2 Metal Oxides 4.3.3 Metal Chalcogenides 4.3.4 Metal Carbides 4.3.5 Surface Deposition 4.3.6 Inorganic–Polymer Nanocomposites 4.4 Ultrasonic Spray Pyrolysis 4.5 Conclusions and Future Prospects References 5 Hydrothermal Method for Synthesis of Materials Abstract 5.1 Introduction 5.1.1 Role of Water as Medium 5.2 Synthesis of Different Types of Materials 5.3 Hydrothermal Synthesis of Metal Oxide Nanoparticles 5.4 Hydrothermal Synthesis of Semiconducting Nanoparticles 5.4.1 Direct Hydrothermal Synthesis Methods 5.4.2 Organic Additive-Assisted Synthesis 5.4.3 Template-Assisted Synthesis 5.5 Microwave-Assisted Hydrothermal Synthesis 5.6 Continuous Hydrothermal Flow Synthesis 5.7 Conclusions References 6 Synthesis of Materials Under High Pressure Abstract 6.1 Introduction 6.2 Brief Historical Picture on High Pressure Effects on Physical and Chemical Processes 6.3 General Expected Features of Materials Prepared Under HP-HT Conditions 6.4 Experimental Methods and Instrumentations 6.4.1 Pressure 6.4.2 Pressure Generation 6.4.3 Pressure Transducer 6.4.4 Generation of Temperature Under Pressure 6.4.5 Pressure and Temperature Measurements 6.5 Synthesis Under High Pressure and/or High Temperature 6.5.1 Synthesis of Artificial Diamond 6.5.2 Synthesis of Superhard Materials 6.5.3 Compounds with Atoms of Inert Gas and Molecular Gas 6.5.4 N2 Molecules Under Pressure and Temperature 6.5.5 O2 Molecules Under Pressure and Temperature 6.5.6 CO2 Molecule Under Pressure and Temperature 6.5.7 Synthesis of Structures with Unusual Coordination 6.5.7.1 Perovskites 6.5.7.2 Pyrochlore Type Materials 6.5.8 Metastable ABX4 Type Compounds 6.5.9 Other Miscellaneous Metastable Phases 6.6 Summary References 7 Synthesis of Metallic Materials by Arc Melting Technique Abstract 7.1 Introduction 7.2 Arc Melting Method 7.2.1 Physics of Arc Generation 7.2.2 Utilization of Electric Arc as a Source of Heat 7.3 Examples of Arc Melting Furnaces 7.3.1 Laboratory DC Arc Melting Furnace 7.3.2 Melt-Casting by Arc Melting Method 7.3.3 Graphite Arc Furnace 7.3.4 Consumable Electrode Vacuum Arc Re-melting Method 7.4 Advantages of Arc Melting Method 7.5 Limitations of DC Arc Melting Method 7.6 Examples (Alloy Preparation by Laboratory Arc Melting Technique) 7.6.1 Preparation of Ti2CrV Alloy 7.6.2 Preparation of Metallic Alloy Nuclear Fuels 7.7 Conclusions References 8 Synthesis of Materials by Induction Heating Abstract 8.1 Introduction 8.2 Principle of Induction Heating 8.2.1 Factors Affecting Induction Heating 8.3 Construction of Induction Heater 8.3.1 Power Supply Unit 8.3.2 Induction Coil 8.3.3 Heating Element 8.3.4 Chiller Unit 8.3.5 Temperature Measurement 8.4 Advantages of Induction Heating 8.5 Applications of Inductive Heating 8.5.1 Synthesis of Alloys and Intermetallic Phases 8.5.2 Induction Process in Material Processing 8.5.2.1 Welding of Thermoplastic Composite 8.5.3 Thermoset Curing 8.5.4 Selective Heating 8.6 Summary References 9 Synthesis Strategy for Functional Glasses and Glass-Ceramics Abstract 9.1 Introduction 9.1.1 Origin of Glass and Glass-Ceramics 9.1.2 General Properties of Glass and Glass-Ceramics 9.1.3 Functional Glasses and Glass-Ceramics 9.2 Different Types of Functional Glasses and Glass-Ceramics 9.2.1 Oxide-Based Glasses 9.2.2 Non-oxide-Based Glasses 9.3 Different Routes for Synthesis of Glass 9.3.1 Thermal Evaporation 9.3.2 Sputtering 9.3.3 Glow Discharge Decomposition 9.3.4 Melt-Quench Technique 9.3.5 Sol-Gel Method 9.3.6 Electrolytic Deposition 9.3.7 