ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook on Synthesis Strategies for Advanced Materials, Volume-I: Techniques and Fundamentals

دانلود کتاب کتاب راهبردهای سنتز برای مواد پیشرفته، جلد اول: تکنیک ها و مبانی

Handbook on Synthesis Strategies for Advanced Materials, Volume-I: Techniques and Fundamentals

مشخصات کتاب

Handbook on Synthesis Strategies for Advanced Materials, Volume-I: Techniques and Fundamentals

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9789811618062, 9789811618079 
ناشر:  
سال نشر: 2021 
تعداد صفحات: 691 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Handbook on Synthesis Strategies for Advanced Materials, Volume-I: Techniques and Fundamentals به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهبردهای سنتز برای مواد پیشرفته، جلد اول: تکنیک ها و مبانی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کتاب راهبردهای سنتز برای مواد پیشرفته، جلد اول: تکنیک ها و مبانی

این کتاب پوشش پیشرفته سنتز مواد کاربردی پیشرفته را ارائه می دهد. مسیرهای مصنوعی نامتعارف نقش مهمی در سنتز مواد پیشرفته ایفا می‌کنند، زیرا بسیاری از مواد جدید غیرپایدار هستند و نمی‌توانند با روش‌های مرسوم سنتز شوند. این کتاب روش‌های مختلف سنتز مانند روش حالت جامد معمولی، روش احتراق، طیف وسیعی از روش‌های شیمیایی نرم، سنتز الگو، روش پیش‌ساز مولکولی، سنتز مایکروویو، روش سونوشیمیایی و سنتز فشار بالا را ارائه می‌کند. این یک مرور کلی از روش‌های سنتز ارائه می‌کند و مواد مختلفی از جمله سرامیک، فیلم، شیشه، مواد مبتنی بر کربن و مواد فلزی را پوشش می‌دهد. بسیاری از تکنیک‌ها برای پردازش و عامل‌سازی سطح نیز مورد بحث قرار گرفته‌اند. چندین جنبه مهندسی سنتز مواد نیز گنجانده شده است. مطالب این کتاب برای محققان و متخصصانی که در زمینه مواد و شیمی کار می کنند مفید است.


توضیحاتی درمورد کتاب به خارجی

This book presents state-of-the-art coverage of synthesis of advanced functional materials. Unconventional synthetic routes play an important role in the synthesis of advanced materials as many new materials are metastable and cannot be synthesized by conventional methods. This book presents various synthesis methods such as conventional solid-state method, combustion method, a range of soft chemical methods, template synthesis, molecular precursor method, microwave synthesis, sono-chemical method and high-pressure synthesis. It provides a comprehensive overview of synthesis methods and covers a variety of materials, including ceramics, films, glass, carbon-based, and metallic materials. Many techniques for processing and surface functionalization are also discussed. Several engineering aspects of materials synthesis are also included. The contents of this book are useful for researchers and professionals working in the areas of materials and chemistry.



فهرست مطالب

