ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Gaosu Startup Control Theory and Application Technology/ Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: Control System and Energy System

دانلود کتاب نظریه کنترل راه اندازی Gaosu و فناوری کاربرد / Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: سیستم کنترل و سیستم انرژی

Gaosu Startup Control Theory and Application Technology/ Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: Control System and Energy System

مشخصات کتاب

Gaosu Startup Control Theory and Application Technology/ Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: Control System and Energy System

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 9811522014, 9789811522017 
ناشر: Springer Nature 
سال نشر: 2020 
تعداد صفحات: 396 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Gaosu Startup Control Theory and Application Technology/ Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: Control System and Energy System به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه کنترل راه اندازی Gaosu و فناوری کاربرد / Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: سیستم کنترل و سیستم انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه کنترل راه اندازی Gaosu و فناوری کاربرد / Gaosu Qidong Kongzhi Lilun He Yingyong Jishu: سیستم کنترل و سیستم انرژی



این کتاب آخرین پیشرفت‌ها و دستاوردهای تحقیقاتی خود نویسنده در تئوری کنترل پنوماتیک با سرعت بالا و فناوری کاربردی را برجسته می‌کند. عمدتاً با تمرکز بر سیستم کنترل و سیستم انرژی، تئوری اساسی و فن‌آوری‌های پیشگام برای هوافضا و هوانوردی را ارائه می‌کند، در حالی که به عنوان مثال به آن می‌پردازد. تئوری کنترل سروو پنوماتیک، مکانیسم‌های غیرخطی پنوماتیک، آیروترمودینامیک، مکانیسم‌های سروو پنوماتیک، و کاربردهای نمونه سیستم‌های توربین گازی با دمای بالا و سرعت بالا در هوا فضا، هوانوردی و تجهیزات اصلی.



توضیحاتی درمورد کتاب به خارجی

This book highlights the latest developments and the author’s own research achievements in high speed pneumatic control theory and applied technology. Chiefly focusing on the control system and energy system, it presents the basic theory and pioneering technologies for aerospace and aviation, while also addressing e.g. pneumatic servo control theory, pneumatic nonlinear mechanisms, aerothermodynamics, pneumatic servo mechanisms, and sample applications of high temperature and high speed gas turbine systems in aerospace, aviation, and major equipment.




