ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Handbook Of Analytical Instruments

دانلود کتاب کتاب راهنمای ابزارهای تحلیلی

Handbook Of Analytical Instruments

مشخصات کتاب

Handbook Of Analytical Instruments

ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 9789339221355 
ناشر: MC GRAW HILL INDIA 
سال نشر: 2015 
تعداد صفحات: 794 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Handbook Of Analytical Instruments به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کتاب راهنمای ابزارهای تحلیلی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Title
Contents
1. Fundamentals of Analytical Instruments
	1.1 Types of Chemical Analysis
		1.2 Elements of an Analytical Instrument
			1.3 Sensors and Transducers
				1.3.1 Classification of Transducers
				1.3.2 Performance Characteristics of Transducers
				1.3.3 Smart Sensors
			1.4 Signal Processing in Analytical Instruments
			1.5 Read Out (Display) Systems
				1.5.1 Analog Meters
				1.5.2 Digital Displays
				1.5.3 Laboratory Recorders
				1.5.4 Video Display Units
			1.6 Intelligent Analytical Instrumentation Systems
			1.7 PC-Based Analytical Instruments
			1.8 Mems in Analytical Instruments
			1.9 Micro-Fluidics in Analytical Instruments
		1.10 Methods of Analysis
			1.10.1 Types of Instrumental Methods
				1.10.2 Classification of Analytical Instruments
		1.11 Performance Requirements of Analytical Instruments
			1.11.1 Errors in Chemical Analysis
				1.11.2 Types of Errors
				1.11.3 Accuracy and Precision
				1.11.4 Significant Figures
				1.11.5 Application of Statistical Methods
				1.11.6 Signal-to-Noise Ratio
				1.11.7 Other Performance Parameters
		1.12 Instrument Calibration Techniques
			1.12.1 Calibration Curve Method
				1.12.2 Standard Addition Method
				1.12.3 Method of Internal Standard
		1.13 Validation
2. Colorimetres and Spectrophotometers (Visible – Ultraviolet)
	2.1 Absorption Spectroscopy
		2.1.1 Electromagnetic Radiation
			2.1.2 The Electromagnetic Spectrum
			2.1.3 Interaction of Radiation with Matter
		2.2 Laws Relating to Absorption of Radiation
			2.2.1 Lambert’s Law
			2.2.2 Beer’s Law
			2.2.3 The Beer-Lambert Law
			2.2.4 Deviations from Beer’s Law
			2.2.5 Quantitative Analysis
			2.2.6 Choice of Wavelength
			2.2.7 Simultaneous Spectrophotometric Determination
		2.3 Absorption Instruments
			2.3.1 Radiation Sources
			2.3.2 Optical Filters
			2.3.3 Monochromators
			2.3.4 Optical Components
			2.3.5 Photosensitive Detectors
			2.3.6 Slit Width
			2.3.7 Sample Holders
		2.4 Ultraviolet and Visible Absorption Spectroscopy
			2.4.1 Types of Absorption Instruments
		2.5 Colorimeters/Photometers
			2.5.1 Single-beam Filter Photometers
			2.5.2 Double-beam Filter Photometer
			2.5.3 Probe Type photometer
			2.5.4 Miniature Fibre Optic Spectrometer
			2.5.5 Multi-channel Photometer
			2.5.6 Pocket Colorimeter
			2.5.7 Process Photometers
		2.6 Spectrophotometers
			2.6.1 Single Beam Spectro-Colorimeters/Spectrophotometers
			2.6.2 Double-Beam Spectrophotometers
			2.6.3 Microprocessor-Based Spectrophotometers
			2.6.4 High Performance Spectrophotometers
			2.6.5 Dual Wavelength Spectrophotometer
			2.6.6 Scanning Spectrophotometers
			2.6.7 The Derivative Technique
		2.7 Sources of Error in Spectrophotometric Measurements
			2.7.1 Instrument-related Errors
			2.7.2 Non Instrumental Errors