Series Editor’s Preface
Preface
Contents
About the Editors
1 Solid State Synthesis of Materials
	Abstract
	1.1 Introduction
		1.1.1 History and Background
		1.1.2 What Is Solid State Synthesis?
		1.1.3 Materials Synthesized by Solid State that Shaped up World of Materials: Rational and Serendipitous
	1.2 Concepts of Solid State Synthesis
		1.2.1 Different Types of Pestle–Mortars, Ball Mills, Grinding Media and Pellet Press
		1.2.2 Different Types of Heating Elements of Resistance Furnaces and Thermocouples
		1.2.3 Selection of Crucible Materials
		1.2.4 Selection of Reactants and Their Preheat Treatment
		1.2.5 Selection of Temperature, Heating/Cooling Rates, Intermittent Grindings and Atmosphere
		1.2.6 Mechanism of Solid State Reactions
		1.2.7 Basic Thermodynamics of Solid State Reactions: Enthalpy or Entropy Driven?
		1.2.8 Methods to Introduce Non-stoichiometry
		1.2.9 Solid Solutions (Substitutional, Interstitial)
			1.2.9.1 Tailoring of Magnetic Properties and Band Gap
			1.2.9.2 Tailoring of Dielectric Properties
			1.2.9.3 Tailoring of Ionic Conductivity
			1.2.9.4 Tailoring of Thermal Expansion Behaviour
	1.3 Different Variations of Solid State Synthesis
		1.3.1 Solid State Metathesis
		1.3.2 Microwave Solid State Synthesis
		1.3.3 Spark Plasma Sintering (SPS)
		1.3.4 Solid State Synthesis by Flux Route
		1.3.5 High-Pressure Synthesis
		1.3.6 Precursor Routes
	1.4 Specific Classes of Materials Synthesized by Solid State Route
		1.4.1 Synthesis of Fluorite-Based Materials
		1.4.2 Synthesis of Pyrochlores
		1.4.3 Synthesis of Perovskite-Based Materials
		1.4.4 Layered Perovskites
			1.4.4.1 Ruddlesden–Popper (R-P) Phase
			1.4.4.2 Aurivillius Phase
			1.4.4.3 Dion–Jacobson (D-J) Phase
			1.4.4.4 Brownmillerite Structure
		1.4.5 Spinel Structure
		1.4.6 Hexaferrite Synthesis
		1.4.7 Tungsten Bronze
		1.4.8 High Tc Oxides
		1.4.9 GMR Materials
		1.4.10 Energy Storage Materials
		1.4.11 Negative Thermal Expansion Materials
	1.5 Solid State Organic Synthesis
		1.5.1 Solid Phase Organic Synthesis Without Any Solvent
		1.5.2 Organic Synthesis Using a Solid Support
	1.6 Metastable Materials
		1.6.1 Typical Examples of Metastable Materials
		1.6.2 Origin for Metastability
		1.6.3 Synthesis of Metastable Materials
	1.7 Common Characterization Techniques
		1.7.1 X-ray Diffraction
		1.7.2 Thermal Techniques
	1.8 Merits and Demerits of Solid State Method
	1.9 Summary and Future Scope
	References
2 Combustion Synthesis: A Versatile Method for Functional Materials
	Abstract
	2.1 Introduction
	2.2 History
	2.3 Concepts of Combustion Synthesis
		2.3.1 Self-Propagating High-Temperature Synthesis (SHS) [9]
		2.3.2 Volume Combustion Synthesis (VCS) [9]
	2.4 Classical Combustion Reaction
		2.4.1 Metallothermic Combustion or Thermite Reduction [11]
		2.4.2 Sol–Gel Combustion
			2.4.2.1 Preparation of Fuel-Oxidant Precursor/Gel Formation
			2.4.2.2 Combustion of the Fuel-Oxidant Precursor or Auto-Ignition
	2.5 Oxidant in the Gel Combustion
		2.5.1 Desired Characteristic of Oxidants
	2.6 Fuel in the Gel Combustion
		2.6.1 Desired Characteristic of Fuel
			2.6.1.1 Glycine (NH2CH2COOH)
			2.6.1.2 Citric Acid (C6H8O7)
			2.6.1.3 Ascorbic Acid (C6H8O6) [17] and Tartaric Acid (C4H6O6) [18]
			2.6.1.4 Hydrazine Hydrate (N2H4·H2O) [19]
			2.6.1.5 Hexamethylene Tetramine ((CH2)6N4) (HMTA) [20]
			2.6.1.6 Aspartic Acid (C4H7NO4) [21] and Glutamic Acid (C5H9NO4) [22]
