ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Ferroelectric Materials for Energy Harvesting and Storage

دانلود کتاب مواد فروالکتریک برای برداشت و ذخیره انرژی

Ferroelectric Materials for Energy Harvesting and Storage

مشخصات کتاب

Ferroelectric Materials for Energy Harvesting and Storage

ویرایش: 1 
نویسندگان: , ,   
سری: Woodhead Publishing Series in Electronic and Optical Materials 
ISBN (شابک) : 0081028024, 9780081028025 
ناشر: Woodhead Publishing 
سال نشر: 2020 
تعداد صفحات: 647 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 23


در صورت تبدیل فایل کتاب Ferroelectric Materials for Energy Harvesting and Storage به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مواد فروالکتریک برای برداشت و ذخیره انرژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مواد فروالکتریک برای برداشت و ذخیره انرژی

نیاز به برداشت موثرتر انرژی برای الکترونیک، تحقیقات در مورد موادی را تحریک کرده است که می توانند انرژی را از منابع فراوان محلی برداشت کنند. مواد فروالکتریک برای برداشت و ذخیره انرژی اولین کتابی است که مکانیسم های اساسی برای برداشت منابع انرژی فراوان با استفاده از مواد فروالکتریک و پیزوالکتریک را گرد هم می آورد. نویسندگان درباره استراتژی‌های طراحی مواد برای برداشت موثر منابع انرژی مانند خورشید، باد، موج، نوسانات دما، ارتعاشات مکانیکی، حرکت بیومکانیکی و میدان‌های مغناطیسی سرگردان بحث می‌کنند. علاوه بر این، مفاهیم ذخیره انرژی با چگالی بالا با استفاده از مواد فروالکتریک مورد بررسی قرار گرفته است. مواد فروالکتریک برای برداشت و ذخیره انرژی برای کسانی که در رشته های علوم و مهندسی مواد، فیزیک، شیمی و مهندسی برق کار می کنند مناسب است.


توضیحاتی درمورد کتاب به خارجی

The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines.