		2.8 Calibration
3. Infrared Spectrophotometers
	3.1 IR Spectroscopy
		3.2 Basic Components of IR Spectrophotometers
			3.2.1 Radiation Sources
			3.2.2 Monochromators
			3.2.3 Entrance and Exit Slits
			3.2.4 Mirrors
			3.2.5 Detectors
		3.3 Types of IR Spectrophotometers
			3.3.1 Optical Null Method
			3.3.2 Ratio Recording Method
		3.4 Sample Handling Techniques
			3.4.1 Gas Cells
			3.4.2 Liquid Cells
			3.4.3 Variable Path Length Cells
			3.4.4 Sampling of Solids
			3.4.5 Micro-sampling
		3.5 Fourier Transform Infrared Spectroscopy
			3.5.1 FTIR spectrometers
			3.5.2 Major Components of FTIR Spectrophotometer
			3.5.3 Advantages of FTIR
		3.6 Calibration
		3.7 Attenuated Total Reflectance Technique
4. Flame Photometers
	4.1 Principle of Flame Photometry
		4.2 Basic Flame Photometer
		4.3 Constructional Details of Flame Photometers
			4.3.1 Emission System
			4.3.2 Optical System
			4.3.3 Photosensitive Detectors
			4.3.4 Recording System
		4.4 Clinical Flame Photometers
		4.5 Accessories For Flame Photometer
		4.6 Expression of Concentration
		4.7 Interferences in Flame Photometry
			4.7.1 Flame Background Emission
			4.7.2 Direct Spectral Interference
			4.7.3 Self-Absorption
			4.7.4 Effect of Anions
			4.7.5 Effect of Ionisation
			4.7.6 Solution Characteristics
		4.8 Procedure For Determinations
			4.8.1 Calibration Curve Method
			4.8.2 Internal Standard Method
5. Atomic Absorption and Emission Spectrophotometers
	5.1 Atomic Spectroscopy
		5.2 Atomic Absorption Spectroscopy
		5.3 Atomic Absorption Instrumentation
			5.3.1 Radiation Sources
			5.3.2 Burners and Flames
			5.3.3 Graphite Furnace for Atomization
			5.3.4 Optical System
			5.3.5 Electronic System
			5.3.6 Sampling System
		5.4 Atomic Emission Spectroscopy
		5.5 Atomic Emission Spectrophotometer
		5.6 Plasma Excitation Sources
			5.6.1 Direct Current Plasma (DCP)
			5.6.2 Inductively Coupled Plasma (ICP)
			5.6.3 Microwave-Induced Plasma (MIP)
		5.7 Performance Aspects
		5.8 Sources of Interferences
			5.8.1 Anionic Interference
			5.8.2 Viscosity Interference
			5.8.3 Ionization Interference
			5.8.4 Broadening of Spectral Line
6. Fluorimeters and Phosphorimeters
	6.1 Photoluminescence Spectroscopy
		6.2 Fluorescence Spectroscopy
		6.3 Principle of Fluorescence
			6.3.1 Relationship Between Concentration and Fluorescence Intensity
			6.3.2 Advantages of Fluorescence Technique
		6.4 Measurement of Fluorescence
			6.4.1 Single-Beam Filter Fluorimeter
			6.4.2 Double-Beam Filter Fluorimeter
			6.4.3 Ratio Fluorimeters
		6.5 Spectrofluorimeters
		6.6 Microprocessor-Based Spectrofluorometer
			6.6.1 PerkinElmer Fluorescence Spectrometer Model LS-3
		6.7 Measurement of Phosphorescence
			6.7.1 Phosphorescence Spectrometer
7. Raman Spectrometer
	7.1 The Raman Effect
		7.2 Raman Spectrometer
			7.2.1 The Source
			7.2.2 Sample Chamber
			7.2.3 The Spectrometer
			7.2.4 The Detector
			7.2.5 Computer
		7.3 PC-Based Raman Spectrometer
		7.4 FT Raman Spectrometer
		7.5 Infrared and Raman Microspectrometry
8. Photoacoustic and Photothermal Spectrometers
	8.1 Photoacoustic Spectroscopy
		8.1.1 System Components
			8.1.2 Typical Photoacoustic Spectrometers
			8.1.3 FTIR Photoacoustic Spectroscopy
		8.2 Photothermal Spectroscopy
			8.2.1 Excitation Sources
			8.2.2 Basic Processes in Photothermal Spectroscopy