			2.6.1.7 Arginine (C6H14N4O2) [23]
			2.6.1.8 Tryptophan (C10H10N2O2) [24]
			2.6.1.9 Valine (C5H11NO2) [25] and Phenyl Alanine (C9H11NO2) [25]
			2.6.1.10 Urea (CH4N2O) and Dimethyl Urea (C3H8N2O) [25]
			2.6.1.11 Ethylene Diamine Tetra Acetic Acid (EDTA) (C10H16N2O8) [27]
	2.7 Role of Fuel
	2.8 Selection of Fuel
	2.9 Amount of Fuel
	2.10 Selection of Fuel to Oxidant Ratio
		2.10.1 Extreme Fuel-Deficient Gel-Combustion Reaction
		2.10.2 Fuel-Deficient Gel Combustion
		2.10.3 Stoichiometric Gel Combustion
		2.10.4 Slight Fuel Excess Gel-Combustion Reaction
		2.10.5 Extreme-Fuel Excess Gel-Combustion Reaction
	2.11 Selection of Reaction Vessels
	2.12 Role of PH
	2.13 Modified Gel-Combustion Method
	2.14 Precautions and Limitations
	2.15 Typical Examples of Materials Synthesized by Gel-Combustion Route
	2.16 Comparison of Solid-State Reaction and Combustion Reaction
	2.17 Merits and Demerits of Gel-Combustion Process
	2.18 Sinterability and Nanopowders
	2.19 Conclusions and Future Scope
	References
3 Microwave-Assisted Synthesis of Inorganic Nanomaterials
	Abstract
	3.1 Introduction
		3.1.1 Effect of Microwaves in Chemical Reaction
		3.1.2 Microwave Heating Vis-à-Vis Conventional Heating
		3.1.3 Effect of Solvents in Microwave Synthesis
		3.1.4 Microwave-Assisted Hydro/Solvothermal Synthesis
	3.2 Components of a Microwave Reactor
		3.2.1 Power Source
		3.2.2 Waveguide
		3.2.3 Oven Cavity
		3.2.4 Reaction Vessel
	3.3 Synthesis of Nanostructures Using Microwave
		3.3.1 Metals, Non-metals, and Alloys
		3.3.2 Metal Oxides
		3.3.3 Metal Chalcogenides
		3.3.4 Inorganic Biomaterials
		3.3.5 Miscellaneous Compounds
		3.3.6 Inorganic–Inorganic Nanocomposites
		3.3.7 Inorganic–Organic Nanocomposites
	3.4 Safety Precautions While Using Microwaves
	3.5 Conclusions and Future Prospects
	References
4 Sonochemical Synthesis of Inorganic Nanomaterials
	Abstract
	4.1 Introduction
		4.1.1 Principle of Sonochemistry
		4.1.2 Effect of Ultrasound on Chemical Reaction
		4.1.3 Effect of Various Parameters on Sonochemical Synthesis
	4.2 Design of Ultrasonic Reactors
		4.2.1 Ultrasonication Bath
		4.2.2 Ultrasonication Probe
		4.2.3 Batch Flow and Continuous Flow Ultrasonicators
	4.3 Synthesis of Nanostructures Using High Intensity Ultrasound
		4.3.1 Metals, Non-metals and Alloys
		4.3.2 Metal Oxides
		4.3.3 Metal Chalcogenides
		4.3.4 Metal Carbides
		4.3.5 Surface Deposition
		4.3.6 Inorganic–Polymer Nanocomposites
	4.4 Ultrasonic Spray Pyrolysis
	4.5 Conclusions and Future Prospects
	References
5 Hydrothermal Method for Synthesis of Materials
	Abstract
	5.1 Introduction
		5.1.1 Role of Water as Medium
	5.2 Synthesis of Different Types of Materials
	5.3 Hydrothermal Synthesis of Metal Oxide Nanoparticles
	5.4 Hydrothermal Synthesis of Semiconducting Nanoparticles
		5.4.1 Direct Hydrothermal Synthesis Methods
		5.4.2 Organic Additive-Assisted Synthesis
		5.4.3 Template-Assisted Synthesis
	5.5 Microwave-Assisted Hydrothermal Synthesis
	5.6 Continuous Hydrothermal Flow Synthesis
	5.7 Conclusions
	References
6 Synthesis of Materials Under High Pressure
	Abstract
	6.1 Introduction
	6.2 Brief Historical Picture on High Pressure Effects on Physical and Chemical Processes
	6.3 General Expected Features of Materials Prepared Under HP-HT Conditions
	6.4 Experimental Methods and Instrumentations
		6.4.1 Pressure
		6.4.2 Pressure Generation
		6.4.3 Pressure Transducer