Radiation Bombardment 9.4 Different Routes for Synthesis of Glass-Ceramics 9.5 Thermodynamic and Kinetic Aspects of Glass Synthesis 9.6 Kinetics of In Situ Crystallization 9.7 Structural Aspects of Glasses and Glass-Ceramics 9.8 Characterization Techniques 9.8.1 Structural Analysis 9.8.2 Thermo-Physical Analysis 9.9 Application of Glasses and Glass-Ceramics 9.10 Summary Acknowledgements References 10 Synthesis of Materials by Ion Exchange Process: A Mild Yet Very Versatile Tool Abstract 10.1 Introduction 10.1.1 History of Ion Exchange Process 10.2 Physico-Chemical Description of Ion-Exchange Process 10.3 Thermodynamics and Kinetics Concept of Ion Exchange 10.4 Utilizing Ion Exchange Reactions as Synthesis Process 10.4.1 By Providing a Heterogeneous Medium Wherein the Desired Product Can Be Easily Separated in a One Pot-Synthesis from by-Products Without Much Reaction Work-Up 10.4.2 The Synthesis of Novel/New Phases of Technologically Important Compounds 10.5 Methodology of Ion exchange Reaction 10.6 Layered Compounds and Ion Exchange 10.7 Synthesis by Ion-Exchange for Nano-Materials 10.8 Conclusion References 11 Polyol Method for Synthesis of Nanomaterials Abstract 11.1 Introduction 11.2 Polyol Synthesis of Monometallic Nanoparticles 11.2.1 Noble Nano-metals 11.2.2 Less Noble Nano-metals 11.3 Synthesis of Multi-metallic Nanoparticles 11.3.1 Nanoalloys 11.3.2 Core–Shell Nanostructure 11.4 Synthesis of Nanostructured Metal Oxides 11.5 Synthesis of Nanostructured Metal Chalcogenides 11.6 Synthesis of Metal Fluoride Nanoparticles 11.7 Conclusions and Future Scope References 12 Synthesis of Nanostructured Materials by Thermolysis Abstract 12.1 Introduction 12.1.1 Types of Solvents 12.1.2 Polar or Hydrophilic Solvents 12.1.3 Non-polar or Hydrophobic Solvents 12.2 Polyol Synthesis Route 12.2.1 Metal NPs 12.2.2 Metal Alloys 12.2.3 Metal Oxides 12.2.4 Core@Shell Nanomaterials 12.2.5 Carbon Dots 12.3 Microwave Synthesis (MW) Route 12.3.1 Principle Behind MW Heating 12.3.2 Conventional Versus MW Heating Process 12.3.3 MW Effect on Rate of Reaction 12.3.4 Synthesis of Metal NPs 12.3.5 Metal Oxides 12.3.6 Metal Chalocogenides 12.3.7 Core@Shell Structure 12.3.8 Hollow-Type Structure 12.4 Hydro- and/or Solvothermal Approach 12.4.1 Synthesis of Nanomaterials via Hydrothermal and/or Solvothermal Approaches 12.4.2 Metal Oxides NPs 12.4.3 Hydrothermal Treatment for Hollow Structures 12.4.4 Metal Nano-particles Synthesis via Hydro/SolvoThermal Routes 12.4.5 Metal Organic Framework (MOF) NPs 12.5 Sonochemical Synthesis 12.5.1 Metal NPs Synthesis via SonoChemical Route 12.5.2 Metal Chalcogenides 12.5.3 Metal Carbides 12.5.4 Bimetallic NPs/Metal Alloys/Metal Composites 12.5.5 Metal Oxide NPs 12.5.6 Sonochemical Preparation of Hollow and Layered Structures 12.5.7 Sonochemical Preparation of Protein and Polymer Pano and Microstructures 12.5.8 Core @Shell Nanomaterials 12.5.9 Ultrasonic Pyrolysis (USP) 12.6 Conclusions and Future Prospects Acknowledgements References 13 Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications Abstract 13.1 Introduction 13.2 Basic Concepts 13.2.1 Kinetics of the Hot Injection Method 13.2.2 Ostwald Ripening Process 13.2.3 Growth Mechanism 13.2.4 Quantum Dots and Quantum Confinement 13.2.5 Use of the Surfactants for Nanoparticle Synthesis 13.2.6 Difference Between Hot Injection and Other Methods to Prepare Monodispersed Nanoparticles 13.3 Advantages and Disadvantages of Hot Injection Method 13.4 Nanoparticles Synthesized by