فهرست مطالب

Preface
Summary
Contents
8 Pneumatic Actuators, Driving Elements, and Accessories
	8.1 Pneumatic Cylinder and Hydraulic Cylinder
		8.1.1 Classification of Pneumatic Cylinder and Hydraulic Cylinder
		8.1.2 Natural Frequency of Pneumatic Cylinder
			8.1.2.1 Natural Frequency of Single Acting Cylinder
			8.1.2.2 Natural Frequency of Double Acting Cylinder
		8.1.3 Natural Frequency of Hydraulic Cylinder
		8.1.4 Comparison of Pneumatic Cylinder System and Hydraulic Cylinder System
		8.1.5 Conclusions
	8.2 Structure and Characteristics of Actuators
		8.2.1 Pneumatic Cylinder
			8.2.1.1 Static Characteristics of Cylinders
			8.2.1.2 Dynamic Characteristics of Cylinder
			8.2.1.3 Motion Characteristics of Piston
			8.2.1.4 Cylinder Natural Frequency
			8.2.1.5 Positioning Stop Accuracy of Piston
		8.2.2 Pneumatic Motor
			8.2.2.1 The Form and Characteristics of Pneumatic Motor
			8.2.2.2 Natural Frequency of Pneumatic Motor
	8.3 Aircraft Hydraulic Accumulator and Cylinder in Extreme Temperature Environment
		8.3.1 Extreme Temperature Environment
		8.3.2 Van der Waals Equation for Real Gases
		8.3.3 Inflation Mass of High-Pressure Gas Cylinders
		8.3.4 Gas Pressure Service Characteristics of High-Pressure Cylinders and Cavities
		8.3.5 Service Characteristics of Accumulator
		8.3.6 Conclusions
	Bibliography
9 High-Temperature and High-Speed Gas Turbine Pump Electro-Hydraulic Energy System for Aircraft
	9.1 Electro-Hydraulic Servo Control Technology of Aircraft Gas Turbine Pump
		9.1.1 Overview of Electro-Hydraulic Control Technology
			9.1.1.1 Development Status of Airborne Electro-Hydraulic Control Technology
			9.1.1.2 Development Trend
			9.1.1.3 Material—An Important Contributing Factor to the Evolution of Electro-Hydraulic Technology
			9.1.1.4 Electrorheological Technology
		9.1.2 Elastic O-Ring Sealing Technology
			9.1.2.1 Configuration and Sealing Principle of O-Ring
			9.1.2.2 Characteristics of O-Ring Seal
			9.1.2.3 O-Ring Material
			9.1.2.4 Selection and Design of O-Ring
			9.1.2.5 Protection and Fault Prevention of O-Ring
		9.1.3 Technical Characteristics of Electric-Hydraulic Servo System for Aircraft
			9.1.3.1 High Power
			9.1.3.2 High Pressure and High Temperature
			9.1.3.3 High Speed
			9.1.3.4 High Reliability
			9.1.3.5 Digitization and Informatization
		9.1.4 Design Method of Air Defense Missile Control Execution System
			9.1.4.1 Comprehensive Requirements
			9.1.4.2 Demonstration Process
			9.1.4.3 Main Criterion
			9.1.4.4 Performance Test
			9.1.4.5 Summary
		9.1.5 Auxiliary Energy for Air Defense Missiles
			9.1.5.1 Classification of Energy Program
			9.1.5.2 Application Examples
			9.1.5.3 Summary
		9.1.6 Hydraulic Energy Application Technology of Gas Turbine Pump for Aircraft
			9.1.6.1 Application of Gas Primary Energy
			9.1.6.2 Application of Gas Turbine Pump
			9.1.6.3 Working Area of Gas Turbine Pump Hydraulic System
	9.2 Power Matching Design of Steering System
		9.2.1 Load Model of Steering System
			9.2.1.1 Load Trajectory
			9.2.1.2 Load Maximum Power Point
			9.2.1.3 Load Trajectory Characteristics
		9.2.2 Optimal Matching of Output Characteristics and Load Trajectories of Servo Mechanism
		9.2.3 Energy Demand of Actual Steering System
		9.2.4 Variation Factors of Working Pressure and Frequency Characteristics of System
	9.3 Design Principle of Gas Generator
		9.3.1 Theoretic Derivation
			9.3.1.1 Hypothesis
			9.3.1.2 Correlation Analysis
			9.3.1.3 Derivation of Equations
		9.3.2 Application Discussion
			9.3.2.1 Applied Range
			9.3.2.2 Case Analysis
			9.3.2.3 Related Discussion
	9.4 Design Principle of Small Gas Turbine for Missile
		9.4.1 Thermodynamic Process in Small Gas Turbine Nozzle for Missile
		9.4.2 Efficiency of Small Gas Turbine in Missile Hydraulic System
		9.4.3 Graphical Analysis Method for Stress of Small Gas Turbine Disk for Missile
	9.5 Starting Characteristics of Electronic and Hydraulic Power Unit
		9.5.1 Description of EHPU Starting Characteristic
		9.5.2 EHPU Theoretical Modeling
		9.5.3 Starting Characteristics of Hydraulic System