		6.4.4 Generation of Temperature Under Pressure
		6.4.5 Pressure and Temperature Measurements
	6.5 Synthesis Under High Pressure and/or High Temperature
		6.5.1 Synthesis of Artificial Diamond
		6.5.2 Synthesis of Superhard Materials
		6.5.3 Compounds with Atoms of Inert Gas and Molecular Gas
		6.5.4 N2 Molecules Under Pressure and Temperature
		6.5.5 O2 Molecules Under Pressure and Temperature
		6.5.6 CO2 Molecule Under Pressure and Temperature
		6.5.7 Synthesis of Structures with Unusual Coordination
			6.5.7.1 Perovskites
			6.5.7.2 Pyrochlore Type Materials
		6.5.8 Metastable ABX4 Type Compounds
		6.5.9 Other Miscellaneous Metastable Phases
	6.6 Summary
	References
7 Synthesis of Metallic Materials by Arc Melting Technique
	Abstract
	7.1 Introduction
	7.2 Arc Melting Method
		7.2.1 Physics of Arc Generation
		7.2.2 Utilization of Electric Arc as a Source of Heat
	7.3 Examples of Arc Melting Furnaces
		7.3.1 Laboratory DC Arc Melting Furnace
		7.3.2 Melt-Casting by Arc Melting Method
		7.3.3 Graphite Arc Furnace
		7.3.4 Consumable Electrode Vacuum Arc Re-melting Method
	7.4 Advantages of Arc Melting Method
	7.5 Limitations of DC Arc Melting Method
	7.6 Examples (Alloy Preparation by Laboratory Arc Melting Technique)
		7.6.1 Preparation of Ti2CrV Alloy
		7.6.2 Preparation of Metallic Alloy Nuclear Fuels
	7.7 Conclusions
	References
8 Synthesis of Materials by Induction Heating
	Abstract
	8.1 Introduction
	8.2 Principle of Induction Heating
		8.2.1 Factors Affecting Induction Heating
	8.3 Construction of Induction Heater
		8.3.1 Power Supply Unit
		8.3.2 Induction Coil
		8.3.3 Heating Element
		8.3.4 Chiller Unit
		8.3.5 Temperature Measurement
	8.4 Advantages of Induction Heating
	8.5 Applications of Inductive Heating
		8.5.1 Synthesis of Alloys and Intermetallic Phases
		8.5.2 Induction Process in Material Processing
			8.5.2.1 Welding of Thermoplastic Composite
		8.5.3 Thermoset Curing
		8.5.4 Selective Heating
	8.6 Summary
	References
9 Synthesis Strategy for Functional Glasses and Glass-Ceramics
	Abstract
	9.1 Introduction
		9.1.1 Origin of Glass and Glass-Ceramics
		9.1.2 General Properties of Glass and Glass-Ceramics
		9.1.3 Functional Glasses and Glass-Ceramics
	9.2 Different Types of Functional Glasses and Glass-Ceramics
		9.2.1 Oxide-Based Glasses
		9.2.2 Non-oxide-Based Glasses
	9.3 Different Routes for Synthesis of Glass
		9.3.1 Thermal Evaporation
		9.3.2 Sputtering
		9.3.3 Glow Discharge Decomposition
		9.3.4 Melt-Quench Technique
		9.3.5 Sol-Gel Method
		9.3.6 Electrolytic Deposition
		9.3.7 Radiation Bombardment
	9.4 Different Routes for Synthesis of Glass-Ceramics
	9.5 Thermodynamic and Kinetic Aspects of Glass Synthesis
	9.6 Kinetics of In Situ Crystallization
	9.7 Structural Aspects of Glasses and Glass-Ceramics
	9.8 Characterization Techniques
		9.8.1 Structural Analysis
		9.8.2 Thermo-Physical Analysis
	9.9 Application of Glasses and Glass-Ceramics
	9.10 Summary
	Acknowledgements
	References
10 Synthesis of Materials by Ion Exchange Process: A Mild Yet Very Versatile Tool
	Abstract
	10.1 Introduction
		10.1.1 History of Ion Exchange Process
	10.2 Physico-Chemical Description of Ion-Exchange Process
	10.3 Thermodynamics and Kinetics Concept of Ion Exchange
	10.4 Utilizing Ion Exchange Reactions as Synthesis Process
