ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fox and McDonald's Introduction to Fluid Mechanics

دانلود کتاب مقدمه فاکس و مک دونالد در مکانیک سیالات

Fox and McDonald's Introduction to Fluid Mechanics

مشخصات کتاب

Fox and McDonald's Introduction to Fluid Mechanics

ویرایش: [10 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781119616498, 2019041376 
ناشر: Wiley 
سال نشر: 2020 
تعداد صفحات: 609 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 57,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Fox and McDonald's Introduction to Fluid Mechanics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مقدمه فاکس و مک دونالد در مکانیک سیالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مقدمه فاکس و مک دونالد در مکانیک سیالات

"این متن برای یک دوره مقدماتی در مکانیک سیالات نوشته شده است. رویکرد ما به این موضوع بر مفاهیم فیزیکی مکانیک سیالات و روش های تجزیه و تحلیل که از اصول اولیه شروع می شود، تاکید می کند. یکی از اهداف اصلی این متن کمک به کاربران برای توسعه یک رویکرد منظم برای حل مسئله. بنابراین، ما همیشه از معادلات حاکم شروع می کنیم، مفروضات را به وضوح بیان می کنیم، و سعی می کنیم نتایج ریاضی را با رفتار فیزیکی متناظر مرتبط کنیم. ما بر استفاده از حجم های کنترلی برای حفظ یک رویکرد حل مسئله عملی که از لحاظ نظری نیز فراگیر است، تاکید می کنیم."


توضیحاتی درمورد کتاب به خارجی

"This text is written for an introductory course in fluid mechanics. Our approach to the subject emphasizes the physical concepts of fluid mechanics and methods of analysis that begin from basic principles. One primary objective of this text is to help users develop an orderly approach to problem solving. Thus, we always start from governing equations, state assumptions clearly, and try to relate mathematical results to corresponding physical behavior. We emphasize the use of control volumes to maintain a practical problem-solving approach that is also theoretically inclusive"--