the Hot Injection Method 13.4.1 Metallic Nanoparticles 13.4.1.1 Silver (Ag) Nanoparticles 13.4.1.2 Gold (Au) Nanoparticles 13.4.2 Magnetic Nanoparticles 13.4.2.1 Cobalt (Co) Particles 13.4.2.2 FePt and FePd Nanoparticles 13.4.2.3 Ferrite (AB2O4) Nanoparticles 13.4.3 Optical Nanoparticles 13.4.3.1 CdSe Nanoparticles 13.4.3.2 PbSe and PbS Nanoparticles 13.4.3.3 CuSe Nanoparticles 13.4.3.4 SnS2 Nanoparticles 13.4.3.5 FeS2 Nanoparticles 13.4.3.6 CuInS2 Nanocrystals 13.4.3.7 Cu2SnSe3 Nanoparticles 13.4.3.8 Cu2ZnSnS4 · (CZTS) Nanocrystals 13.4.3.9 Cu2NiSnS4 Nanoparticles 13.5 Applications of the Hot Injection Synthesized Nanoparticles 13.5.1 Solar Cells 13.5.2 High-Density Data Storage Devices 13.5.3 Laser Devices and Optical Telecommunications 13.5.4 Photodetectors 13.5.5 Biomaterials 13.5.6 Imaging, Labeling and Sensing 13.5.7 Catalysis 13.5.8 Thermoelectric Devices 13.6 Conclusions Acknowledgements References 14 Synthesis of Advanced Materials by Electrochemical Methods Abstract 14.1 Introduction 14.2 Electrochemical Synthesis of Conducting Polymers 14.3 Electrochemical Synthesis of Metal Nanoparticles 14.4 Electrochemical Synthesis of Semiconductors 14.5 Electrochemical Synthesis of Graphene-Based Materials 14.6 Electrochemical Synthesis of Highly Ordered Nanoporous Anodic Aluminium Oxide (AAO) Templates 14.7 Electrochemical Synthesis of Transition Metal Hexacyanometallates Based Metal-Organic Frameworks (MOFs) 14.8 Electrochemical Synthesis Organic Compounds from CO2 by Electroreduction of CO2 14.9 Concluding Remarks References 15 Synthesis of Advanced Inorganic Materials Through Molecular Precursors Abstract 15.1 Introduction 15.2 Advanced Materials Through Molecular Precursor Route 15.2.1 Multiple Source Molecular Precursor (MSMP) Method 15.2.1.1 Criteria for the Reactants 15.2.1.2 Role and Criteria for Surfactants / Passivating Agents 15.2.2 Single Source Molecular Precursor (SSMP) Method 15.2.2.1 Criteria for Selection of SSMP 15.2.2.2 Design and Synthesis of Single Source Molecular Precursor 15.2.2.3 Reaction Pathways for the Decomposition of SSMP 15.3 Classification of Molecular Precursor Method Based on Mode of Synthesis 15.3.1 Hot Injection and Heat-Up Method 15.3.2 Hot-Injection Mechanism 15.3.3 Molecular Approach 15.3.4 Heat-Up Mechanism 15.4 Preparation of Advanced Materials Through Molecular Precursor Method 15.4.1 Preparation of Metal Nanoparticles 15.4.2 Preparation of Bimetallic Nanostructures 15.4.3 Preparation of Metal Oxide Nanostructures 15.4.4 Preparation of Metal Chalcogenides Nanostructures 15.5 Merits and Demerits of Molecular Precursor Method 15.6 Applications of Advanced Materials Prepared Through Molecular Precursor Method 15.6.1 Optoelectronic and Optical Applications 15.6.2 Biological and Health Care Applications 15.6.3 Catalysis and Chemical Sensors 15.6.4 Energy Conversion and Storage 15.7 Characterization Techniques 15.7.1 Nuclear Magnetic Resonance (NMR) 15.7.2 Single Crystal X-ray Diffraction (SCXD) 15.7.3 Thermogravimetry 15.7.4 Massspectrometry 15.8 Conclusions and Future Prospective References 16 Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF) Abstract 16.1 Introduction 16.1.1 Classification of Porous Materials 16.1.1.1 Depending upon the Pore Size 16.1.1.2 Depending upon the Building Block Framework 16.2 Design and Synthesis Strategy 16.2.1 Synthetic Methods 16.2.1.1 Solvothermal Synthesis 16.2.1.2 Non-solvothermal Synthesis 16.2.1.3 Microwave-Assisted Synthesis 16.2.1.4 Mechanochemical