		10.4.1 By Providing a Heterogeneous Medium Wherein the Desired Product Can Be Easily Separated in a One Pot-Synthesis from by-Products Without Much Reaction Work-Up
		10.4.2 The Synthesis of Novel/New Phases of Technologically Important Compounds
	10.5 Methodology of Ion exchange Reaction
	10.6 Layered Compounds and Ion Exchange
	10.7 Synthesis by Ion-Exchange for Nano-Materials
	10.8 Conclusion
	References
11 Polyol Method for Synthesis of Nanomaterials
	Abstract
	11.1 Introduction
	11.2 Polyol Synthesis of Monometallic Nanoparticles
		11.2.1 Noble Nano-metals
		11.2.2 Less Noble Nano-metals
	11.3 Synthesis of Multi-metallic Nanoparticles
		11.3.1 Nanoalloys
		11.3.2 Core–Shell Nanostructure
	11.4 Synthesis of Nanostructured Metal Oxides
	11.5 Synthesis of Nanostructured Metal Chalcogenides
	11.6 Synthesis of Metal Fluoride Nanoparticles
	11.7 Conclusions and Future Scope
	References
12 Synthesis of Nanostructured Materials by Thermolysis
	Abstract
	12.1 Introduction
		12.1.1 Types of Solvents
		12.1.2 Polar or Hydrophilic Solvents
		12.1.3 Non-polar or Hydrophobic Solvents
	12.2 Polyol Synthesis Route
		12.2.1 Metal NPs
		12.2.2 Metal Alloys
		12.2.3 Metal Oxides
		12.2.4 Core@Shell Nanomaterials
		12.2.5 Carbon Dots
	12.3 Microwave Synthesis (MW) Route
		12.3.1 Principle Behind MW Heating
		12.3.2 Conventional Versus MW Heating Process
		12.3.3 MW Effect on Rate of Reaction
		12.3.4 Synthesis of Metal NPs
		12.3.5 Metal Oxides
		12.3.6 Metal Chalocogenides
		12.3.7 Core@Shell Structure
		12.3.8 Hollow-Type Structure
	12.4 Hydro- and/or Solvothermal Approach
		12.4.1 Synthesis of Nanomaterials via Hydrothermal and/or Solvothermal Approaches
		12.4.2 Metal Oxides NPs
		12.4.3 Hydrothermal Treatment for Hollow Structures
		12.4.4 Metal Nano-particles Synthesis via Hydro/SolvoThermal Routes
		12.4.5 Metal Organic Framework (MOF) NPs
	12.5 Sonochemical Synthesis
		12.5.1 Metal NPs Synthesis via SonoChemical Route
		12.5.2 Metal Chalcogenides
		12.5.3 Metal Carbides
		12.5.4 Bimetallic NPs/Metal Alloys/Metal Composites
		12.5.5 Metal Oxide NPs
		12.5.6 Sonochemical Preparation of Hollow and Layered Structures
		12.5.7 Sonochemical Preparation of Protein and Polymer Pano and Microstructures
		12.5.8 Core @Shell Nanomaterials
		12.5.9 Ultrasonic Pyrolysis (USP)
	12.6 Conclusions and Future Prospects
	Acknowledgements
	References
13 Hot Injection Method for Nanoparticle Synthesis: Basic Concepts, Examples and Applications
	Abstract
	13.1 Introduction
	13.2 Basic Concepts
		13.2.1 Kinetics of the Hot Injection Method
		13.2.2 Ostwald Ripening Process
		13.2.3 Growth Mechanism
		13.2.4 Quantum Dots and Quantum Confinement
		13.2.5 Use of the Surfactants for Nanoparticle Synthesis
		13.2.6 Difference Between Hot Injection and Other Methods to Prepare Monodispersed Nanoparticles
	13.3 Advantages and Disadvantages of Hot Injection Method
	13.4 Nanoparticles Synthesized by the Hot Injection Method
		13.4.1 Metallic Nanoparticles
			13.4.1.1 Silver (Ag) Nanoparticles
			13.4.1.2 Gold (Au) Nanoparticles
		13.4.2 Magnetic Nanoparticles
			13.4.2.1 Cobalt (Co) Particles
			13.4.2.2 FePt and FePd Nanoparticles
			13.4.2.3 Ferrite (AB2O4) Nanoparticles
		13.4.3 Optical Nanoparticles
			13.4.3.1 CdSe Nanoparticles
			13.4.3.2 PbSe and PbS Nanoparticles
			13.4.3.3 CuSe Nanoparticles
			13.4.3.4 SnS2 Nanoparticles
			13.4.3.5 FeS2 Nanoparticles
			13.4.3.6 CuInS2 Nanocrystals
			13.4.3.7 Cu2SnSe3 Nanoparticles