		9.5.4 Starting Characteristics of Power Supply System
			9.5.4.1 Effect of Gas Peak Pressure on Starting Characteristics
			9.5.4.2 Effect of Pressure Impulse on Starting Characteristics
			9.5.4.3 Effect of High and Low-Temperature Performance on Starting Characteristics
			9.5.4.4 Main Ways to Improve Starting Characteristic of Power Supply System
	Bibliography
10 Application of Aerodynamic Technology in Attitude Control of Aerocraft
	10.1 Aerodynamic Attitude Control Principle and Attitude Control Method of Aircraft
		10.1.1 New Method and Principle of Attitude Control of Aircraft
		10.1.2 Lateral Force Analysis of Attitude Control
		10.1.3 Experiments and Analysis
			10.1.3.1 Design Scheme
			10.1.3.2 Experimental Results and Analysis of Thrust
		10.1.4 Conclusions
	10.2 Laval Nozzle for Attitude Control of Aircraft
		10.2.1 Flow Field Analysis of Laval Nozzle
			10.2.1.1 Physical Model
			10.2.1.2 Boundary Conditions for Throttle Ports
			10.2.1.3 Basic Equation of Fluid
			10.2.1.4 Distribution Law of Flow Field
		10.2.2 Manufacturing Process Technology
	10.3 Device for Changing Missile Motion Direction by Using Gas Generator and Transverse Force of Nozzle
	10.4 Process Technology of Gas Steering Engine
		10.4.1 Structure and Working Principle
		10.4.2 Redundancy Control
		10.4.3 Fit Clearance Control
		10.4.4 Shell Assembly Quality
		10.4.5 Technological Key Problem Test on Symmetry of Reaction Time
	Bibliography
11 Pneumatic Down-the-Hole Hammer
	11.1 Overview
	11.2 Principle and Classification of Pneumatic DTH Hammer
		11.2.1 Classification of Pneumatic DTH Hammer
		11.2.2 Principle of Valve-Type Pneumatic DTH Hammer
		11.2.3 Valveless Pneumatic DTH Hammer
		11.2.4 Large Diameter Pneumatic DTH Hammer
	11.3 Principle and Parameter Design of Large Diameter Pneumatic DTH Hammer Impactor
		11.3.1 Design Requirements
		11.3.2 Overall Structure
		11.3.3 Selection of Working Parameters
		11.3.4 Calculation Method of Performance Parameters
			11.3.4.1 Calculation Method for General Design of Performance Parameters
			11.3.4.2 Piecewise Calculation Method for Calculating Performance Parameters
			11.3.4.3 Performance Parameter Linear Equation Method
		11.3.5 Design of Key Parts
			11.3.5.1 Design of Cylinder
			11.3.5.2 Piston Design
			11.3.5.3 Design of Valve Distribution Path
	11.4 Dynamic Process and Theoretical Model of Large Diameter Pneumatic DTH Hammer
		11.4.1 Dynamic Process of Large Diameter Pneumatic DTH Hammer
		11.4.2 Theoretical Model of Large Diameter Pneumatic DTH Hammer
			11.4.2.1 Hypothesis of Internal Dynamic Process of Pneumatic DTH Hammer
			11.4.2.2 Theoretical Model Equations of Pneumatic DTH Hammer
		11.4.3 Numerical Calculation of Large Diameter Pneumatic DTH Hammer
			11.4.3.1 Analysis of the Results of the Whole Working Process
			11.4.3.2 Comparison of Performance Parameters of DTH Hammer Under Different Intake Pressure
			11.4.3.3 Pressure Fluctuation Phenomenon Analysis and Parameter Optimization
		11.4.4 Summary
	11.5 Design of Large Diameter DTH Hammer Bit and Spherical Tooth Layout
		11.5.1 Rock-Breaking Process by Impact
		11.5.2 Mechanical Model of Side Tooth of Large Diameter Pneumatic DTH Hammer Bit
			11.5.2.1 Hypothesis
			11.5.2.2 Force Model Under Axial Load
			11.5.2.3 Force Model Under Tangential Load
			11.5.2.4 Force Model Under Combined Action of Axial and Tangential Loads
		11.5.3 Layout Principle of Large Diameter Pneumatic DTH Hammer Bit
			11.5.3.1 Spherical Teeth Hydrostatic Rock Breaking
			11.5.3.2 Spherical Teeth Breaking Rock by One Impact
			11.5.3.3 Basic Principles for Bit Layout of Large Diameter DTH Hammer
			11.5.3.4 Example of Rock-Breaking Dynamic Process Analysis of Bit
	11.6 Typical Engineering Cases
		11.6.1 Project Site
		11.6.2 Model and Parameters of Pneumatic DTH Hammer
		11.6.3 Construction Process
		11.6.4 Analysis of Bit Usage and Phenomenon
	Bibliography
12 Pneumatic–Hydraulic Pile Driving Hammer
	12.1 Pneumatic–Hydraulic Composite Pile Driving Hammer
		12.1.1 Hydraulic System of Typical Hydraulic Pile Driving Hammer
			12.1.1.1 British BSP Single Acting Hydraulic Hammer
