ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Design, Operation, and Control of Insect-Rearing Systems: Science, Technology, and Infrastructure

دانلود کتاب طراحی، بهره برداری و کنترل سیستم های پرورش حشرات: علم، فناوری و زیرساخت

Design, Operation, and Control of Insect-Rearing Systems: Science, Technology, and Infrastructure

مشخصات کتاب

Design, Operation, and Control of Insect-Rearing Systems: Science, Technology, and Infrastructure

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781138571259, 1138571253 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 421 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 47 مگابایت 

قیمت کتاب (تومان) : 31,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Design, Operation, and Control of Insect-Rearing Systems: Science, Technology, and Infrastructure به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی، بهره برداری و کنترل سیستم های پرورش حشرات: علم، فناوری و زیرساخت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی، بهره برداری و کنترل سیستم های پرورش حشرات: علم، فناوری و زیرساخت

طراحی، بهره برداری و کنترل سیستم های پرورش حشرات: علم، فناوری و زیرساخت اجزای اساسی پرورش حشرات را توضیح می دهد: 1) سیستم های پرورش، فی نفسه 2) پرسنل 3) آموزش پرسنل پرورشی 4) ابلاغ رویه ها 5) نگاهی عمیق به پرورش کرم ابریشم 5) تأسیساتی که در آن پرورش انجام می شود و 6) بودجه برای همه این اجزا. پرورش حشرات طیف وسیعی از اهداف را انجام می دهد، از جمله تحقیق، کنترل آفات با تکنیک حشرات استریل و کنترل بیولوژیکی، تولید حشرات به عنوان غذا برای سایر حیوانات، حفاظت، آموزش و حتی فناوری گسترده ای که در آن از حشرات برای تولید محصولاتی مانند استفاده می شود. مواد دارویی و منسوجات قوی و چند منظوره. این کتاب به بررسی و تجزیه و تحلیل پرورش حشرات با رویکرد علمی و فناوری می پردازد. در پایه و اساس، این رویکرد فرض می‌کند که سیستم‌های پرورش، برهمکنش‌های پیچیده‌ای از اجزا هستند که با استفاده از یک رویکرد مکانیکی قابل درک و کنترل هستند. آلن کارسون کوهن، نویسنده، زیرساخت سیستم‌های پرورش، وضعیت فعلی و شخصیت آن‌ها و نوع تغییراتی را که می‌توان برای بهبود زمینه پرورش حشرات ایجاد کرد، توضیح می‌دهد. دو ضمیمه، تک نگاری های چاپ نشده را بازنشر می کنند که زمینه تاریخی جذابی را برای توسعه سیستم های پرورش حشرات امروزی فراهم می کند.


توضیحاتی درمورد کتاب به خارجی

Design, Operation, and Control of Insect-Rearing Systems: Science, Technology, and Infrastructure explains the fundamental components of insect rearing: 1) the rearing systems, per se 2) personnel 3) education of rearing personnel 4) communication of procedures 5) an in-depth look at silkworm rearing 5) facilities where rearing is conducted, and 6) funding for all these components. Insect rearing serves a wide array of purposes, including research, pest control by sterile insect technique and biological control, production of insects as food for other animals, conservation, education, and even far-reaching technology where insects are used to produce products such as pharmaceutical materials and strong, multipurpose textiles. This book surveys and analyzes insect rearing from a scientific and technology-based approach. At its foundation, this approach assumes that rearing systems are complex interactions of components that can be understood and controlled by using a mechanistic approach. Author Allen Carson Cohen explains the infrastructure of rearing systems, their current status and character, and what kind of changes can be made to improve the field of insect rearing. Two Appendices republish out-of-print monographs that provide fascinating historical context to the development of the insect-rearing systems we have today.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Preface
Acknowledgments
About the Author
Chapter 1: Approaches to Developing Rearing Systems, Creating an Algorithm for Developing or Problem Solving Rearing Systems, Heuristics, and Reliable, Reproducible Insect Production
