دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: R. K. Shukla
سری:
ISBN (شابک) : 9789332526433, 9789332540552
ناشر: Pearson Education
سال نشر: 2014
تعداد صفحات: 305
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Engineering Physics II (GPTU/UPTU NAS-202) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک مهندسی II (GPTU/UPTU NAS-202) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents Preface About the Author Acknowledgement Chapter 1: Crystal Structure X-ray Diffraction 1.1 Introduction 1.2 Space Lattice 1.3 Unit Cell and Primitive Cell 1.4 Basic Crystal Structures and their Characteristics 1.5 Bravais Space Lattice 1.6 Calculation of the Number of Atoms Per Unit Cell 1.7 Coordination Number 1.8 Atomic Radii 1.9 Ionic Radii 1.10 Calculation of Lattice Constant 1.11 Lattice Planes and Miller Indices 1.12 Atomic Packing Factor: Packing Efficiency 1.12.1 Atomic Packing Factor of Simple Cubic Lattice 1.12.2 Atomic Packing Factor of Fcc Lattice 1.12.3 Atomic Packing Factor of Bcc Lattice 1.13 Interplanar Spacing (dHKL) 1.13.1 Spacing Between Lattice Planes in bcc Crystal 1.13.2 Spacing Between Lattice Planes in fcc Crystal 1.14 Some Common Crystal Structures 1.15 X-Ray Diffraction 1.16 Laue Experiment 1.17 Bragg’s Study of the Pattern 1.18 Bragg’s Law 1.19 Bragg’s X-Ray Spectrometer 1.19.1 Main Components 1.19.2 X-Ray Source 1.19.3 Graduated Circular Table 1.19.4 Detector 1.20 Determination of Crystal Structure Using Bragg’s Law 1.21 Reciprocal Lattice Summary Exercises Chapter 2: Dielectric Properties of Materials 2.1 Introduction 2.2 Classification of Dielectric Materials 2.3 Polar Dielectric Materials 2.4 Non-Polar Dielectric Materials 2.5 Different Kinds of Polarization 2.6 Behaviour of Dielectric Materials 2.6.1 Behaviour of Non-Polar Dielectric Materials in D.C. Field: Electronic Polarization 2.6.2 Theory of Orientational Polarization of Polar Dielectrics: Langevin–Debye Theory 2.6.3 Clausius–Mossotti Equation: (Non-polar Dielectric in D.C. Field) 2.7 Three Electric Vectors E, D, and P 2.8 Gauss’s Law in Dielectric 2.9 Electric Susceptibility and Static Dielectric Constant (ce and ∈r) 2.10 Effect of Dielectric Medium Upon Capacitance 2.11 Macroscopic Electric Field 2.12 Microscopic Electric Field 2.13 Internal (Local) Fields in Liquid and Solid Dielectrics: One-dimensional Case 2.14 Temperature Dependence of Dielectric Constant 2.15 Response of Dielectric to A.C. (Time-Varying) Field: Frequency Dependence of Dielectric Loss 2.16 Complex Dielectric Constant 2.17 Dielectric Loss 2.18 Loss Tangent or Power Factor: tan 2.19 Physical Significance of Loss Tangent 2.20 Dielectric Strength and Dielectric Breakdown 2.21 Various Kinds of Dielectric Materials 2.22 Ferroelectric Dielectrics 2.23 Applications of Ferroelectric Materials in Devices 2.24 Electrostriction Effect and Electrostrictive Materials 2.25 Direct and Inverse Piezoelectric Effect 2.25.1 Applications of Piezoelectric Materials 2.26 Pyroelectric Materials 2.27 Difference Between Ferroelectricity and Piezoelectricity Summary Exercises Chapter 3: Magnetic Properties of Materials 3.1 Introduction 3.2 Origin of Magnetic Moment: (Smallest Magnetic Moment) 3.3 Some Important Magnetic Parameters 3.3.1 Magnetic Flux (m), 3.3.2 Magnetization Vector (M), 3.3.3 Flux density: Magnetic Induction (B), 3.3.4 Magnetic Permeability (m), 3.3.5 Magnetic Susceptibility (cm), 3.4 Relation Between Magnetic Permeability and Susceptibility 3.5 Classification of Magnetic Materials 3.6 Characteristics of Diamagnetic Materials 3.7 Characteristics of Paramagnetic Materials 3.8 Characteristics of Ferromagnetic Materials 3.9 Characteristics of Antiferro Magnetic Materials 3.10 Characteristic of Ferrimagnetic Materials 3.11 Langevin’s Theory of Diamagnetism 3.12 Explanation of Dia-, Para-, and Ferromagnetism 3.13 Demagnetization 3.14 Relation Between H, B, and M Vectors 3.14.1 Restatement of Ampere’s Law 3.15 Hysteresis 3.16 Antiferro Magnetism and Neel Temperature 3.17 Ferrimagnetic Materials 3.18 Properties of Some Magnetic Materials 3.19 Hard and Soft Ferromagnetic Materials 3.19.1 Soft Ferromagnetic Materials 3.19.2 Hard Magnetic Materials 3.20 Hysteresis Curve of a Ferrite 3.21 Applications of Ferrites 3.22 Applications of Hysteresis Curve Summary Exercises Chapter 4: Electromagnetic Theory 4.1 Introduction 4.2 Equation of Continuity (Principle of Conservation of Charge) 4.3 Conduction Current and Displacement Current 4.4 Fundamental Laws of Electricity and Magnetism 4.5 Differential Form of Maxwell’s Equations 4.6 Derivation of Maxwell’s Equations 4.7 Properties of Displacement Current 4.8 Maxwell’s Equations in Integral Form 4.9 Significance of Maxwell’s Equations 4.10 Poisson’s Equation 4.11 Laplace Equation 4.12 Characteristics of Electromagnetic