			8.2.3 Photothermal Instrumentation
9. Mass Spectrometers
	9.1 Basic Mass Spectrometer
		9.2 Principle of Operation
		9.3 Types of Mass Spectrometers
			9.3.1 Magnetic Deflection Mass Spectrometer
			9.3.2 The Time-of-Flight Mass Spectrometer
			9.3.3 Radio Frequency Mass Spectrometer
			9.3.4 Quadrupole Mass Spectrometer
		9.4 Components of a Mass Spectrometer
			9.4.1 The Inlet Sample System
			9.4.2 Ion Sources
			9.4.3 Electrostatic Accelerating System
			9.4.4 Ion Detectors and Recording of Mass Spectrograph
			9.4.5 Vacuum System
		9.5 Inductively Coupled Plasma Mass Spectrometer
		9.6 Trapped Ion Mass Analyzers
		9.7 Quadrupole Ion Trap Mass Spectrometer
		9.8 Fourier Transform Mass Spectrometry (FT-MS)
			9.8.1 Ion Cyclotron Resonance (ICR) Mass Spectrometery
			9.8.2 Orbitrap Mass Spectrometry
		9.9 Tandem Mass Spectrometry (MS/MS)
	9.10 Resolution in Mass Spectrometry
	9.11 Applications of Mass Spectrometry
10. Nuclear Magnetic Resonance Spectrometer
	10.1 Nuclear Magnetic Resonance Spectroscopy
		10.2 Principle of NMR
			10.2.1 Nuclear Spin
				10.2.2 Nuclear Energy Levels
					10.2.3 Resonance Conditions
					10.2.4 NMR Absorption Spectra
					10.2.5 Relaxation Process
					10.2.6 The Chemical Shift
			10.3 Types of NMR Spectrometers
				10.3.1 Continuous-Wave NMR Spectroscopy
					10.3.2 Fourier Transform NMR Spectroscopy
			10.4 Constructional Details of NMR Spectrometer
				10.4.1 Magnetic Field
					10.4.2 The Radio-Frequency Transmitter
					10.4.3 The Signal Amplifier and Detector
					10.4.4 The Display System
					10.4.5 Data Display and Record
					10.4.6 The Sample Holder
			10.5 Computer Controlled NMR Spectrometer
			10.6 Sensitivity Enhancement for Analytical NMR Spectroscopy
			10.7 Spin Decoupler
			10.8 Fourier Transform NMR Spectroscopy
11. Electron Spin Resonance Spectrometers
	11.1 Electron Spin Resonance
		11.2 Basic ESR Spectrometer
			11.3 Components of an ESR Spectrometer
				11.3.1 The Magnet and the Magnetic Field Controller
					11.3.2 Microwave Bridge
					11.3.3 Modulation Unit
					11.3.4 Detection Methods
					11.3.5 Recorder
					11.3.6 Oscilloscope
					11.3.7 Sample Cavities
					11.3.8 Sample Cells
12. Electron and Ion Spectroscopy
	12.1 Surface Spectroscopic Techniques
		12.2 Electron Spectroscopy
			12.2.1 Electron Spectroscopy for Chemical Analysis (ESCA)
				12.2.2 Auger Electron Spectroscopy (AES)
			12.3 Instrumentation for Electron Spectroscopy
				12.3.1 Radiation Sources
					12.3.2 Energy Analysers
					12.3.3 Electron Detectors
					12.3.4 Read-Out System
					12.3.5 Vacuum Systems
					12.3.6 Magnetic Shielding
					12.3.7 Sample Handling
			12.4 ION Spectroscopy
				12.4.1 Instrumentation for Ion Spectroscopy
13. Scanning Electron Microscope
	13.1 Background
		13.1.1 Optical vs. Electron Microscope
			13.2 Scanning Electron Microscope (SEM)
			13.3 Types of Signals in SEM
			13.4 Components of SEM
				13.4.1 Electron Beam Generator
					13.4.2 Electron Lenses
					13.4.3 Focus and Alignment:
					13.4.4 Accelerating Voltage
					13.4.5 Detectors
					13.4.6 Display
					13.4.7 The Vacuum System
			13.5 Digital SEM
			13.6 Scanning Transmission Electron Microscopy (STEM)
14. Scanning Probe Microscopes
	14.1 Scanning Probe Microscopy
		14.2 Scanning Tunnelling Microscope (STM)
			14.2.1 Principle of STM
				14.2.2 Components of STM