فهرست مطالب

Cover
Title Page
Copyright
Preface
Contents
Chapter 1 Problems
Chapter 1 Introduction
	1.1 Introduction to Fluid Mechanics
		Note to Students
		Scope of Fluid Mechanics
		Definition of a Fluid
	1.2 Basic Equations
	1.3 Methods of Analysis
		System and Control Volume
		Differential versus Integral Approach
		Methods of Description
	1.4 Dimensions and Units
		Systems of Dimensions
		Systems of Units
		Preferred Systems of Units
		Dimensional Consistency and “Engineering” Equations
	1.5 Analysis of Experimental Error
	1.6 Summary
	References
Chapter 2 Problems
Chapter 2 Fundamental Concepts
	2.1 Fluid as a Continuum
	2.2 Velocity Field
		One-, Two-, and Three-Dimensional Flows
		Timelines, Pathlines, Streaklines, and Streamlines
	2.3 Stress Field
	2.4 Viscosity
		Newtonian Fluid
		Non-Newtonian Fluids
	2.5 Surface Tension
	2.6 Description and Classification of Fluid Motions
		Viscous and Inviscid Flows
		Laminar and Turbulent Flows
		Compressible and Incompressible Flows
		Internal and External Flows
	2.7 Summary and Useful Equations
	References
Chapter 3 Problems
Chapter 3 Fluid Statics
	3.1 The Basic Equation of Fluid Statics
	3.2 The Standard Atmosphere
	3.3 Pressure Variation in a Static Fluid
		Incompressible Liquids: Manometers
		Gases
	3.4 Hydrostatic Force on Submerged Surfaces
		Hydrostatic Force on a Plane Submerged Surface
		Hydrostatic Force on a Curved Submerged Surface
	3.5 Buoyancy and Stability
	3.6 Fluids in Rigid-Body Motion
	3.7 Summary and Useful Equations
	References
Chapter 4 Problems
Chapter 4 Basic Equations in Integral Form for a Control Volume
	4.1 Basic Laws for a System
		Conservation of Mass
		Newton’s Second Law
		The Angular-Momentum Principle
		The First Law of Thermodynamics
		The Second Law of Thermodynamics
	4.2 Relation of System Derivatives to the Control Volume Formulation
		Derivation
		Physical Interpretation
	4.3 Conservation of Mass
		Special Cases
	4.4 Momentum Equation for Inertial Control Volume
		Differential Control Volume Analysis
		Control Volume Moving with Constant Velocity
	4.5 Momentum Equation for Control Volume with Rectilinear Acceleration
	4.6 Momentum Equation for Control Volume with Arbitrary Acceleration
	4.7 The Angular-Momentum Principle
		Equation for Fixed Control Volume
		Equation for Rotating Control Volume
	4.8 The First and Second Laws of Thermodynamics
		Rate of Work Done by a Control Volume
		Control Volume Equation
	4.9 Summary and Useful Equations
Chapter 5 Problems
Chapter 5 Introduction to Differential Analysis of Fluid Motion
	5.1 Conservation of Mass
		Rectangular Coordinate System
		Cylindrical Coordinate System
	5.2 Stream Function for Two-Dimensional Incompressible Flow
	5.3 Motion of a Fluid Particle (Kinematics)
		Fluid Translation: Acceleration of a Fluid Particle in a Velocity Field
		Fluid Rotation
		Fluid Deformation
	5.4 Momentum Equation
		Forces Acting on a Fluid Particle
		Differential Momentum Equation
		Newtonian Fluid: Navier–Stokes Equations
	5.5 Summary and Useful Equations
	References
Chapter 6 Problems
Chapter 6 Incompressible Inviscid Flow
	6.1 Momentum Equation for Frictionless Flow: Euler’s Equation
	6.2 Bernoulli Equation: Integration of Euler’s Equation Along a Streamline for Steady Flow
		Derivation Using Streamline Coordinates
		Derivation Using Rectangular Coordinates
		Static, Stagnation, and Dynamic Pressures
		Applications
		Cautions on Use of the Bernoulli Equation
	6.3 The Bernoulli Equation Interpreted as an Energy Equation
	6.4 Energy Grade Line and Hydraulic Grade Line
	6.5 Unsteady Bernoulli Equation: Integration of Euler’s Equation Along a Streamline
	6.6 Irrotational Flow
		Bernoulli Equation Applied to Irrotational Flow
		Velocity Potential
		Stream Function and Velocity Potential for Two-Dimensional, Irrotational, Incompressible Flow: Laplace’s Equation
		Elementary Plane Flows
		Superposition of Elementary Plane Flows
	6.7 Summary and Useful Equations
	References
Chapter 7 Problems
Chapter 7 Dimensional Analysis and Similitude
	7.1 Nondimensionalizing the Basic Differential Equations
	7.2 Buckingham Pi Theorem
	7.3 Significant Dimensionless Groups in Fluid Mechanics
	7.4 Flow Similarity and Model Studies
		Incomplete Similarity
		Scaling with Multiple Dependent Parameters
		Comments on Model Testing
	7.5 Summary and Useful Equations
	References
Chapter 8 Problems
Chapter 8 Internal Incompressible Viscous Flow
	8.1 Internal Flow Characteristics
		Laminar versus Turbulent Flow
		The Entrance Region
	Part A Fully Developed Laminar Flow
	8.2 Fully Developed Laminar Flow Between Infinite Parallel Plates
		Both Plates Stationary
		Upper Plate Moving with Constant Speed, U
	8.3 Fully Developed Laminar Flow in a Pipe
	Part B Flow in Pipes and Ducts
	8.4 Shear Stress Distribution in Fully Developed Pipe Flow
	8.5 Turbulent Velocity Profiles in Fully Developed Pipe Flow
	8.6 Energy Considerations in Pipe Flow
		Kinetic Energy Coefficient
		Head Loss
	8.7 Calculation of Head Loss
		Major Losses: Friction Factor