Waves 4.12.1 Transverse Nature of Plane Electromagnetic Waves 4.12.2 Ratio of E and B vectors is Equal to C 4.13 Poynting Theorem 4.14 Interpretation of Terms 4.15 Poynting Vector 4.16 Electromagnetic Waves in Conducting Medium 4.17 Equation of Plane Polarized Electromagnetic Waves 4.18 Skin Depth: Depth of Penetration 4.19 Significance of Skin Depth 4.19.1 Some Useful Facts on ‘Skin Depth’ 4.20 Plane Electromagnetic Waves in a Non-conducting Isotropic (Dielectric Medium) 4.20.1 Nature of electromagnet in non-conducting isotropic medium, Summary Exercises Chapter 5: Superconductors 5.1 Introduction 5.2 Temperature Dependence of Resistivity: Critical Temperature 5.3 Elemental Superconductors 5.4 Explanation of Superconductivity on the Basis of Free Electron Theory 5.5 Isotope Effect 5.6 Temperature Dependence of Critical Magnetic Field 5.7 Critical Current: Silsbee’s Rule 5.8 Effect of Magnetic Field: Meissner Effect 5.9 Experimental Demonstration of Meissner Effect 5.9.1 Working Mechanism 5.10 Classification of Superconductors 5.11 Electrodynamics of Superconductors (Explanation of Meissner Effect) 5.12 London’s Penetration Depth 5.13 BCS Theory of Superconductors 5.14 Formation and Characteristics of Cooper Pairs 5.14.1 Important characteristics of Cooper Pairs 5.15 Experimental Evidence for the Energy Gap 5.16 Flux Quantization 5.17 Josephson Effect 5.18 Characteristics of Superconductors 5.19 Effect in Thermodynamic Parameters in Superconducting State, 5.20 Frequency Dependence of Superconductivity 5.21 Present Status of High-temperature Superconductors 5.21.1 Desirable Characteristics 5.22 Practical Applications of Superconductors 5.22.1 Electrical Applications Summary Exercises Chapter 6: Semiconductors 6.1 Introduction 6.2 Position of Semiconductors in Periodic Table 6.3 Basic Structure of Ge and Si 6.3.1 Comparison Between Certain Parameters of Ge and Si 6.4 Classification of Semiconductors 6.5 Elemental Semiconductors 6.6 Formation of Energy Bands in Solid Material: Kronig–Penny Model 6.6.1 Interpretation of solution 6.7 Formation of Energy Bands in Semiconductors and Insulators 6.8 Classification of Materials on the Basis of Band Structure 6.9 Explanation for the Difference in the Electrical Properties of Different Materials 6.10 Important Characteristics of a Band Electron 6.11 Concept of Hole: A Remarkable Contribution of Band Theory 6.12 Classification of Elemental Semiconductors 6.12.1 Intrinsic Semiconductors 6.13 Impurity Addition in Semiconductors: Doping 6.14 Extrinsic Semiconductors 6.15 Selection of Semiconductor Materials for Various Devices 6.16 Fermi–Dirac Statistics 6.17 Fermi–Dirac Distribution 6.18 Fermi Function: Occupation Index 6.19 Fermi–Dirac Energy Distribution Law 6.20 Determination of the Number of Microstates or Phase Cells 6.21 Significance of Fermi Energy 6.22 Motion of Electron in Solid: Effective Mass of Charge Carriers 6.23 Concentration of Free Charge Carrier in Intrinsic Semiconductor 6.24 Position of Fermi Level in Intrinsic Semiconductor 6.25 Temperature Dependence of Carrier Concentration 6.26 Position of Fermi Level in Extrinsic Semiconductor 6.27 Intrinsic Conductivity of Semiconductor 6.28 Position of Donor Energy Level in n-Type Semiconductor 6.29 Position of Acceptor Levels in p-Type Semiconductor 6.30 Transport Mechanism in Semiconductors 6.30.1 Carrier Drift and Drift Mobility 6.31 Conductivity of Semiconductor 6.31.1 A comparison of vd versus E plot of GaAs, Ge, Si 6.32 Carrier Diffusion 6.33 Diffusion Current: Carrier Diffusion Mechanism 6.34 Total Current Density 6.35 Measurement of Semiconductor Parameters 6.36 Hall Effect and Hall Coefficient 6.36.1 Expression for hall voltage 6.36.2 Significance of hall effect 6.37 Merits of Semiconductor Materials Summary Exercises Chapter 7: Nanomaterials 7.1 Introduction 7.2 Reason for the Drastic Change in Properties at Nanoscale 7.3 Increase in Surface Area to Volume Ratio 7.4 Quantum Confinement Effects 7.5 Creation of Buckyballs 7.6 Use of Buckyballs 7.7 Variation in Properties of Nanomaterials 7.7.1 Change in Physical Properties 7.7.2 Change in Chemical Properties 7.7.3 Change in Electrical Properties 7.7.4 Change in Optical Properties 7.7.5 Change in Magnetic Properties 7.7.6 Change in Mechanical Properties 7.8 Production of Nanomaterials 7.9 Preparation of Nanomaterials 7.10 Carbon Nanotubes 7.11 Types of Cnts 7.12 Applications of Nanomaterials 7.13 Applications of Nanotechnology Summary Exercises Model Question Paper-I Model Question Paper-II B. Tech. (SEM-II) Even Semester Theory Examination, 2012–13 B. Tech. (SEM-II) Even Semester Theory Examination, 2012–13 B. Tech. (SEM-II) Even Semester Theory Examination, 2012–13 B. Tech. (SEM-II) Theory Examination 2011–12 B. Tech. (SEM-II) Theory Examination 2010–11