دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Zhe George Zhang
سری: Operations Research Series
ISBN (شابک) : 036771261X, 9780367712617
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 814
[815]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 Mb
در صورت تبدیل فایل کتاب Fundamentals of Stochastic Models به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی مدل های تصادفی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Contents List of Figures List of Tables Preface Acknowledgments Chapter 1: Introduction 1.1. Stochastic Process Classification 1.2. Organization of the Book Part I: Fundamentals of Stochastic Models Chapter 2: Discrete-Time Markov Chains 2.1. Dynamics of Probability Measures 2.2. Formulation of DTMC 2.3. Performance Analysis of DTMC 2.3.1. Classification of States 2.3.2. Steady State Analysis 2.3.3. Positive Recurrence for DTMC 2.3.4. Transient Analysis 2.3.5. Branching Processes References Chapter 3: Continuous-Time Markov Chains 3.1. Formulation of CTMC 3.2. Analyzing the First CTMC: A Birth-and-Death Process 3.3. Transition Probability Functions for CTMC 3.3.1. Uniformization 3.4. Stationary Distribution of CTMC 3.4.1. Open Jackson Networks 3.5. Using Transforms 3.6. Using Time Reversibility 3.7. Some Useful Continuous-time Markov Chains 3.7.1. Poisson Process and Its Extensions 3.7.1.1. Non-Homogeneous Poisson Process 3.7.1.2. Pure Birth Process 3.7.1.3. The Yule Process 3.7.2. Pure Death Processes 3.7.2.1. Transient Analysis on CTMC References Chapter 4: Structured Markov Chains 4.1. Phase-Type Distributions 4.2. Properties of PH Distribution 4.2.1. Closure Properties 4.2.2. Dense Property of PH Distribution 4.2.3. Non-Uniqueness of Representation of PH Distribution 4.3. Fitting PH Distribution to Empirical Data or a Theoretical Distribution 4.3.1. The EM Approach 4.4. The EM Algorithm 4.4.1. Convergence of EM Algorithm 4.4.2. EM Algorithm for PH Distribution 4.5. Markovian Arrival Processes 4.5.1. From PH Renewal Processes to Markovian Arrival Processes 4.5.2. Transition Probability Function Matrix 4.6. Fitting MAP to Empirical Data 4.6.1. Grouped Data for MAP Fitting 4.7. Quasi-Birth-and-Death Process (QBD) – Analysis of MAP/PH/1 Queue 4.7.1. QBD – A Structured Markov Chain 4.7.1.1. Matrix-Geometric Solution – R-Matrix 4.7.1.2. Fundamental Period – G-Matrix 4.7.2. MAP/PH/1 Queue – A Continuous-Time QBD Process 4.8. GI/M/1 Type and M/G/1 Type Markov Chains 4.8.1. GI/M/1 Type Markov Chains 4.8.2. M/G/1 Type Markov Chains 4.8.3. Continuous-Time Counterpart of Discrete-Time QBD Process References Chapter 5: Renewal Processes and Embedded Markov Chains 5.1. Renewal Processes 5.1.1. Basic Results of Renewal Processes 5.1.2. More on Renewal Equations 5.1.3. Limit Theorems for Renewal Processes 5.1.4. Blackwell’s Theorem and Key Renewal Theorem 5.1.5. Inspection Paradox 5.1.6. Some Variants of Renewal Processes 5.1.7. Renewal Reward Processes 5.1.8. Regenerative Processes 5.2. Markov Renewal Processes 5.2.1. Basic Results for Markov Renewal Processes 5.2.2. Results for Semi-Markov Processes 5.2.3. Semi-Regenerative Processes 5.2.4. M/G/1 and GI/M/1 Queues 5.2.4.1. M/G/1 Queue 5.2.4.2. GI/M/1 Queue 5.2.5. An Inventory Model 5.2.6. Supplementary Variable Method References Chapter 6: Random Walks and Brownian Motions 6.1. Random Walk Processes 6.1.1. Simple Random Walk – Basics 6.1.2. Spitzer’s Identity Linking Random Walks to Queueing Systems 6.1.3. System Point Level Crossing Method 6.1.4. Change of Measures in Random Walks 6.1.5. The Binomial Securities Market Model 6.1.6. The Arc Since Law 6.1.7. The Gambler’s Ruin Problem 6.1.8. General Random Walk 6.1.8.1. A