دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Anja Weidner
سری:
ISBN (شابک) : 3030371484, 9783030371487
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 468
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 مگابایت
در صورت تبدیل فایل کتاب Deformation Processes in TRIP/TWIP Steels: In-Situ Characterization Techniques (Springer Series in Materials Science, 295) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیندهای تغییر شکل در فولادهای TRIP/TWIP: تکنیکهای مشخصهسازی درجا (سری اسپرینگر در علم مواد، 295) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پتانسیل آزمایشهای جدید در محل را نشان میدهد که در مقیاسهای طول میکروسکوپی و ماکروسکوپی برای بررسی فرآیندهای تغییر شکل موضعی در مواد فلزی، بهویژه سینتیک آنها و تکامل مرتبط با میدانهای کرنش محلی انجام میشود. دارای یک مجموعه روششناختی گسترده، میکروسکوپ نوری و الکترونی، همبستگی تصویر دیجیتال، تروموگرافی مادون قرمز و آزمایش گسیل صوتی است، و به ویژه بر شناسایی فرآیندهای تغییر شکل میکروسکوپی موضعی در CrMnNi TRIP/TWIP Inducityed (TRansformation) با استحکام / شکلپذیری بالا تمرکز دارد. فولادهای /Twinning Induced Plasticity). این کتاب با ارائه روششناسی پیشرفتهای که برای مسائل موضوعی و مرتبط در مهندسی مواد به کار میرود، منبع ارزشمندی برای محققان و دانشجویان تحصیلات تکمیلی است که در زمینه پلاستیسیته و تغییر شکل مواد ساختاری کار میکنند.
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
Preface Acknowledgements Contents Abbreviations Symbols Plastic Deformation Martensitic Phase Transformation Advanced High Strength Steels In Situ Techniques Acoustic Emission a Radius A\\left( f \\right) Transfer function (after Fourier transformation) \\vec{b} Burgers vector c_{{\\rm L}} Velocity of longitudinal wave c_{T} Velocity of transversal wave C_{i,\\,\\,j,\\,\\,k,\\,\\,l} Elastic stiffness tensor D Duration of AE event D_{ij} Force dipoles D Measure of distance D_{{\\rm EUC}} Euclidean distance D_{{\\rm MAN}} Manhattan distance D_{MIN} Minkowski distance \\hbox{d}A_{l} \\left( t \\right) Time-dependent dislocation loop area \\hbox{d}B_{AE} Decibel of acoustic emission E AE energy E\\left( f \\right) Source function (after Fourier transformation) E\\left( {f_{1} ,f_{2} } \\right) Narrow band energy f Frequency f_{{\\rm a}} Averaged frequency f_{{\\rm c}} Fundamental frequency f_{{\\rm eff}} Effective width of spectrum f_{i} Observed frequency f_{{\\rm m}} Median frequency f_{{\\rm N}} Nyquist frequency (cut-off frequency) F_{i} Expected frequency G\\left( f \\right) Power spectral density function G^{{\\rm noise}} \\left( f \\right) Power spectrum of electrical noise G_{{\\rm max}} Maximum of power spectral density function G^{i} \\left( f \\right) Integrated power spectral density function G_{ij} Green’s function G^{{\\rm H}} Heaviside Green’s function g\\left( f \\right) Normalized power spectral density function i , j , k , l Space variables K Number of class intervals K_{{\\rm u},\\,\\,{\\rm PA}} Gain of used pre-amplifier \\hat{k} Space–time variable k Number of desired clusters k_{i} , k_{j} Individual clusters m Activity of acoustic emission (AE) m_{i} , m_{j} Centroids of individual clusters n_{i} , n_{j} Number of elements within each individual clusters N Number of counts, number of observations N Length of time-series {\\Delta }N Number of AE hits P\\left( x \\right) Probability distribution function p_{1} , p_{2} , p_{3} Point coordinates q_{1} , q_{2} , q_{3} Point coordinates q_{{\\rm f}} Kurtosis (frequency domain) q_{{\\rm x}} Kurtosis (time domain) r Number of independent variables r Distance between source and epicentre r , r^{\\prime} Space coordinates \\vec{r}_{0} Centroid position of point-like source R Rise time R_{xx} \\left( \\tau \\right) Auto-correlation function R_{yy} \\left( \\tau \\right) Auto-correlation function R_{xy} \\left( \\tau \\right) Cross-correlation function r_{x} \\left( \\tau \\right) Normalized auto-correlation function r\\left( \\tau \\right) Normalized auto-correlation function of Poisson distribution s_{{\\rm f}} Skewness (frequency domain) s_{{\\rm x}} Skewness (time domain) S_{1} , S_{2} , S_{3} Individual clusters t Time t , t^{\\prime} Time coordinates {\\Delta }t Unit time, time interval {\\Delta }t_{{\\rm s}} Sampling time interval T Displacement threshold T Transducer response u_{i} \\left( {r,\\,t} \\right) Displacement in ith direction depending on space and time coordinates U\\left( t \\right) Voltage of measured signals at transducer \\overline{{U^{2} }} Mean square voltage \\overline{{U_{{\\rm noise}}^{2} }} Average background noise U_{{\\rm p}} Maximum AE amplitude, peak voltage U_{{\\rm RMS}} Root mean square voltage U_{{\\rm th}} Threshold value for voltage signal U_{z} Maximum displacement in z-direction (surface normal) v Velocity x_{1} , x_{2} , x_{3} Elements of data set X\\left( t \\right) Random data \\hat{X}\\left( t \\right) Fourier transform of X\\left( t \\right) \\hat{X}_{{\\rm T}} \\left( t \\right) Truncated Fourier transform of X\\left( t \\right) Y\\left( t \\right) Random data Z_{{\\rm cc}} Correlation coefficient \\alpha Significance level \\gamma_{{\\rm merged}} Centroid drift vector \\delta \\left( {t - t^{\\prime}} \\right) Delta function \\delta_{{\\rm merged}} Inter-cluster distance \\mu_{x} Mean value \\mu_{x}^{\\left( 1 \\right)} First moment \\mu_{x}^{\\left( 2 \\right)} Second moment \\sigma Source function (time domain) \\sigma Pre-existing vertical stress \\sigma_{x} Standard deviation \\sigma_{x}^{2} Variance (time domain) \\sigma_{{\\rm f}}^{2} Variance (frequency domain) \\tau Inter-event time interval \\tau_{0} Relaxation time \\chi^{2} Chi-square function {X}^{2} Goodness-of-fit test {\\Psi }^{2} \\left( t \\right) Mean square value Displacement and Strain Fields Temperature Fields Fully-Coupled Measurements High-alloy CrMnNi TRIP/TWIP Steels Case Studies List of Figures List of Tables 1 Motivation References 2 Plastic Deformation and Strain Localizations Abstract 2.1 Plastic Deformation 2.2 Dislocation Glide 2.3 Deformation Twinning 2.4 Critical Resolved Shear Stress 2.5 Strain Hardening 2.6 Strain Localizations 2.6.1 Strain Localizations on Microscopic Scale 2.6.1.1 Slip Bands/Deformation Bands 2.6.1.2 Persistent Slip Bands 2.6.1.3 Shear Bands 2.6.2 Strain Localizations on Macroscopic Scale 2.6.2.1 Lüders Effect 2.6.2.2 Portevin–Le Chatelier Effect References 3 Martensitic Phase Transformation Abstract 3.1 General Considerations 3.2 Thermodynamic Aspects of Martensitic Phase Transformation 3.3 Martensite in Ferrous Alloys 3.4 Martensitic Phase Transformation in Steels 3.4.1 Direct γ to α′ Transformation 3.4.2 Direct γ to ε Transformation 3.4.3 Direct ε to α′ Transformation 3.4.4 Indirect γ–α′ Transformation via ε-Martensite 3.5 Influence of Stacking-Fault Energy 3.6 Olson–Cohen Model of Martensitic Phase Transformation References 4 Advanced High-Strength Steels Abstract 4.1 General Considerations 4.2 Twinning-Induced Plasticity (TWIP) Steels 4.2.1 Thermodynamic Aspects of TWIP Steels 4.2.2 Deformation Behaviour of TWIP Steels 4.2.3 Modelling of the TWIP Effect 4.3 Transformation-Induced Plasticity (TRIP) Steels 4.3.1 Thermodynamic Aspects of TRIP Steels 4.3.2 Deformation Behaviour of TRIP Steels 4.3.3 Modelling of the TRIP Effect References 5 In Situ Techniques for Characterization of Strain Localizations and Time Sequence of Deformation Processes Abstract 5.1 General Considerations 5.2 In Situ Imaging Techniques 5.2.1 Optical Microscopy 5.2.1.1 In Situ Experiments with Optical Microscopy 5.2.1.2 State of the Art in Materials Engineering 5.2.2 Scanning Electron Microscopy 