					14.2.3 Requirements of Various Components
					14.2.4 Electronic Circuit
					14.2.5 Modes of Operation
					14.2.6 Applications of Scanning Tunnelling Microscopy
			14.3 Atomic Force Microscope
				14.3.1 What Is Atomic Force Microscopy?
					14.3.2 Components of AFM
					14.3.3 Modes of AFM
					14.3.4 Magnification of AFM
					14.3.5 Resolution in an AFM
					14.3.6 Applications of AFM
15. Radiochemical Instruments
	15.1 Fundamentals of Radiochemical Methods
		15.1.1 Time Decay of Radioactive Isotopes
			15.1.2 Units or Radioactivity
				15.1.3 Types and Properties of Particles Emitted in Radioactive Decay
					15.1.4 Interaction of Radiations with Matter
			15.2 Radiation Detectors
				15.2.1 Ionisation Chamber
					15.2.2 Geiger-Muller Counter
					15.2.3 Proportional Counter
			15.3 Pulse Height Analyser
			15.4 Scintillation Counter
			15.5 Gamma Counters
				15.5.1 Semiconductor Detectors
			15.6 Liquid Scintillation Counters
			15.7 Gamma Spectrometry
			15.8 Neutron Activation Analysis Instruments
				15.8.1 Neutron Activation Analysis
					15.8.2 Principle of Neutron Activation
					15.8.3 Neutron Sources
					15.8.4 Instrumentation for Neutron Activation Analysis
16. X-Ray Spectrometers
	16.1 X-Ray Spectrum
		16.2 Instrumentation for X-Ray Spectrometry
			16.2.1 X-Ray Generating Equipment
				16.2.2 Collimators
					16.2.3 Monochromators
					16.2.4 X-ray Detectors
			16.3 X-Ray Diffractometers
				16.3.1 Diffraction and Bragg’s Law
			16.4 X-Ray Absorption Meter
			16.5 X-Ray Fluorescence Spectrometry
				16.5.1 X-Ray Fluorescent Spectrometer
					16.5.2 Total Reflection X-Ray Fluorescence Spectrometer
			16.6 Electron Probe Micro-Analyser
17. Gas Chromatographs
	17.1 Chromatography
		17.2 Basic Definitions
			17.2.1 Retention Time (tR)
				17.2.2 Dead Time (tm)
					17.2.3 Adjusted Retention Time (tR’)
					17.2.4 Capacity Factor (or Partition Ratio) (k’)
					17.2.5 Phase Ratio (b )
					17.2.6 Distribution Constant (KD)
					17.2.7 Selectivity (or Separation Factor) (a)
					17.2.8 Linear Velocity (u)
					17.2.9 Efficiency
			17.3 Gas Chromatography
			17.4 Basic Parts of a Gas Chromatograph
				17.4.1 Carrier Gas Supply or the Mobile Phase
					17.4.2 Sample Injection System and the Size of the Sample
					17.4.3 Chromatographic Column
					17.4.4 Thermal Compartment
					17.4.5 Detection Systems
					17.4.6 Recording Instruments
			17.5 Methods of Measurement of Peak Areas
			17.6 Gas Chromatograph-Mass Spectrometer (GC-MS)
			17.7 Gas Chromatography–Infrared Spectroscopy
18. Liquid Chromatographs
	18.1 Liquid Chromatography
		18.2 Types of Liquid Chromatography
			18.2.1 Column Chromatography
				18.2.2 Thin-Layer Chromatography
					18.2.3 Paper-Partition Chromatography
			18.3 High Pressure Liquid Chromatograph (HPLC)
				18.3.1 High-pressure Pump System
					18.3.2 Sample Injection System
					18.3.3 The Column
					18.3.4 Detection Systems
					18.3.5 Programmers and Readouts
			18.4 Liquid Chromatograph-Mass Spectrometer (LC/MS)
				18.4.1 Ion Sources
19. Automated Chemical Analysis Systems
	19.1 Why Automate Chemical Analysis?
		19.1.1 Basic Automatic Analysis System
			19.1.2 Types of Automatic Analysis Techniques
				19.1.3 Benefits of Automation in Chemical Analysis
			19.2 Automated Biochemical Analysis System
			19.3 Segmented-Flow System