	1.1. Background on Insect-Rearing Infrastructure
		1.1.1. The Infrastructure of Insect Rearing
		1.1.2. The Scale of Insect-Rearing Systems
		1.1.3. Further Examination of Rearing Communication
	1.2. Heuristic Approach to Rearing System Development and Improvement
		1.2.1. Heuristic Definitions
		1.2.2. Pure Trial Error vs. Modified, Feedback-Based Discovery
	1.3. What Problem Solving a Rearing System?
		1.3.1. Deeper Perspective on Rearing Systems
		1.3.2. Steps in Rearing Systems’ Algorithms
		1.3.3. What Is a Rearing Algorithm?
		1.3.4. How Are Algorithms Used in Everyday Life?
		1.3.5. Getting Back to Rearing and Diet Algorithms
		1.3.6. Algorithms for Insect-Rearing Systems Are Best If They Are Science-Based
		1.3.7. Definitions of Art, Science, and Technology
			1.3.7.1. Art vs. Science and Technology
		1.3.8. More Discussion of Why Rearing Is
		1.3.9. Science and Technology Demand
		1.3.10. Science Is by Its Very Core Rational
		1.3.11. Repeatability Is Essential to Science
		1.3.12. Predictive Value Is Another Hallmark
		1.3.13. Self-Correction Is the Feature of Science That Pursues the Concept of Continuous Improvement
	1.4. Case Studies: Development of Mass-Rearing Systems for Four Species of Piercing and Sucking Insects
		1.4.1. Introduction to Case Studies of Developing Mass-Rearing Systems for Two Species of Predators and Two Species of Plant Bugs
		1.4.2. Background for the Case Study on Geocoris punctipes Artificial Diet-Based Rearing System
	1.5. How Do We Develop Scientifically-Based Rearing System Algorithms?
		1.5.1. Case Study: Developing Scientifically-Based Algorithms of Geocoris punctipes Rearing System
			1.5.1.1. Rearing Components in a Geocoris punctipes Rearing Algorithm
			1.5.1.2. Making Choices: Which Insect to Rear
			1.5.1.3. Geocoris Rearing Algorithm
			1.5.1.4. Domestication and Fitness
			1.5.1.5. Understanding Feeding Dynamics of Geocoris punctipes and Other Insects: The Scientific Basis of the Rearing Advancements
			1.5.1.6. Algorithm for Upscaling the Scale of the Geocoris Rearing System
			1.5.1.7. Extension of the Geocoris punctipes Rearing System to Chrysoperla rufilabris Mass Rearing
			1.5.1.8. Scaling Up the Lacewing Diet for Mass Production
		1.5.2. Case Study II: Development of a Mass-Rearing System for Tarnished and Western Tarnished Plant Bugs
			1.5.2.1. Background on the Derivation of the Cohen 2000c Lygus Rearing System from the Patana and Debolt L. hesperus Rearing System
			1.5.2.2. Rationale for the Cohen 2000c Diet System
Chapter 2: Who Is Who in Insect Rearing?