			12.1.1.2 Finnish JUNTTAN Single Acting Hydraulic Hammer
			12.1.1.3 Dutch IHC Double Acting Hydraulic Hammer
		12.1.2 Strike Frequency and Strike Energy
			12.1.2.1 Strike Frequency
			12.1.2.2 Strike Energy
		12.1.3 Main Characteristics and Parameters
		12.1.4 Conclusions
	12.2 High-Speed Pneumatic–Hydraulic Composite Hammer
		12.2.1 Hydraulic System of Pneumatic–Hydraulic Pile Driving Hammer
			12.2.1.1 Principle of Pneumatic–Hydraulic Pile Driving Hammer
			12.2.1.2 Dynamics Model of Rising Process
			12.2.1.3 Dynamics Model of Descending Process
		12.2.2 Strike Energy
		12.2.3 Characteristics of Pneumatic–Hydraulic Pile Driving Hammer
		12.2.4 Conclusions
	12.3 Mathematical Model of High-Speed Pneumatic–Hydraulic Composite Hammer
		12.3.1 Overview
		12.3.2 Mathematical Model
			12.3.2.1 Hammer Body Rising Stage
			12.3.2.2 Hammer Body Descending Stage
			12.3.2.3 Strike Energy
		12.3.3 Characteristic and Example of Pneumatic–Hydraulic Composite Pile Driving Hammer
		12.3.4 Conclusions
	12.4 Rapid Piling Process of High-Speed Pneumatic–Hydraulic Composite Hammer
		12.4.1 Principle of Rapid Piling
			12.4.1.1 Rising Stage
			12.4.1.2 Inertial Rising Stage
			12.4.1.3 Descending Stage
			12.4.1.4 Pressure-Retaining Stage
		12.4.2 Mathematical Model for Descending Stage of Rapid Piling
		12.4.3 Influencing Factors of Rapid Piling
			12.4.3.1 Influence of Diameter and Length of Oil Return Pipeline
			12.4.3.2 Influence of Low-Pressure Accumulator
		12.4.4 Conclusions
	12.5 Contact Model Pile and Soil
		12.5.1 Finite Element Analysis Model of Pile and Soil
		12.5.2 Finite Element Solution of Pile and Soil
			12.5.2.1 Dynamic Model Parameter Setting
			12.5.2.2 Results
		12.5.3 Conclusions
	Bibliography
13 Application of Pneumatic Technology in Fuel Cell Vehicles
	13.1 Pneumatic System and Fuel Cell Hydrogen Transmission System
		13.1.1 Overview
		13.1.2 Space Hydrogen Energy Technology and Its Application
			13.1.2.1 Application of Hydrogen Energy Technology in Spacecraft
			13.1.2.2 High-Pressure Cylinders for Self-contained Energy Plants
			13.1.2.3 Pneumatic Servo Control Technology
		13.1.3 Carbon Fiber Winding Cylinder for Fuel Cell Vehicle
			13.1.3.1 Fuel Cell Vehicle Hydrogen Storage Device
			13.1.3.2 Carbon Fiber Winding Composite Gas Cylinder for Domestic Fuel Cell Vehicle
		13.1.4 Fuel Cell Vehicle Hydrogen Transmission System
	13.2 Hydrogen Transmission and Hydrogenation Characteristics of Vehicle-Borne High-Pressure Hydrogen Transmission System Cylinders
		13.2.1 Characteristics of Vehicle-Borne Hydrogen Transmission and Storage System
			13.2.1.1 Hydrogen Storage Mode
			13.2.1.2 Hydrogen Supply Capacity
			13.2.1.3 Mass of Hydrogen Storage
		13.2.2 Hydrogen Transmission Pressure Characteristics of Vehicle-Borne Gas Cylinders
			13.2.2.1 Mathematical Model
			13.2.2.2 Analysis of Simulation Results
		13.2.3 Hydrogenation Pressure Characteristics of Vehicle-Borne Gas Cylinders
			13.2.3.1 Mathematical Model
			13.2.3.2 Analysis of Simulation Results
		13.2.4 Test Results
			13.2.4.1 Mass of Hydrogen Storage
			13.2.4.2 Hydrogen Supply Capacity
			13.2.4.3 Driving Distance
		13.2.5 Conclusions
	Bibliography
14 Pneumatic Principle and Device of Oscillating Water Column Wave Power Generation
	14.1 Overview
	14.2 Basic Structure and Pneumatic Principle
	14.3 Mathematical Model of Oscillating Water Column
		14.3.1 Aerodynamic Model of Air Chamber
		14.3.2 Frequency Response of Mighty Whale Energy Converter
		14.3.3 Examples of Numerical Calculation of Mighty Whale Energy Converter
		14.3.4 Characteristics of Floating Oscillating Water Column Wave Energy Converter
	14.4 Experimental Technique of Oscillatory Water Column Wave Energy Converter
		14.4.1 Test Model
		14.4.2 Numerical Analysis
	14.5 Application Examples of Oscillating Water Column Power Station
		14.5.1 Examples of Oscillating Water Column Wave Power Generation in China
		14.5.2 Examples of Oscillating Water Column Wave Power Generation in Foreign Countries
	14.6 Key Technologies of Oscillating Water Column Wave Power Generator
	Bibliography




نظرات کاربران