فهرست مطالب

Front Matter
Copyright
Contributors
Introduction to ferroelectrics and related materials
	Ferroelectrics: A chronical journey
	Signature of ferroelectricity: A polarization hysteresis loop
	Thermodynamics of ferroelectrics
	Classification of ferroelectrics
		Perovskites
		Aurivillius oxides
		Tungsten-bronze family
		Ilmenite compounds
		Polymer ferroelectrics
		Other classes of ferroelectrics
	Ferroelectric perovskites
		Distortions of cubic perovskites to ferroelectric phase
			Displacement of B cations inside the oxygen octahedra
			Tilt in oxygen octahedra
			Distortion of the octahedron
		Domain and domain walls in perovskites
		Domain switching in perovskites and evolution of P-E loop
	Other related phenomena
		Piezoelectricity
		Pyroelectricity and electrocaloric effect
		Flexoelectricity
	Crystallographic anisotropy of functional behavior
	Characterization of ferroelectrics and related materials
		Ferroelectric polarization characterization using Sawyer-Tower circuit
		Determination of different piezoelectric coefficients
			Resonance-Antiresonance method
				Piezoelectric strain coefficient (d)
				Electromechanical coupling coefficient (k)
				Voltage output constant (g)
			Quasi-static method for low-field longitudinal piezoelectric characterization
		Piezoresponse force microscopy
	Applications of ferroelectrics in energy harvesting
		Solar energy harvesting
		Mechanical energy harvesting
		Magnetic energy harvesting
		Thermal energy harvesting
	Summary
	References
Solar energy harvesting with ferroelectric materials
	Introduction
	Solar photovoltaics
		Fundamentals of physics of solar photovoltaics
			The solar spectra
			Open circuit voltage, short-circuit current, quantum efficiency, and fill factor
			Factors affecting the performance of a conventional solar cell
		Photovoltaics with ferroelectrics
			Bulk photovoltaic effect
			Ferroelectric domain wall model
			Schottky-junction effect
			Depolarization field model
			Design parameters for ferroelectric materials for PV applications
		Perovskite photovoltaics
			Fabrication of perovskite solar cell
			Disadvantages of perovskite solar cell
				Stability and limited service life
				Noxious material
					Tin-based halide perovskite:
					Cesium tin iodines:
					Methylammonium tin iodide:
					Formamidinium tin iodide:
		Transition metal oxides
	Photochemical conversion of solar energy: Solar water splitting
		Basics of solar water splitting
		Ferroic materials for photoelectrochemical water splitting: Fundamentals of material requirement
			Various ferroelectrics as photoelectrode material for PEC water splitting
	Summary
	References
Harvesting thermal energy with ferroelectric materials
	Introduction
	Ferroelectricity
	Working principle of ferroelectric thermal energy harvesting
	Ferroelectric thermodynamic cycles
	Ferroelectric thermal energy harvesters
	Other applications
		Electrocaloric cooling
		Pyroelectric detectors
	Summary/future perspective
	References
Leveraging size effects in flexoelectric-piezoelectric vibration energy harvesting
	Introduction
	Direct and converse flexoelectric and piezoelectric effects
	Flexoelectric energy harvesting using a centrosymmetric cantilever
		Flexoelectrically coupled mechanical equation and modal analysis
		Flexoelectrically coupled electrical circuit equation and modal analysis
		Closed-form voltage response and vibration response at steady state
		Size effects on modal electromechanical coupling coefficient
		Case studies and results
			Electromechanical coupling coefficient and size effects
			Resonant energy harvesting: Electromechanical frequency response and size effects
	Size effects in piezoelectric energy harvesting due to flexoelectricity
		Flexoelectrically and piezoelectrically coupled mechanical equation and modal analysis
		Flexoelectrically and piezoelectrically coupled electrical circuit equation and modal analysis
		Closed-form voltage response and vibration response at steady state
		Flexoelectric-piezoelectric electromechanical coupling coefficient and size effects
		Cases studies and results
			Electromechanical coupling coefficient and size effects