				19.3.1 Sampling Unit
					19.3.2 The Proportioning Pump
					19.3.3 Manifolds
					19.3.4 Dialyser
					19.3.5 Heating Bath
					19.3.6 Measurement Techniques
					19.3.7 Signal Processing and Data Handling
			19.4 Flow Injection Analysis (FIA) Technique
				19.4.1 Propelling Unit
					19.4.2 Sample Injection System
					19.4.3 Transport System
			19.5 Semi-Automated Clinical Chemistry Analysers
			19.6 Lab-On-Chip Technology
			19.7 Dry Chemistry Clinical Analyser
20. Thermo-Analytical Instruments
	20.1 Thermo-Analytical Methods
		20.2 Thermogravimetric Analysis (TGA)
			20.2.1 Instrumentation
			20.3 Differential Thermal Analysis (DTA)
				20.3.1 Instrumentation
			20.4 Simultaneous Thermogravimetry/ Differential Thermal Analysis (TG/DTA)
			20.5 Thermomechanical Analysis (TMA)
			20.6 Differential Scanning Calorimetry
			20.7 Simultaneous Thermal Analysis/Mass Spectrometer
21. Electrophoresis Apparatus and Densitometers
	21.1 Electrophoresis
		21.2 Slab Electrophoresis Apparatus
			21.2.1 Electrophoresis Cabinet
				21.2.2 Regulated Power Supply
			21.3 Densitometers
				21.3.1 Spectrodensitometers
					21.3.2 Microprocessor-based Densitometer
			21.4 Capillary Electrophoresis
				21.4.1 Capillary Electrophoresis Instrumentation
			21.5 Parallel Capillary Electrophoresis for DNA Sequencing
			21.6 Micro-Electrophoresis
22. Electrochemical Instruments
	22.1 Electrochemical Methods for Analysis
		22.2 Electrochemical Cell
			22.2.1 Types of Electrodes
			22.3 Potentiostats
			22.4 Types of Electrochemical Methods
			22.5 Potentiometers
			22.6 Conductivity Meters
				22.6.1 Measurement of Conductance
					22.6.2 Conductivity Cells
					22.6.3 Temperature Compensation in Conductivity Measurements
					22.6.4 Conductivity Measurements Using High Frequency Methods
			22.7 Voltammetry
			22.8 Polarographs
				22.8.1 Basic Polarographic Instrument
					22.8.2 Dropping Mercury Electrode
					22.8.3 Reference Electrode
					22.8.4 Typical Polarographs
			22.9 Coulometers
		22.10 Amperometers
		22.11 Aquameters
		22.12 General Purpose Electrochemical Instrumentation
23. pH Meters and Ion Analysers
	23.1 What is pH?
		23.2 Principle of pH Measurement
			23.3 Electrodes for pH Measurement
				23.3.1 The Hydrogen Electrode
					23.3.2 Glass Electrode
					23.3.3 Calomel Electrode or Reference Electrode
					23.3.4 Silver/Silver Chloride Reference Electrode
					23.3.5 Combination Electrode
					23.3.6 The Asymmetry Potential
					23.3.7 Buffer Solutions
					23.3.8 Calibration
			23.4 pH Meters
				23.4.1 Design considerations for pH Meters
					23.4.2 Digital pH Meters
					23.4.3 pH Sensing Integrated Analog Front End
					23.4.4 Industrial pH Meters
					23.4.5 Failures in pH Meters
			23.5 Selective-ION Electrodes
				23.5.1 Advantages of Ion-Selective Electrode
					23.5.2 Problems with ISE Measurements
					23.5.3 Ammonia Electrode
					23.5.4 Fluoride Electrode
					23.5.5 Care and Maintenance of ISEs
					23.5.6 Difference Between pH and Other Ion-Selective Electrodes
			23.6 ION Analyzer
				23.6.1 PC-based pH Meter Ion Analysers
			23.7 Chemically Sensitive Semiconductor Devices
			23.8 Biosensors
			23.9 Point-of-Care Instruments
				23.9.1 Point-of-Care Testing (POCT)
					23.9.2 Blood Glucose Monitor
24. Blood Gas Analysers
	24.1 Acid-Base Balance
		24.2 Blood pH Measurement