	2.1. Why Are Insects Reared?
		2.1.1. Rearing Insects for Research
		2.1.2. Sterile Insect Technique (SIT) and Biological Control
		2.1.3. Feeder Insects
		2.1.4. Rearing Insects for Products
		2.1.5. Waste Treatment
		2.1.6. Insects Used in Celebrations/Ornamentation
		2.1.7. Insects as Pets
		2.1.8. Insects Used for Educational Purposes
		2.1.9. Rearing for Insect Conservation
		2.1.10. Rearing Insects for Forensic Analysis
		2.1.11. Rearing Insects for Medical Purposes
		2.1.12. Who Rears Insects (i.e., What Are the Organizations That Practice or Support Insect Rearing?
			2.1.12.1. Government (Federal and State)
			2.1.12.2. Non-Government Organizations
			2.1.12.3. Private Industry
			2.1.12.4. Educational Institutions
		2.1.13. Rearing Operations for Sterile Insect Technique (SIT)
			2.1.13.1. Introduction
			2.1.13.2. Economics
			2.1.13.3. Facility Design and Location
			2.1.13.4. Escapes and Environmental Concerns
			2.1.13.5. Strain Management
			2.1.13.6. Production, Process, and Product
			2.1.13.7. Automation of Rearing
			2.1.13.8. Diet
			2.1.13.9. Sex Separation
			2.1.13.10. Marking
			2.1.13.11. Storage
Chapter 3: Design and Operation of Insect-Rearing Systems: Science, Technology, and Infrastructure
	3.1. The Rearing System as a Central Concept
	3.2. The Centerpiece of Modern Insect-Rearing Systems: Drosophila
		3.2.1. Drosophila Diet and Rearing-System Development as a Historically First Modern Rearing System
		3.2.2. Development of Drosophila Diets and Diet-Based Rearing Systems
		3.2.3. The Evolution of Controlled Diets for Drosophila: Microbial Relationships
		3.2.4. Other Aspects of Drosophila
	3.3. Evolution of Screwworm Rearing Systems
	3.4. Evolution of Screwworm Diets and Diet Presentation
	3.5. The Evolution of Rearing Systems for Pink Bollworm
		3.5.1. The Early Days of Pink Bollworm Rearing: Pioneering Studies in Lepidoptera Rearing Systems
		3.5.2. Significant Later Accomplishments in Pink Bollworm Diets
		3.5.3. Scaling up Pink Bollworm Rearing
		3.5.4. The Twin-Screw Extruder Is Introduced to Insect Rearing
		3.5.5. Details of the Extruder Engineering Procedures
	3.6. Codling Moth Mass Rearing
	3.7. Gypsy Moth
		3.7.1. Gypsy Moth Introductory Comments
		3.7.2. Gypsy Moth Rearing Facilities
		3.7.3. Quality Control of Gypsy Moths at the Northeastern Forest Experiment Station (NFES)
		3.7.4. Further Discussion of the Gypsy Moth Diet: Chronicling the Abnormal Performance Syndrome
	3.8. Tephritid Fruit Flies
		3.8.1. Introduction to Tephritid Mass Rearing
		3.8.2. Details of Quality-Control Procedures from Several Tephritid Rearing
		3.8.3. Pupal Weight
		3.8.4. The Emergence and Flight Test
			3.8.4.1. Objective
			3.8.4.2. Discussion
			3.8.4.3. Equipment
			3.8.4.4. Test Conditions
			3.8.4.5. Procedure
		3.8.5. Stress Test
			3.8.5.1. Discussion
			3.8.5.2. Procedure
		3.8.6. Diets for Mexican Fruit Flies
		3.8.7. Liquid Diets for Tephritids
		3.8.8. Diagnosis of Rearing Problems
Chapter 4: Silkworm Rearing Systems
	4.1. Overview and Background
		4.1.1. Relating Silkworm Husbandry to Insect Rearing as a Scientific Process
		4.1.2. Mulberry Silkworms: The Most Highly Domesticated Insects
	4.2. Historical Background
		4.2.1. Report from Anonymous 1828
		4.2.2. The Consequences of Excessive Domestication
	4.3. Background and the Vision of Sericulture
		4.3.1. Silkworm Rearing Systems and Sericulture in the United States
	4.4. Silkworm Rearing Systems From Kelly’s Perspective
		4.4.1. The Kelly Monograph
		4.4.2. Kelly and Her Purpose-Driven Rationale for Insect-Rearing (Systems)
		4.4.3. Overview of Henrietta Aiken Kelly’s Work
		4.4.4. Discussion of the Kelly Monograph (Also see Appendix 2: Kelly Silkworm Treatise)