			Resonant energy harvesting: Electromechanical frequency response and size effects
	Conclusions
	Acknowledgment
	References
Modeling and identification of nonlinear piezoelectric material properties for energy harvesting
	Introduction
	Representation and implementation of constitutive relations
	Direct excitation
		Modeling using nonlinear stress and electric displacement constitutive relations
		Modeling using electromechanical enthalpy
		Reduced-order model: Galerkin discretization
		Approximate solution: Method of multiple scales
		Parameter identification strategy
		Validation of parameter identification strategy
	Parametric excitation
		Mathematical modeling
		Reduced-order model: Galerkin discretization
		Approximate solution: Method of multiple scales
		Parameter identification strategy
		Validation of parameter identification strategy
	Conclusions
	Appendices
		Simplification of weighted residual statement: Direct excitation
		Simplification of weighted residual statement: Parametric excitation
	References
Sustainable Composites for Lightweight Applications
Copyright
Preface
	Key features of this book
	Target audiences of this book
	Chapter highlights of this book
1. Introduction to composite materials
	1.1 Background and context
	1.2 Matrices and their types
		1.2.1 Types and main functions and the properties of matrices
			1.2.1.1 Epoxy resins
			1.2.1.2 Polyester resins
			1.2.1.3 Vinyl ester resins
			1.2.1.4 Phenolic resins
			1.2.1.5 Polyethylene
			1.2.1.6 Polypropylene
			1.2.1.7 Polystyrene
			1.2.1.8 Polylactic acid
	1.3 Reinforcements and their types
		1.3.1 Conventional reinforcements and their types
			1.3.1.1 Glass fibres
			1.3.1.2 Carbon fibres
			1.3.1.3 Ceramic fibres
		1.3.2 Natural fibres and their types
			1.3.2.1 Advantages and disadvantages of natural fibres
	1.4 Main drivers of composite materials
	1.5 Application of sustainable composite materials
	1.6 Summary
	References
	Further reading
2. Sustainable natural fibre reinforcements and their morphological structures
	2.1 Commonly used sustainable materials (plant-based natural fibres reinforcements in composites)
		2.1.1 Hemp fibres
		2.1.2 Flax fibres
		2.1.3 Jute fibres
		2.1.4 Kenaf fibres
			2.1.4.1 Advantages of kenaf fibres
		2.1.5 Date palm fibres
		2.1.6 Sisal fibres
		2.1.7 Oil palm fibres
		2.1.8 Banana fibres
	2.2 Influence of processing and chemical composition on the properties
		2.2.1 Importance of fibre processing parameters
		2.2.2 Chemical composition and their influences on the properties
		2.2.3 Cellulose structure
			2.2.3.1 Cellulose
			2.2.3.2 Hemicellulose
			2.2.3.3 Lignin
	2.3 Mechanical, physical and morphological characteristics of plant fibres
		2.3.1 Morphological structure of natural fibres
			2.3.1.1 Primary and secondary cell walls
			2.3.1.2 Lumen
		2.3.2 Effects of variable morphological structure and mechanical properties
	2.4 Effects of variable morphology on properties
	2.5 Physical and mechanical investigation of single fibres and fibre bundles
		2.5.1 Importance of single fibre and fibre bundle properties
	2.6 Summary
	References
	Further reading
3. Lightweight composites, important properties and applications
	3.1 Lightweight composite materials: requirements and their key features
		3.1.1 Lightweight concept
		3.1.2 Lightweight drives
		3.1.3 Achieving lightweighting potentials
		3.1.4 Lightweighting benefits
	3.2 Important properties
		3.2.1 Mechanical properties of biobased composites
			3.2.1.1 Tensile properties
			3.2.1.2 Flexural properties
			3.2.1.3 Impact properties
				Parameters influencing the impact damage characteristics of composites
			3.2.1.4 Fatigue properties
			3.2.1.5 Creep behaviour
	3.3 Thermal stability of biobased composites
		3.3.1 Thermal degradation and stability of biobased composites
		3.3.2 Flammability behaviour
			3.3.2.1 Parameters influencing cone calorimeter performance
			3.3.2.2 Ways for improvement of fire properties of natural fibre reinforcements and composites
		3.3.3 Thermal conductivity measurements
			3.3.3.1 Ways improving the thermal conductivity of polymer matrix composites