Synthesis 16.2.1.5 Sonochemical Synthesis 16.2.1.6 Electrochemical Synthesis 16.2.1.7 Ionothermal Synthesis 16.2.1.8 Synthesis of Mono Layers on Surface 16.2.1.9 Interfacial Synthesis Synthesis via Precursor Approach 16.2.2 Methods for Post-Synthetic Functionalization of MOFs 16.2.3 Activation 16.3 Application of MOFs and COFs 16.3.1 Gas Storage Application 16.3.1.1 Hydrogen Storage 16.3.1.2 CH4 Storage 16.3.1.3 CO2 Storage 16.3.1.4 Ammonia Storage 16.3.2 Heterogeneous Catalysis 16.3.3 Energy Storage 16.3.4 Drug Delivery 16.3.5 Separation 16.3.6 Chemical Sensors 16.3.7 Optoelectronics 16.4 Conclusions References 17 Green Chemistry Approach for Synthesis of Materials Abstract 17.1 Introduction 17.2 Application in Synthesis of Advanced Materials 17.2.1 Pharmaceuticals 17.2.2 Textiles 17.2.3 Biofuel 17.2.4 Nanomaterials 17.2.5 Drug Delivery 17.2.6 Synthesis of Dyes 17.2.7 Synthesis of Liquid Crystals 17.2.8 Fluoropolymers Synthesis 17.3 Conclusions References 18 Bio-inspired Synthesis of Nanomaterials Abstract 18.1 Introduction 18.2 Overview of Biogenic Synthesis 18.3 General Mechanism of Biogenic Synthesis of Nanoparticles 18.4 Nanoparticle Synthesis Using Plant Extract 18.5 Nanomaterials Using Biowastes 18.6 Microbial Synthesis of Nanoparticles 18.6.1 Bacteria Mediated Synthesis of Nanoparticles 18.6.2 Actinomycetes Mediated Synthesis of Nanoparticles 18.6.3 Algae Mediated Synthesis of Nanoparticles 18.6.4 Fungi Mediated Synthesis of Nanoparticles 18.6.5 Yeast Mediated Synthesis of Nanoparticles 18.6.6 Virus Based Synthesis of Nanoparticles 18.7 Template Bound Biomimetic Approach 18.8 Hurdles in Biogenic Synthesis 18.9 Summary 18.10 Future Scope References 19 Photo- and Radiation-Induced Synthesis of Nanomaterials Abstract 19.1 Introduction 19.1.1 Synthesis Methods 19.1.2 Nanomaterials 19.2 Photochemical Synthesis of Nanomaterials 19.2.1 Photochemical Synthesis of UO2 Nanoparticles in Aqueous Solutions 19.2.2 Photochemical Synthesis of Starch Capped CdSe Quantum Dots in Aqueous Solution 19.2.3 Photochemical Synthesis of Metal Nanoparticles 19.3 Radiation Chemical Synthesis of Nanomaterials 19.3.1 Radiolytic Synthesis of UO2 Nanoparticles in Aqueous Solutions 19.3.2 Radiolytic Synthesis of CdSe Nanoparticles in Aqueous Solutions 19.3.3 Radiation Chemical Synthesis of Metal Nanoparticles 19.4 Limitations of Photochemical and Radiation Chemical Synthesis 19.5 Conclusions and Future Scope References 20 Mechanochemistry: Synthesis that Uses Force Abstract 20.1 Introduction 20.1.1 What Is Mechanochemistry? 20.2 Equipments Used: Tools of the Trade 20.3 History of Mechanochemical Synthesis 20.4 Effects of Mechanical Force on Materials? 20.4.1 Phase Transformations Caused by Mechanochemical Force 20.5 Modifications of Mechanochemistry 20.6 Examples Of Different Classes of Functional Compounds Synthesized by Mechanochemical Synthesis 20.6.1 Synthesis of Oxides 20.6.1.1 Oxide-Based Composites 20.6.1.2 Porous Oxide 20.6.2 Synthesis of Chalcogenides 20.6.2.1 Pristine/Phase Pure Chalcogenides 20.6.2.2 Composites of Chalcogenides 20.6.3 Mechanochemistry for Organic Synthesis 20.6.4 Polymer Synthesis 20.6.5 Synthesis of Porous Materials 20.6.5.1 Porous Carbon 20.6.6 Synthesis of Metal–Organic Frameworks 20.6.7 Synthesis of Catalysts 20.6.8 Graphene-Based Materials 20.7 Limitations of Mechanochemical Route of Synthesis 20.8 Conclusion and Outlook References 498732_1_En_BookFrontmatter_OnlinePDF.pdf Series Editor’s Preface Preface Contents About the Editors