		4.4.5. Cotton and Silk: Purpose-Based Determinants of a Silkworm Mass-Rearing Technology
		4.4.6. Narrative on Kelly’s Treatise
		4.4.7. Further Background of Kelly’s Motivation
		4.4.8. The Scientific Basis of Kelly’s Monograph
		4.4.9. The Timeliness of Kelly’s Comments Today
		4.4.10. The Food of Silkworms
		4.4.11. Economic Perspective of Kelly’s Monograph
	4.5. Section by Anonymous 1828
	4.6. Diseases of Silkworms Stemming from Rearing Conditions
	4.7. Genetics of Silkworms
	4.8. Silkworm Artificial Diets
	4.9. Future Perspectives (Diets, Disease Management, Genetic Modification)
Chapter 5: Case Study of the USDA, ARS R. T. Gast BCMRRU: Boll Weevil and Lepidoptera Mass Rearing
	5.1. Background of the Gast Facility’s Boll Weevil and Lepidoptera Rearing Systems
	5.2. Background on the Biology of the Boll Weevil: The Foundation of the Mass-Rearing System
		5.2.1. Aspects of Boll Weevil Mass Rearing: Interdigitation of Biology and Technology
			5.2.1.1. Oviposition in Boll Weevil Rearing: Matching Engineering to Life History
	5.3. The USDA, ars R. T. Gast Bcmrru: Boll Weevil and Lepidoptera Mass Rearing
		5.3.1. Cotton Squares and Boll Structures (in Ritchie et al. 2007)
	5.4. Features Common to the Boll Weevil System and the Lepidoptera Rearing Systems
		5.4.1. Boll Weevil Mass rearing
			5.4.1.1. Example of a Highly Successful Rearing System: Boll Weevil Mass Rearing at the Robert T. Gast Facility (A Case Study)
			5.4.1.2. The Boll Weevil Rearing System at the R. T. Gast Facility
	5.5. How the Pellet Design Meshes with the Boll Weevil Oviposition Biology
		5.5.1. Oviposition
		5.5.2. Corrective Actions of Rearing Procedures 1977
		5.5.3. Science behind the Boll Weevil-Rearing Technology
		5.5.4. Lepidoptera Rearing
		5.5.5. Equipment Description
	5.6. Future Applications of the Gast Mass-Rearing Technology
	5.7. Consideration of the Materials for Containers and Other Disposable Rearing Items
Chapter 6: Rearing Systems as Ecological Niches or N-Dimensional Hypervolumes
	6.1. Introductory Comments
		6.1.1. The Ecological Niche Concept and Competitive Exclusion Principle
		6.1.2. Background Comments about Gause’s and Park’s Experiments
		6.1.3. Competitive Exclusion in Tribolium Species
	6.2. The Rearing System as a Microcosm or an Ecological Niche
	6.3. The Reciprocal Interactions between Requirements and Studies of Niche Parameters
	6.4. The Value of Applying the Ecological Niche Concept to Rearing Systems
	6.5. Review of Literature on Ecological Basis for Rearing Systems
	6.6. Insect-Rearing Systems Defined and Characterized: Historical Perspectives and Silkworms
	6.7. The Ontogeny of Drosophila Rearing Systems
	6.8. Drosophila Diet and Rearing Systems and Their Historical Importance
	6.9. Development of Drosophila Diets and Diet-Based Rearing Systems
	6.10. The Evolution of Controlled Diets For Drosophila: Microbial Relationships
	6.11. Other Aspects of Drosophila
	6.12. Environmental Factors in Rearing Systems
		6.12.1. Temperature and Humidity
		6.12.2. Light Conditions (Photoperiod, Light
		6.12.3. Gas Exchange, Metabolism, and Energetics
		6.12.4. Water (Humidity and Aqueous
		6.12.5. Atmospheric Humidity (Terrestrial Conditions)
		6.12.6. Aquatic Insects and Larvae
	6.13. Containers or Cages
	6.14. Reproductive Needs in Rearing Systems
	6.15. Microbial Aspects of Rearing Systems (Pathogens, Symbionts, and Contaminants)
		6.15.1. Pathogens in Rearing Systems
		6.15.2. Symbionts in Rearing Systems
		6.15.3. Microbial Contaminants in Rearing Systems
		6.15.4. The Special Case of Wolbachia
	6.16. Genetics and Epigenetics
	6.17. Conclusions
Chapter 7: Designing Error (Variability) Reduction in Rearing Systems: Reducing Uncertainty