			24.2.1 Electrodes for Blood pH Measurement
				24.2.2 Effect of Blood on Electrodes
					24.2.3 Buffer Solutions
			24.3 Measurement of Blood pCO2
				24.3.1 Performance Requirements of pH Meters Used for pCO2 Measurement
			24.4 Blood pO2 Measurement
			24.5 A Complete Blood Gas Analyser
				24.5.1 Fibre Optic-based Blood Gas Sensors
25. Industrial Gas Analysers and Process Instrumentation
	25.1 Types of Gas Analysers
		25.2 Paramagnetic Oxygen Analyser
			25.3 Magnetic Wind Instruments
			25.4 The Electrochemical Methods
				25.4.1 Galvanic Methods
					25.4.2 Polarographic Cells
					25.4.3 Conductometric Method
			25.5 Infrared Gas Analysers
			25.6 Thermal Conductivity Analysers
			25.7 Analysers Based on Gas Density
			25.8 Method Based on Ionisation of Gases
			25.9 Process Analysers
				25.9.1 Process Photometers
					25.9.2 CHN/O/S Analyser
					25.9.3 Element Analyser Based on Tuneable Diode Laser Spectroscopy (TDLS)
		25.10 Laboratory Robots for Process Industry
26. Particle Size Analysers
	26.1 Particles and Their Characteristics
		26.1.1 Which Particle Properties Are Important to Measure?
			26.1.2 How Do We Define Particle Size?
				26.1.3 Distribution Statistics
			26.2 Particle Size Measurements
				26.2.1 Imaging vs. Non-imaging Techniques
					26.2.2 Laser Diffraction Particle Sizing
					26.2.3 Dynamic Light Scattering (DLS)
					26.2.4 Electrophoretic Light Scattering (ELS)
					26.2.5 Acoustic Spectroscopy for Particle Sizing
					26.2.6 Automated Imaging
			26.3 Particle Counters
				26.3.1 Coulter Principle Method
					26.3.2 Blood Cell Counters
					26.3.3 Errors in Electronic Counters
			26.4 Portable Coulter Counters
				26.4.1 Handheld Automated Cell Counter and Analyser
					26.4.2 Blood Cell Counter for Point-of-Care Testing (POCT)
27. Environmental Pollution Monitoring Instruments
	27.1 Air Pollution Monitoring Instruments
		27.1.1 Representation of Concentration of Gases
			27.1.2 Types and Concentration of Various Gas Pollutants
				27.1.3 Instrumental Techniques and Measurement Range
			27.2 Air Pollution Monitoring Stations
			27.3 Carbon Monoxide
				27.3.1 Non-dispersive Infrared Analyser
			27.4 Sulphur Dioxide
				27.4.1 Conductivitimetry
					27.4.2 Ultraviolet Fluorescence Method
			27.5 Nitrogen Oxides
				27.5.1 Chemiluminescence
					27.5.2 Use of CO Laser
					27.5.3 Laser Opto-acoustic Spectroscopy
					27.5.4 UV-based NO Analyser
					27.5.5 Combined SO2 and NO Analyser
			27.6 Hydrocarbons
				27.6.1 Flame Ionization Detector (FID)
			27.7 Ozone
				27.7.1 Chemiluminescence
					27.7.2 Conductivitimetry
			27.8 Automated Wet-Chemical Air Analysis
			27.9 Measuring Methods for Particulate Matter
				27.9.1 Gravimetric Method
					27.9.2 Beta Attenuation Monitoring (BAM)
		27.10 Remote Monitoring
			27.10.1 LIDAR
		27.11 Water Pollution Monitoring Instruments
			27.11.1 Types of Pollutants and Techniques
				27.11.2 Conductivity
				27.11.3 Dissolved Oxygen
				27.11.4 pH Measurement
				27.11.5 Oxidation-reduction Potential (ORP)
				27.11.6 Temperature
				27.11.7 Turbidity
		27.12 In Situ Measurements
		27.13 Oil in Water Applications
28. Computer-Based Analytical Instruments
	28.1 Computers in Analytical Laboratories
		28.2 Digital Computer
			28.2.1 Input-Output Systems
				28.2.2 Storage Memory Systems