5.2.2.1 In Situ Experiments in Scanning Electron Microscopes 5.2.2.2 State of the Art in Materials Engineering 5.3 In Situ Acoustic Emission Measurements 5.3.1 General Aspects of Acoustic Emission 5.3.2 Acoustic Emission—A Multiscale Random Time-Series Process 5.3.3 Sources of Acoustic Emission 5.3.4 Instrumentation and Data Acquisition 5.3.5 Processing of AE Data 5.3.6 State of the Art in Materials Engineering 5.4 In Situ Full-Field Measurement Techniques 5.4.1 Displacement and Strain Fields 5.4.1.1 General Aspects of Digital Image Correlation 5.4.1.2 Principles of Digital Image Correlation 5.4.1.3 Computation of 2D Strain Values 5.4.1.4 State of the Art in Materials Engineering 5.4.2 Temperature Fields 5.4.2.1 General Aspects of Infrared Thermography 5.4.2.2 Heat Sources and Dissipated Energy 5.4.2.3 State of the Art in Materials Engineering 5.4.3 Fully-Coupled Measurements References 6 Object of Investigations—High-Alloy Fe–16Cr–6Mn–xNi–0.05C Cast Steels with TRIP/TWIP Effect Abstract 6.1 General Considerations on High-Alloy Fe–16Cr–6Mn–xNi–0.05C TRIP/TWIP Steels 6.2 Applied Methods for Characterization of the Deformation Behaviour and the Related Microstructures 6.2.1 Deformation Experiments 6.2.2 Microstructural Characterization Techniques 6.3 Mechanical Behaviour 6.3.1 Uniaxial Quasi-static Loading 6.3.2 Uniaxial Cyclic Loading 6.3.3 Planar-Biaxial Loading 6.4 Microstructure Evolution 6.4.1 Fe–16Cr–6Mn–6Ni–0.05C Steel 6.4.2 Fe–16Cr–6Mn–9Ni–0.05C Steel 6.4.3 Fe–16Cr–6Mn–3Ni–0.05C Steel References 7 Case Studies on Localized Deformation Processes in High-Alloy Fe–16Cr–6Mn–xNi–0.05C Cast Steels Abstract 7.1 Significance of Complementary In Situ Characterization Techniques 7.2 Microscopic Strain Localizations During Plastic Deformation 7.2.1 In Situ Deformation in the Scanning Electron Microscope 7.2.2 High-Resolution DIC (Sub-µDIC) for Evaluation of Local Strain Fields 7.2.3 Strain Localization During Tensile Deformation 7.2.4 Orientation-Dependent Magnitude of Shear of Individual Martensitic Grains 7.2.5 Magnitude of Shear of Twin Bundles 7.2.6 Strain Localization During Cyclic Deformation 7.2.7 Discussion 7.3 Time Sequence of Deformation Processes 7.3.1 Acoustic Emission Measurements and Analysis 7.3.2 Acoustic Emission During the Deformation Process 7.3.3 Influence of Chemical Composition 7.3.4 Evolution of Martensitic Phase Transformation at Room Temperature 7.3.5 Influence of Deformation Temperature 7.3.6 Discussion 7.4 Macroscopic Strain Localization During Plastic Deformation 7.4.1 Fully-Coupled Full-Field Measurements 7.4.2 The Occurrence of Portevin–Le Chatelier (PLC) Effect 7.4.3 Temperature and Strain Fields 7.4.4 Portevin–Le Chatelier Effect and Acoustic Emission 7.4.5 Correlation of PLC Effect with Martensitic Volume Fraction 7.4.6 Discussion References 8 Prospects of Complementary In Situ Techniques Abstract 8.1 General Remarks 8.2 Complementary In Situ Techniques and Microstructural-Based Modelling 8.3 Example 1: Modelling of Strain-Hardening Behaviour of CrMnNi TRIP/TWIP Steels 8.3.1 Orientation Dependence of Deformation Mechanisms Detected by AE 8.3.2 Strain Localizations Across the Length Scale of Microstructure 8.4 Example 2: Damage Behaviour of TRIP Matrix Composites 8.5 Example 3: Deformation and Damage Behaviour of Laminated TRIP/TWIP Composites 8.6 Example 4: Shape Memory Materials References 9 Concluding Remarks Appendix References References References References References References References References References References Index 488628_1_En_10_Chapter_OnlinePDF.pdf 10 Correction to: Deformation Processes in TRIP/TWIP Steels Correction to: A. Weidner, Deformation Processes in TRIP/TWIP Steels, Springer Series in Materials Science 295, https://doi.org/10.1007/978-3-030-37149-4