	7.1. Introduction to Error Analysis
	7.2. The Nature of Rearing System Processes
	7.3. Measuring and Expressing Variation
	7.4. Accuracy and Precision Explained
	7.5. Sources of Error, Variability, and Uncertainty
		7.5.1. Raw Materials in Rearing Systems
	7.6. An Important Form of Gross Error (Operator Error)
		7.6.1. Interpretation
	7.7. Case Study of Development and Optimization of Vanessa Cardui Rearing System
		7.7.1. Introduction, Purpose and Background for This Tutorial
		7.7.2. Background for Using This Case Study/Tutorial as a Model for Rearing Systems for Other Species
		7.7.3. Background for Painted Lady Butterflies
			7.7.3.1. Vanessa Rearing System Optimization Logistics
	7.8. Experimental/Rearing Logistics and Development of Standard Operating Procedures (SOPs)
		7.8.1. Conclusions Regarding Diet/Rearing System Optimization Studies
Chapter 8: Building a Process Control System
	8.1. Introduction to Process Control in Rearing Systems
	8.2. Specific Concepts of Control in Relation to Variation Distributions
	8.3. Examples from a Case Study of a Plant Bug Rearing System
	8.4. Why Do We Invest So Much Effort in Process Control?
	8.5. Background from Pioneers of Qc/Pc: Shewhart and Demming
	8.6. Dealing with Special Causes in a Rearing System
	8.7. Data Collection
		8.7.1. What Kinds of Data Do We Collect?
		8.7.2. Undertaking Data Collection
		8.7.3. Cause-and-Effect Diagrams (Fishbone Diagrams)
		8.7.4. Flow Diagrams as Tools for QC/PC
		8.7.5. Using Pareto Charts
			8.7.5.1. Low-Risk Components
			8.7.5.2. High-Risk Components
Chapter 9: Tutorials on Using Design of Experiments with SAS, JMP Protocols
	9.1. Introductory Comments about Design of Experiments (Doe)
	9.2. Tutorial Case Studies Using Jmp
		9.2.1. Case 1: Using the Taguchi Method
			9.2.1.1. Results
		9.2.2. Step-by-Step Tutorial on Using JMP Mixture Design to Optimize an Insect Diet’s pH
		9.2.3. Tutorial on a Full-Factorial Design for Optimizing Components of a Wax Worm Diet
			9.2.3.1. ANOVA and Comparison of Means Analysis of Wax Worm Diets’ Effects
			9.2.3.2. Full-Factorial Design Tutorial on Optimizing Components of Wax Worm Diets
		9.2.4. Tutorial on a Mixture Design Optimization of Texture in an Insect Diet
			9.2.4.1. Interpretation
			9.2.4.2. Comparison of Conventional Statistical Approaches with DOE Approaches: Viewing the Data Interpretation with ANOVA and a posteriori Statistical Tests
		9.2.5. Artificial Neural Networks: Background and Case Study with Vanessa cardui Diets
Chapter 10: Relationships between Fitness, Quality Control, Health, Homeostasis, and Stress
	10.1. Overview of Relationship between Fitness, Quality, Homeostasis, and Stress: Fitness
	10.2. Are Fitness and Quality Congruent or Merely Related?
	10.3. How Do Our Concepts of Fitness and Quality Stem from the Processes Established in Developing Our Rearing Systems?
	10.4. Review of Quality Control
		10.4.1. Why Was the Concept of Quality Control Applied to Rearing Systems?
		10.4.2. How Is “Quality Control” Defined?
	10.5. Homeostasis and Stress
		10.5.1. Developing an Algorithm for Tracking Stress
		10.5.2. Nutritional Stress
		10.5.3. Hormonally-Based Sugar and Lipid Homeostasis in a Nutritional Framework
		10.5.4. Environmental Stress
			10.5.4.1. Light Conditions and Stress
			10.5.4.2. Thermal Relations and Stress
			10.5.4.3. Cold Stress in Rearing Settings
		10.5.5. Toxicological Stress (Toxins, Free Radicals/Oxidative Factors Requiring Antioxidant Compounds and Enzymes) and Microbiological Stress (Diseases/Contaminants/ Disruption of Symbionts)
			10.5.5.1. How Do Insects Deal with Stress from Reactive Oxygen Species (ROS)?
		10.5.6. Microbial Stress
			10.5.6.1. General Microbial Stress Issues and the Insect Immune System
			10.5.6.2. How Are Wolbachia Species a Special Case of Microbial Stress 
in Rearing Systems?
			10.5.6.3. Microbial Contamination Issues
		10.5.7. Genetic Stress (Genetic Truncation, Selection for Low Fitness Traits)
			10.5.7.1. General Genetic Considerations
			10.5.7.2. Epigenetics/Transgenerational Effects and Rearing Stress (Also Includes Heat Shock Proteins)
	10.6. Miscellaneous Forms of Stress (Sound/Vibration “Pollution”), Odors and Chemical Factors, Lack of Natural Gradients, Random or Regular Disturbances, Disruption of Normal Social Conditions, Disruption of Natural Cues for Life History Actualization, and Other Disruptions of Homeostasis
		10.6.1. Disruption of Sounds/Vibrations
		10.6.2. Disruptions or Stresses in the Odorscape
	10.7. Concluding Remarks about Stress and Homeostasis
Chapter 11: Publishing Rearing Papers
	11.1. Summary and Purpose of This Chapter
	11.2. Overview and History
	11.3. Changing Current Paradigms about Insect Rearing
	11.4. Recommended Standards for Rearing Papers