		Minor Losses
		Pumps, Fans, and Blowers in Fluid Systems
		Noncircular Ducts
	8.8 Solution of Pipe Flow Problems
		Single-Path Systems
		Multiple-Path Systems
	Part C Flow Measurement
	8.9 Restriction Flow Meters for Internal Flows
		The Orifice Plate
		The Flow Nozzle
		The Venturi
		The Laminar Flow Element
		Linear Flow Meters
		Traversing Methods
	8.10 Summary and Useful Equations
	References
Chapter 9 Problems
Chapter 9 External Incompressible Viscous Flow
	Part A Boundary Layers
	9.1 The Boundary Layer Concept
	9.2 Laminar Flat Plate Boundary Layer: Exact Solution
	9.3 Momentum Integral Equation
	9.4 Use of the Momentum Integral Equation for Flow with Zero Pressure Gradient
		Laminar Flow
		Turbulent Flow
	9.5 Pressure Gradients in Boundary Layer Flow
	Part B Fluid Flow About Immersed Bodies
	9.6 Drag
		Pure Friction Drag: Flow over a Flat Plate Parallel to the Flow
		Pure Pressure Drag: Flow over a Flat Plate Normal to the Flow
		Friction and Pressure Drag: Flow over a Sphere and Cylinder
		Streamlining
	9.7 Lift
	9.8 Summary and Useful Equations
	References
Chapter 10 Problems
Chapter 10 Fluid Machinery
	10.1 Introduction and Classification of Fluid Machines
		Machines for Doing Work on a Fluid
		Machines for Extracting Work (Power) from a Fluid
		Scope of Coverage
	10.2 Turbomachinery Analysis
		The Angular-Momentum Principle: The Euler Turbomachine Equation
		Velocity Diagrams
		Performance—Hydraulic Power
		Dimensional Analysis and Specific Speed
	10.3 Pumps, Fans, and Blowers
		Application of Euler Turbomachine Equation to Centrifugal Pumps
		Application of the Euler Equation to Axial Flow Pumps and Fans
		Performance Characteristics
		Similarity Rules
		Cavitation and Net Positive Suction Head
		Pump Selection: Applications to Fluid Systems
		Blowers and Fans
	10.4 Positive Displacement Pumps
	10.5 Hydraulic Turbines
		Hydraulic Turbine Theory
		Performance Characteristics for Hydraulic Turbines
	10.6 Propellers and Wind Turbines
		Propellers
		Wind Turbines
	10.7Compressible Flow Turbomachines
		Application of the Energy Equation to a Compressible Flow Machine
		Compressors
		Compressible-Flow Turbines
	10.8 Summary and Useful Equations
	References
Chapter 11 Problems
Chapter 11 Flow in Open Channels
	11.1 Basic Concepts and Definitions
		Simplifying Assumptions
		Channel Geometry
		Speed of Surface Waves and the Froude Number
	11.2 Energy Equation for Open-Channel Flows
		Specific Energy
		Critical Depth: Minimum Specific Energy
	11.3 Localized Effect of Area Change (Frictionless Flow)
		Flow over a Bump
	11.4 The Hydraulic Jump
		Depth Increase Across a Hydraulic Jump
		Head Loss Across a Hydraulic Jump
	11.5 Steady Uniform Flow
		The Manning Equation for Uniform Flow
		Energy Equation for Uniform Flow
		Optimum Channel Cross Section
	11.6 Flow with Gradually Varying Depth
		Calculation of Surface Profiles
	11.7 Discharge Measurement Using Weirs
		Suppressed Rectangular Weir
		Contracted Rectangular Weirs
		Triangular Weir
		Broad-Crested Weir
	11.8 Summary and Useful Equations
	References
Chapter 12 Problems
Chapter 12 Introduction to Compressible Flow
	12.1 Review of Thermodynamics
	12.2 Propagation of Sound Waves
		Speed of Sound
		Types of Flow—The Mach Cone
	12.3 Reference State: Local Isentropic Stagnation Properties
		Local Isentropic Stagnation Properties for the Flow of an Ideal Gas
	12.4 Critical Conditions
	12.5 Basic Equations for One-Dimensional Compressible Flow
		Continuity Equation
		Momentum Equation
		First Law of Thermodynamics
		Second Law of Thermodynamics
		Equation of State
	12.6 Isentropic Flow of an Ideal Gas: Area Variation
		Subsonic Flow, M< 1
		Supersonic Flow, M>1
		Sonic Flow, M=1
		Reference Stagnation and Critical Conditions for Isentropic Flow of an Ideal Gas
		Isentropic Flow in a Converging Nozzle
		Isentropic Flow in a Converging-Diverging Nozzle
	12.7 Normal Shocks
		Basic Equations for a Normal Shock
		Normal-Shock Flow Functions for One-Dimensional Flow of an Ideal Gas
	12.8 Supersonic Channel Flow with Shocks
	12.9 Summary and Useful Equations
	References
Appendix A Fluid Property Data
	A.1 Specific Gravity
	A.2 Surface Tension
	A.3 The Physical Nature of Viscosity
		Effect of Temperature on Viscosity
		Effect of Pressure on Viscosity
	A.4 Lubricating Oils
	A.5 Properties of Common Gases, Air, and Water
Appendix B Videos for Fluid Mechanics
Appendix C Selected Performance Curves for Pumps and Fans
	C.1 Introduction
	C.2 Pump Selection
	C.3 Fan Selection
Appendix D Flow Functions for Computation of Compressible Flow
	D.1 Isentropic Flow
	D.2 Normal Shock
Appendix E Analysis of Experimental Uncertainty
	E.1 Introduction
	E.2 Types of Error
	E.3 Estimation of Uncertainty
	E.4 Applications to Data
	E.5 Summary
	References
Appendix F Introduction to Computational Fluid Dynamics
	F.1 Introduction to Computational Fluid Dynamics
		The Need for CFD
		Applications of CFD
	F.2 Finite Difference Approach to CFD
		Techniques of CFD
	References
Index
EULA




نظرات کاربران