Brief Introduction to DTMP 6.1.9. Basic Properties of GRW 6.1.9.1. Central Limit Theorem for GRW 6.2. Brownian Motion 6.2.1. Brownian Motion as a Limit of Random Walks 6.2.2. Gaussian Processes 6.2.3. Sample Path Properties 6.2.3.1. Infinite Zeros and Non-Differentiability 6.2.3.2. Re-Scaling a Process 6.2.3.3. The Reflection Principle – Hitting Times and Maximum of BM 6.2.3.4. Conditional Distribution of BM 6.2.3.5. BM as a Martingale 6.2.4. Transition Probability Function of BM 6.2.5. The Black-Scholes Formula References Chapter 7: Reflected Brownian Motion Approximations to Simple Stochastic Systems 7.1. Approximations to G/G/1 Queue 7.2. Queue Length as Reflection Mapping 7.3. Functional Strong Law of Large Numbers (FSLLN) – Fluid Limit 7.4. Functional Central Limit Theorem (FCLT) – Diffusion Limit 7.5. Heavy Traffic Approximation to G/G/1 Queue 7.6. Bounds for Fluid and Diffusion Limit Approximations 7.7. Applications of RBM Approach 7.7.1. A Two-Station Tandem Queue 7.7.2. A Production-Inventory Model References Chapter 8: Large Queueing Systems 8.1. Multi-Dimensional Reflected Brownian Motion Approximation to Queueing Networks 8.1.1. Oblique Reflection Mapping 8.1.2. A Fluid Network 8.1.3. A Brownian Motion Network 8.1.4. Fluid and Diffusion Approximations to Queueing Networks 8.2. Decomposition Approach 8.2.1. Superposition of Flows 8.2.2. Flowing through a Queue 8.2.3. Splitting a Flow 8.2.4. Decomposition of a Queueing Network 8.3. One-Stage Queueing System with Many Servers 8.3.1. Multi-Server Queues without Customer Abandonments 8.3.1.1. Increasing ρ with fixed s and μ 8.3.1.2. Increasing λ and s with fixed ρ 8.3.1.3. Increasing λ and s with an Increasing ρ 8.3.2. Multi-Server Queues with Customer Abandonments 8.4. Queues with Time-Varying Parameters 8.4.1. Fluid Approximation 8.4.2. Diffusion Approximation 8.5. Mean Field Method for a Large System with Many Identical Interacting Parts References Chapter 9: Static Optimization in Stochastic Models 9.1. Optimization Based on Regenerative Cycles 9.1.1. Optimal Age Replacement Policy for a Multi-State System 9.1.2. Optimal Threshold Policy for a M/G/1 Queue 9.2. Optimization Based on Stationary Performance Measures – Economic Analysis of Stable Queueing Systems 9.2.1. Individual Optimization 9.2.2. Social Optimization 9.2.3. Service Provider Optimization 9.3. Optimal Service-Order Policy for a Multi-Class Queue 9.3.1. Preliminary Results for a Multi-Class M/G/1 Queue 9.3.2. Optimal Service-Order Policy for a Multi-Class Queue with Nonpreemtive Priority – cμ Rule 9.4. Customer Assignment Problem in a Queue Attended by Heterogeneous Servers 9.4.1. Problem Description 9.4.2. Characterization of Optimal Policy 9.4.3. Optimal Multi-Threshold Policy – c/μ Rule 9.5. Performance Measures in Optimization of Stochastic Models 9.5.1. Value at Risk and Conditional Value at Risk 9.5.2. A Newsvendor Problem References Chapter 10: Dynamic Optimization in Stochastic Models 10.1. Discrete-Time Finite Markov Decision Process 10.2. Computational Approach to DTMDP 10.2.1. Value Iteration Method 10.2.2. Policy Iteration Method 10.2.3. Computational Complexity 10.2.4. Average Cost MDP with Infinite Horizon 10.3. Semi-Markov Decision Process 10.3.1. Characterizing the Structure of Optimal Policy 10.3.2. Computational Approach to SMDP 10.4. Stochastic Games – An Extension of MDP References Chapter 11: Learning in Stochastic Models 11.1. Multi-Arm Bandits Problem 11.1.1. Sample Average Methods 11.1.2. Effect of Initial Values 11.1.3. Upper Confidence Bounds 11.1.4. Action Preference Method 11.2. Monte Carlo-Based MDP Models 11.2.1. Model-Based Learning 11.2.2. Model-Free