			13.4.3.8 Cu2ZnSnS4 · (CZTS) Nanocrystals
			13.4.3.9 Cu2NiSnS4 Nanoparticles
	13.5 Applications of the Hot Injection Synthesized Nanoparticles
		13.5.1 Solar Cells
		13.5.2 High-Density Data Storage Devices
		13.5.3 Laser Devices and Optical Telecommunications
		13.5.4 Photodetectors
		13.5.5 Biomaterials
		13.5.6 Imaging, Labeling and Sensing
		13.5.7 Catalysis
		13.5.8 Thermoelectric Devices
	13.6 Conclusions
	Acknowledgements
	References
14 Synthesis of Advanced Materials by Electrochemical Methods
	Abstract
	14.1 Introduction
	14.2 Electrochemical Synthesis of Conducting Polymers
	14.3 Electrochemical Synthesis of Metal Nanoparticles
	14.4 Electrochemical Synthesis of Semiconductors
	14.5 Electrochemical Synthesis of Graphene-Based Materials
	14.6 Electrochemical Synthesis of Highly Ordered Nanoporous Anodic Aluminium Oxide (AAO) Templates
	14.7 Electrochemical Synthesis of Transition Metal Hexacyanometallates Based Metal-Organic Frameworks (MOFs)
	14.8 Electrochemical Synthesis Organic Compounds from CO2 by Electroreduction of CO2
	14.9 Concluding Remarks
	References
15 Synthesis of Advanced Inorganic Materials Through Molecular Precursors
	Abstract
	15.1 Introduction
	15.2 Advanced Materials Through Molecular Precursor Route
		15.2.1 Multiple Source Molecular Precursor (MSMP) Method
			15.2.1.1 Criteria for the Reactants
			15.2.1.2 Role and Criteria for Surfactants / Passivating Agents
		15.2.2 Single Source Molecular Precursor (SSMP) Method
			15.2.2.1 Criteria for Selection of SSMP
			15.2.2.2 Design and Synthesis of Single Source Molecular Precursor
			15.2.2.3 Reaction Pathways for the Decomposition of SSMP
	15.3 Classification of Molecular Precursor Method Based on Mode of Synthesis
		15.3.1 Hot Injection and Heat-Up Method
		15.3.2 Hot-Injection Mechanism
		15.3.3 Molecular Approach
		15.3.4 Heat-Up Mechanism
	15.4 Preparation of Advanced Materials Through Molecular Precursor Method
		15.4.1 Preparation of Metal Nanoparticles
		15.4.2 Preparation of Bimetallic Nanostructures
		15.4.3 Preparation of Metal Oxide Nanostructures
		15.4.4 Preparation of Metal Chalcogenides Nanostructures
	15.5 Merits and Demerits of Molecular Precursor Method
	15.6 Applications of Advanced Materials Prepared Through Molecular Precursor Method
		15.6.1 Optoelectronic and Optical Applications
		15.6.2 Biological and Health Care Applications
		15.6.3 Catalysis and Chemical Sensors
		15.6.4 Energy Conversion and Storage
	15.7 Characterization Techniques
		15.7.1 Nuclear Magnetic Resonance (NMR)
		15.7.2 Single Crystal X-ray Diffraction (SCXD)
		15.7.3 Thermogravimetry
		15.7.4 Massspectrometry
	15.8 Conclusions and Future Prospective
	References
16 Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF)
	Abstract
	16.1 Introduction
		16.1.1 Classification of Porous Materials
			16.1.1.1 Depending upon the Pore Size
			16.1.1.2 Depending upon the Building Block Framework
	16.2 Design and Synthesis Strategy
		16.2.1 Synthetic Methods
			16.2.1.1 Solvothermal Synthesis
			16.2.1.2 Non-solvothermal Synthesis
			16.2.1.3 Microwave-Assisted Synthesis
			16.2.1.4 Mechanochemical Synthesis
			16.2.1.5 Sonochemical Synthesis
			16.2.1.6 Electrochemical Synthesis
			16.2.1.7 Ionothermal Synthesis
			16.2.1.8 Synthesis of Mono Layers on Surface
			16.2.1.9 Interfacial Synthesis
				Synthesis via Precursor Approach
		16.2.2 Methods for Post-Synthetic Functionalization of MOFs