	3.4 Environmental effects (water absorption) and their influence in different properties
		3.4.1 Moisture diffusion mechanisms in composites
		3.4.2 Effects of moisture diffusion the mechanical properties
	3.5 Numerical modelling of mechanical properties and damage behaviour of natural fibre-reinforced biobased composites
		3.5.1 Background
		3.5.2 Predicting mechanical and damage behaviour of natural fibres and composites
			3.5.2.1 Finite element method
			3.5.2.2 Boundary element method
			3.5.2.3 Finite difference method
		3.5.3 The prediction of static mechanical properties of composites using FEA
	3.6 Applications of lightweight natural fibre composites
		3.6.1 Automotive application (road vehicles and land transport)
		3.6.2 Aerospace and related application
		3.6.3 Marine applications
		3.6.4 The building construction application
		3.6.5 Other applications
	3.7 Conclusions
	References
4. Design, manufacturing processes and their effects on bio-composite properties
	4.1 Introduction and context
	4.2 Eco-design and sustainability (design for environment and design for manufacturing)
		4.2.1 Eco-design
		4.2.2 Sustainability
		4.2.3 Design for environment
			4.2.3.1 Materials
			4.2.3.2 Production
			4.2.3.3 Distribution
			4.2.3.4 Use
			4.2.3.5 Recovery
		4.2.4 Design for manufacture
	4.3 Manufacturing processes and their influences on properties of bio-composites
		4.3.1 Hand and spray lay-ups
			4.3.1.1 Hand lay-up
			4.3.1.2 Spray lay-up
		4.3.2 Vacuum bagging moulding
		4.3.3 Injection moulding
		4.3.4 Compression moulding
		4.3.5 Vacuum resin infusion
		4.3.6 Pre-impregnated resin
		4.3.7 Extrusion
		4.3.8 Resin transfer moulding
		4.3.9 Automated fibre placement
		4.3.10 Filament winding
		4.3.11 Autoclave moulding
		4.3.12 Out-of-autoclave moulding
			4.3.12.1 Autoclave and out-of-autoclave curing processes
		4.3.13 Additive manufacturing
		4.3.14 Brief comparison among manufacturing processes
	4.4 Key drivers for cleaner production or green manufacturing
	4.5 Manufacturing defects
		4.5.1 Microcracks and cracks
		4.5.2 Temperature effects
		4.5.3 Moisture absorption
		4.5.4 Inclusions or contamination
		4.5.5 Porosity (void or pores)
		4.5.6 Other manufacturing defects
	4.6 Conclusions
	References
5. Testing and damage characterisation of biocomposite materials
	5.1 Introduction and context
	5.2 Testing methods for damage characterisation and their importance
		5.2.1 Visual inspection or testing
		5.2.2 Ultrasonic testing
		5.2.3 Thermography testing
		5.2.4 Radiography testing
		5.2.5 Electromagnetic testing
		5.2.6 Acoustic emission inspection
		5.2.7 Acousto-ultrasonic testing
		5.2.8 Shearography testing
		5.2.9 Computed tomography scanning
		5.2.10 X-ray micro-computed tomography examination
		5.2.11 Scanning electron microscopy
	5.3 Damage mechanisms and types (key factors for improving damage resistance)
		5.3.1 Damage types and mechanisms
		5.3.2 Failure or damage modes
		5.3.3 Failure or damage mechanisms associated with FRP composites
		5.3.4 Damage detection in FRP composite structures
		5.3.5 Key factors for improving damage resistance
	5.4 Characterisation of damage modes using destructive and non-destructive damage analysis techniques (SEM, X-ray micro CT, AE, ...
		5.4.1 Categorisation of NDT methods for FRP composite materials
		5.4.2 Contact versus non-contact techniques
		5.4.3 Inspection type versus NDT methods
		5.4.4 Physical behaviours and structural integrity
	5.5 Experimental and numerical modelling of damage modes and mechanisms
		5.5.1 Impact damage
		5.5.2 Fatigue life model
		5.5.3 Thermal effects
	5.6 Conclusions
	References
6. Sustainable composites and techniques for property enhancement
	6.1 The context of sustainability in composites (comparison of sustainability of biocomposites versus conventional composites t ...
	6.2 Inherent properties of natural fibres of biocomposite materials
	6.3 Improvement of reinforcements and matrices through various treatments and fillers
		6.3.1 Fibre treatments
		6.3.2 Chemical treatments
		6.3.3 Physical treatments
		6.3.4 Additive treatments
		6.3.5 Biological treatments