	11.5. Rearing Technology vs. Rearing-Science Papers: Specific Recommendations for Types of Papers That Would Be Valuable to The Scientific Community
		11.5.1. Rearing-Technology Papers
			11.5.1.1. Examples of Rearing-Technology Topics That Merit Publication and Wide-Spread Attention
			11.5.1.2. Characteristics of Gelling Agents (An Example of Inquiry into Abiotic Characteristics)
	11.6. Biotic Characteristics and Bioassays
	11.7. Further Discussion of Topics That Have Been Neglected in Insect-Rearing Publications
	11.8. Further Suggestions for Treatment of Rearing-Technology Publications
	11.9. Concluding Comments on Rearing-Science Papers
	11.10. The Model of Inquiry Into Soy Products in Insect Diets
	11.11. Back to Basics: Sources of Variability of Rearing System Components
	11.12. Concluding with Suggested Examples of Topics for Rearing-Science Papers
		11.12.1. Eleven Suggestions for Enhancing Rearing Publications from Cohen 2001
		11.12.2. Cases that Exemplify Significant Rearing Contributions
Chapter 12: Rearing Education: The Pathway to Improving Rearing Science and Technology
	12.1. General Background on Rearing Education
	12.2. Rearing Education and Training
		12.2.1. Learning by Doing (Hands-On Rearing Education)
	12.3. Background: My Introduction to Insect Rearing
		12.3.1. The Initiation of Formal Training and Education in Insect Rearing
		12.3.2. Progress in Rearing Education via Workshops
		12.3.3. Departure from Rearing Workshops
	12.4. Rearing Education and Rearing Research
	12.5. Approaches and Methods of Teaching Insect-Rearing Science
		12.5.1. On-the-Job Training/Education
		12.5.2. Workshops
		12.5.3. On-Site Courses
			12.5.3.1. On-Site vs. Online Courses
			12.5.3.2. Testing in Online and On-Site Classes
			12.5.3.3. On-Site Courses
		12.5.4. Online Courses
		12.5.5. Teaching Methods
			12.5.5.1. The Curricula for Two Courses Are Presented in Tables 12.1 and 12.2 and a Sample of a PowerPoint Lecture from the Online Course Is Presented in Figures 12.13 (a-1)
		12.5.6. Testing
		12.5.7. Other Ways of Learning Rearing (Symposia, Professional Meetings, Websites)
	Appendix: Student Projects and Exam Questions for Introduction to Insect-Rearing Courses
		Project Posters
		Project Papers
		Influence of Various Yeast Sources on the Larval Development of the Tobacco Budworm (Heliothis virescens): Project Draft
			Introduction
			Materials and Methods
		Growth and Development of Tobacco Budworm Heliothis virescens When Rearedon Artificial Diet Containing Different Bean Varieties: Project Draft (March 22, 2013)
			Introduction
			Approach Rationale
			Materials and Methods
		Tests
			Test 1
			Test 2
		M. Simon Pinilla-Gallego
Chapter 13: Future of Insect Rearing
	13.1. The Past is Prologue to the Future in Rearing-System Development
	13.2. Practical Purpose for Rearing Success
		13.2.1. Feasibility of the Rearing Operation
		13.2.2. Does the Insect Lend Itself to a Rearing Process?
		13.2.3. Availability of Competent Rearing Personnel
	13.3. Sources of Funding
		13.3.1. Traditional Sources of Funding for Insect Rearing
		13.3.2. Special Comments about Funding of Insect Research
		13.3.3. Novel Funding Sources
	13.4. Improvements in Communication of Rearing Advancements
		13.4.1. Publications on Rearing Advancements
		13.4.2. Communications Other Than Publications
	13.5. Improvements in Rearing Education
	13.6. Improvement in Personnel Issues (Recognition and Professional Status)
	13.7. Improvements in Facilities
	13.8. The Culture of Insect Rearing in the Context of Entomology and Science as a Whole
	13.9. Research vs. Development in Rearing Science and Technology
	13.10. Various Potentially Novel and Innovative Lines of Rearing Research
		13.10.1. Statistically-Based Research and Rearing-System Improvements Using Design and Analysis of Experiments, Statistical Process Control, and Statistical Quality Control
		13.10.2. Finding New Diet Components (Biomanufacturing, Other Subjects, and Sources)
			13.10.2.1. Bioreactor Outputs and Benefits
		13.10.3. Analytical Techniques as Potentially Game-Changing Tools to Help Us Understand the Scientific Basis (Mechanisms and Causes and Effects) of Reared Insects’ Homeostasis
		13.10.4. Symptomology
		13.10.5. Insects as Food for Humans and Other Animals
	13.11. Concluding Remarks about the Future of Insect-Rearing Systems and Rearing Infrastructure
Chapter 14: Research Integrity in Insect-Rearing Studies
	14.1. Good Laboratory Practices
	14.2. Ethical and Humane Treatment of Subjects
		14.2.1. Humane Treatment of Organisms: Insect-Rearing Education and Research Program
Appendix 1: The Drosophila Rearing System History
Appendix 2: The Culture of the Mulberry Silkworm
Appendix 3: System for Mass Rearing Boll Weevil in a Laboratory
References
Index




نظرات کاربران