					28.2.3 Offline/Online Computers
					28.2.4 Dedicated Computers
			28.3 Types of Computers
			28.4 Modems
			28.5 Computer Software
				28.5.1 System Software
					28.5.2 Application Software
					28.5.3 Software Creation
					28.5.4 Popular Software Packages
			28.6 Interconnecting Laboratory Instruments to Computers
				28.6.1 Types of Interfaces
					28.6.2 Analog Interfaces
					28.6.3 Digital I/O Interfaces
					28.6.4 Serial Interface
			28.7 Computer Networks
				28.7.1 Local Area Network
					28.7.2 LAN Communication Using TCP/IP
					28.7.3 Wide Area Network (WAN)
			28.8 Laboratory Information Management System (LIMS)
			28.9 Smart Laboratory
29. Electronic Devices and Circuits
	29.1 Electronic Components
		29.1.1 Active vs. Passive Components
			29.1.2 Discrete vs. Integrated Circuits
			29.2 Passive Components
			29.3 Semiconductor Devices
				29.3.1 P-N Junction
					29.3.2 Semiconductor Diode
			29.4 Transistors
				29.4.1 Bipolar Transistors
					29.4.2 Field-Effect Transistor (FET)
					29.4.3 MOSFET
			29.5 Integrated Circuits
			29.6 Operational Amplifiers (OP-AMPS)
				29.6.1 Symbolic Representation
					29.6.2 Power Supply Requirements for Op-Amps
					29.6.3 Output Voltage Swing
					29.6.4 Output Current
					29.6.5 Characteristics of Op-Amps
					29.6.6 Performance Characteristics of Op-Amps
					29.6.7 Typical Op-Amp Circuits
			29.7 Sources of Noise in Electronic Circuits
				29.7.1 Thermal Noise or Johnson Noise
					29.7.2 Shot Noise
					29.7.3 Flicker Noise
					29.7.4 Environmental Noise
			29.8 Sources of Noise in Low-Level Measurements
				29.8.1 Electrostatic and Electromagnetic Coupling to AC Signals
					29.8.2 Proper Grounding (Common Impedance Coupling)
			29.9 Noise Reduction Techniques
				29.9.1 Hardware Techniques
					29.9.2 Software Techniques
		29.10 Power Supplies
			29.10.1 Types of Regulators
				29.10.2 IC Regulators
				29.10.3 Three-pin Voltage Regulators
				29.10.4 Switched Mode Power Supplies (SMPS)
		29.11 High Voltage DC Power Supplies
30. Digital Circuits
	30.1 Digital Circuits
		30.1.1 Binary Number System
			30.1.2 Truth Tables
				30.1.3 Logic Circuits
					30.1.4 Logic Convention
			30.2 Types of Logic Circuits
				30.2.1 The AND Gate
					30.2.2 The OR Gate
					30.2.3 The INVERTER (NOT) Gate
					30.2.4 The NAND (NOT-AND) Gate
					30.2.5 The NOR Gate
					30.2.6 The EXCLUSIVE-OR (EX-OR) Gate
					30.2.7 The INHIBIT Gate
			30.3 Logic Families
				30.3.1 Transistor-Transistor Logic (TTL)
					30.3.2 Emitter-Coupled Logic (ECL)
					30.3.3 CMOS Logic Families
					30.3.4 Characteristics of Integrated Circuit Logic Gates
			30.4 Categories of IC’s Based on Packing Density
			30.5 Typical Digital Integrated Circuits
				30.5.1 Flip-Flops
					30.5.2 Counters
					30.5.3 Registers
					30.5.4 Multiplexer
					30.5.5 Demultiplexer
					30.5.6 Encoders
					30.5.7 Decoders
					30.5.8 Tristate Logic
			30.6 Semiconductor Memories
				30.6.1 Random Access Memory
					30.6.2 Read-Only Memory (ROM)
			30.7 Microprocessor
			30.8 Micro-Controllers
			30.9 Embedded Systems
		30.10 Data Converters
			30.10.1 A/D Converters
				30.10.2 Key Parameters in A/D Converters and Their Selection
					30.10.3 D/A Converters
		30.11 Digital Signal Processing
		30.12 Data Acquisition Systems for Analytical Instruments
References
Index




نظرات کاربران