	6.4 Approaches towards overall property enhancement via hybridisation, pinning, stitching, among others
		6.4.1 Stitching
		6.4.2 Hybridisation
		6.4.3 Pinning
		6.4.4 Knitting
		6.4.5 Weaving
		6.4.6 Braiding
		6.4.7 Tufting
	6.5 Summary and further evaluation
	6.6 Conclusion
	References
7. Future outlooks and challenges of sustainable lightweight composites
	7.1 Journey of composite materials towards sustainability
	7.2 Market outlook and supply chain scenario
	7.3 Challenges of achieving properties for lightweight applications
		7.3.1 Materials and manufacturing process
		7.3.2 Recyclability and end-of- life option
		7.3.3 Long-term durability
	7.4 Future outlook
	References
	Further reading
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X
Biomechanical energy harvesting with piezoelectric materials
	Introduction
	Principles of biomechanical energy harvesting
		Theoretical background (analysis with few cases)
			Heel strike
			Lower body parts (ankle, knee, hip) motion
			Center of mass (CM) motion
			Arm motion
		Motions trajectory during human walking
		Electrical response of piezoelectric material: Modeling
	Design considerations and performance criterion
		Cantilevers
		Disks: Cymbal
		Disk: Diaphragms
		Other configurations
		Performance criterion of piezoelectric energy harvester
	State-of-the-art
		Ceramic-based NGs
		Polymer and polymer-ceramic composite-based NGs
	Summary
	Challenges and future outlook
		Materials and process issues
		Electrical output
		Life span of devices
		Encapsulation of energy harvesters
		Flexibility of devices
		Integration issues
	Acknowledgments
	References
Harvesting stray magnetic field for powering wireless sensors
	Introduction
	Energy sources for ubiquitous magnetic fields
	Overview of a magnetic energy harvester
		Piezoelectric materials
			Polycrystalline piezoelectrics
			Macro-fiber composite (MFC)
			Single-crystal piezoelectrics
			Single-crystal fiber composite (SFC)
		Magnetostrictive materials
			Terfenol-D (TbxDy1-xFe2)
			Galfenol (FeGa alloy)
			Nickel and Metglas
		Multiferroic and magnetoelectric materials
		Magneto-mechano-electric (MME) generator
	Conversion improvement
	Harvested energy transfer optimization
	Design and applications
		Optimization of the device and energy harvesting
		Applications: Autonomous wireless sensor networks
	Conclusion
	Glossary
	Acknowledgments
	References
Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage
	Introduction
		Energy storage in dielectric capacitors
		Dielectric capacitors in pulsed power systems and their applications
	Figures of merit for energy storage in dielectric capacitors
		Energy storage density
		Energy storage efficiency
		Fatigue endurance
		Thermal stability
	Properties of interest for energy storage in dielectric capacitors
		Dielectric permittivity and loss
		Polarization and hysteresis loss
		Leakage current
		Dielectric strength or breakdown field
	Lead (Pb) containing dielectric ceramic materials
		Pb-based ferroelectrics
		Pb-based relaxor ferroelectrics
			(Pb,La)(Zr,Ti)O3 (PLZT) RFE ceramics and films
			Pb-based solid solution RFEs
		Pb-based antiferroelectrics
			PbZrO3-based AFE ceramics and films
				Pure PbZrO3 AFE materials
				A-site-doped PbZrO3 AFE materials
				A-, B-site co-doped PbZrO3 AFE materials
			Pb-based complex perovskite AFEs
	Lead (Pb)-free dielectric ceramic materials
		Pb-free ferroelectrics
			BaTiO3-based FE ceramics and films
			(Bi0.5Na0.5)TiO3-based FE ceramics and films
		Pb-free relaxor ferroelectrics
			BaTiO3-based RFE ceramics and films
				BaTiO3-Bi compound solid solution RFEs
				BaTiO3-BiMO3 solid solution RFEs
				BaTiO3-Bi(M1,M2)O3 solid solution RFEs
			BiFeO3-based RFE ceramics and films
				BiFeO3-BaTiO3 solid solution RFEs
				BiFeO3-SrTiO3 solid solution RFEs
			(K,Na)NbO3-based RFE ceramics and films
		Pb-free antiferroelectrics
			AgNbO3-based AFE ceramics
			NaNbO3-based AFE ceramics
			(Bi0.5Na0.5)TiO3-based AFE ceramics and films
			(Bi0.5Nb0.5)TiO3-NaNbO3 solid solution AFE ceramics
			HfO2-based AFE films
	Summary and future directions
	Acknowledgments
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W




نظرات کاربران