Learning 11.2.3. Model-Free Learning with Bootstrapping 11.2.4. Q-Learning 11.2.5. Temporal-Difference Learning 11.2.6. Convergence of Learning Algorithms 11.2.7. Learning in Stochastic Games – An Extension of Q-Learning 11.3. Hidden Markov Models 11.4. Partially Observable Markov Decision Processes References Part II: Appendices: Elements of Probability and Stochastics Chapter A: Basics of Probability Theory A.1. Probability Space A.2. Basic Probability Rules A.2.0.1. Bayesian Belief Networks A.3. Random Variables A.4. Probability Distribution Function A.4.1. Multivariate Distribution and Copulas A.4.2. Transforming Distribution Functions A.5. Independent Random Variables A.6. Transforms for Random Variables A.7. Popular Distributions in Stochastic Models A.7.1. Chi-Square Distribution A.7.2. F Distribution A.7.3. t Distribution A.7.4. Derivation of Probability Density Function A.7.5. Some Comments on Degrees of Freedom A.8. Limits of Sets A.9. Borel-Cantelli Lemmas A.10. A Fundamental Probability Model A.11. Sets of Measure Zero A.12. Cantor Set A.13. Integration in Probability Measure A.13.1. Radon-Nikodym Theorem References Chapter B: Conditional Expectation and Martingales B.1. σ-Algebra Representing Amount of Information B.2. Conditional Expectation in Discrete Time B.3. Conditional Expectation in Continuous-Time B.4. Martingales B.4.1. Optional Sampling References Chapter C: Some Useful Bounds, Inequalities, and Limit Laws C.1. Markov Inequality C.2. Jensen’s Inequality C.3. Cauchy–Schwarz Inequality C.4. Hölder’s Inequality C.5. Chernoff Bounds and Hoeffding’s Inequality C.6. The Law of the Iterated Logarithm C.6.1. Preparation C.6.2. Verification References Chapter D: Non-Linear Programming in Stochastics D.1. Non-Linear Optimization – Multi-Linear Regressions D.1.1. Multiple Linear Regression D.1.1.1. Least Squares Method D.1.1.2. Maximum Likelihood Method D.2. Entropy and Submodular Functions Optimization D.2.1. Entropy D.2.2. Maximum Entropy Principle in Approximating a Probability Distribution D.2.3. Submodular Function D.2.4. Naive Bayes’ Model and Feature Section Problem References Chapter E: Change of Probability Measure for a Normal Random Variable References Chapter F: Convergence of Random Variables F.1. Convergence in Distribution F.2. Convergence in Probability F.3. Convergence in Mean F.4. Almost Sure Convergence References Chapter G: Major Theorems for Stochastic Process Limits G.1. Skorohod Representation Theorem G.2. Continuous Mapping Theorem G.3. Random Time-Change Theorem G.4. Convergence-Together Theorem G.5. Donsker’s Theorem – FCLT G.6. Strong Approximation Theorem References Chapter H: A Brief Review on Stochastic Calculus H.1. Construction of BM–Existence of BM H.2. Diffusion Processes and Kolmogorov’s Equations H.3. Stochastic Differential Equations H.4. Some Stochastic Calculus Rules H.4.1. Variation of BM H.4.2. Stochastic Integration H.4.3. Stochastic Differentiation H.5. Ito’s Formula H.6. Some Theorems on Stochastic Integration H.7. More on Stochastic Differential Equations References Chapter I: Comparison of Stochastic Processes – Stochastic Orders I.1. Basic Stochastic Ordering I.1.1. Coupling I.2. Failure Rate Ordering I.3. Likelihood Ratio Ordering I.4. Variability Ordering References Chapter J: Matrix Algebra and Markov Chains J.1. Positive and Non-Negative Vectors and Matrices J.2. Power of Matrices J.2.1. Functions of Square Matrices J.2.2. Geometric Series of Matrices J.3. Stochastic Matrices and Markov Chains J.3.1. Positive Semi-Definite Matrices J.4. A Brief Look at M-Matrix J.5. Definitions of Derivatives in Matrix Calculus References Index