		16.2.3 Activation
	16.3 Application of MOFs and COFs
		16.3.1 Gas Storage Application
			16.3.1.1 Hydrogen Storage
			16.3.1.2 CH4 Storage
			16.3.1.3 CO2 Storage
			16.3.1.4 Ammonia Storage
		16.3.2 Heterogeneous Catalysis
		16.3.3 Energy Storage
		16.3.4 Drug Delivery
		16.3.5 Separation
		16.3.6 Chemical Sensors
		16.3.7 Optoelectronics
	16.4 Conclusions
	References
17 Green Chemistry Approach for Synthesis of Materials
	Abstract
	17.1 Introduction
	17.2 Application in Synthesis of Advanced Materials
		17.2.1 Pharmaceuticals
		17.2.2 Textiles
		17.2.3 Biofuel
		17.2.4 Nanomaterials
		17.2.5 Drug Delivery
		17.2.6 Synthesis of Dyes
		17.2.7 Synthesis of Liquid Crystals
		17.2.8 Fluoropolymers Synthesis
	17.3 Conclusions
	References
18 Bio-inspired Synthesis of Nanomaterials
	Abstract
	18.1 Introduction
	18.2 Overview of Biogenic Synthesis
	18.3 General Mechanism of Biogenic Synthesis of Nanoparticles
	18.4 Nanoparticle Synthesis Using Plant Extract
	18.5 Nanomaterials Using Biowastes
	18.6 Microbial Synthesis of Nanoparticles
		18.6.1 Bacteria Mediated Synthesis of Nanoparticles
		18.6.2 Actinomycetes Mediated Synthesis of Nanoparticles
		18.6.3 Algae Mediated Synthesis of Nanoparticles
		18.6.4 Fungi Mediated Synthesis of Nanoparticles
		18.6.5 Yeast Mediated Synthesis of Nanoparticles
		18.6.6 Virus Based Synthesis of Nanoparticles
	18.7 Template Bound Biomimetic Approach
	18.8 Hurdles in Biogenic Synthesis
	18.9 Summary
	18.10 Future Scope
	References
19 Photo- and Radiation-Induced Synthesis of Nanomaterials
	Abstract
	19.1 Introduction
		19.1.1 Synthesis Methods
		19.1.2 Nanomaterials
	19.2 Photochemical Synthesis of Nanomaterials
		19.2.1 Photochemical Synthesis of UO2 Nanoparticles in Aqueous Solutions
		19.2.2 Photochemical Synthesis of Starch Capped CdSe Quantum Dots in Aqueous Solution
		19.2.3 Photochemical Synthesis of Metal Nanoparticles
	19.3 Radiation Chemical Synthesis of Nanomaterials
		19.3.1 Radiolytic Synthesis of UO2 Nanoparticles in Aqueous Solutions
		19.3.2 Radiolytic Synthesis of CdSe Nanoparticles in Aqueous Solutions
		19.3.3 Radiation Chemical Synthesis of Metal Nanoparticles
	19.4 Limitations of Photochemical and Radiation Chemical Synthesis
	19.5 Conclusions and Future Scope
	References
20 Mechanochemistry: Synthesis that Uses Force
	Abstract
	20.1 Introduction
		20.1.1 What Is Mechanochemistry?
	20.2 Equipments Used: Tools of the Trade
	20.3 History of Mechanochemical Synthesis
	20.4 Effects of Mechanical Force on Materials?
		20.4.1 Phase Transformations Caused by Mechanochemical Force
	20.5 Modifications of Mechanochemistry
	20.6 Examples Of Different Classes of Functional Compounds Synthesized by Mechanochemical Synthesis
		20.6.1 Synthesis of Oxides
			20.6.1.1 Oxide-Based Composites
			20.6.1.2 Porous Oxide
		20.6.2 Synthesis of Chalcogenides
			20.6.2.1 Pristine/Phase Pure Chalcogenides
			20.6.2.2 Composites of Chalcogenides
		20.6.3 Mechanochemistry for Organic Synthesis
		20.6.4 Polymer Synthesis
		20.6.5 Synthesis of Porous Materials
			20.6.5.1 Porous Carbon
		20.6.6 Synthesis of Metal–Organic Frameworks
		20.6.7 Synthesis of Catalysts
		20.6.8 Graphene-Based Materials
	20.7 Limitations of Mechanochemical Route of Synthesis
	20.8 Conclusion and Outlook
	References
498732_1_En_BookFrontmatter_OnlinePDF.pdf
	Series Editor’s Preface
	Preface
	Contents
	About the Editors




نظرات کاربران