دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Rafik Addou. Luigi Colombo سری: Materials Today ISBN (شابک) : 0128202920, 9780128202920 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 434 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 31 مگابایت
در صورت تبدیل فایل کتاب Defects in Two-Dimensional Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقص در مواد دو بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Defects in Two-Dimensional Materials Copyright Contents List of contributors About the editors Preface 1 Introduction References 2 Physics and theory of defects in 2D materials: the role of reduced dimensionality 2.1 Introduction 2.2 Classification of defects 2.3 Insights into the atomic structures of defects from scanning tunneling and transmission electron microscopy experiments 2.4 Production of defects in two-dimensional materials under electron and ion irradiation 2.5 Examples of defects in two-dimensional materials 2.5.1 Point defects 2.5.2 Line defects 2.6 Theoretical aspects of the physics of defects in bulk crystalline solids and two-dimensional materials 2.6.1 Defect formation energy 2.6.2 Gibbs free energy of defect formation 2.6.3 Equilibrium concentration of defects 2.7 Calculations of defect formation energies and electronic structure using the supercell approach 2.7.1 Assessment of defect formation energies 2.7.2 First-principles approaches for calculating defect states 2.8 Electronic structure of 2D materials with defects 2.8.1 Defect-induced modifications of electronic states 2.8.2 Deep vs. shallow electronic states in 2D materials 2.8.3 Defect-bound excitons 2.9 Point defects and vibrational properties of 2D materials from atomistic simulations 2.9.1 Signatures of defects in Raman spectra 2.9.2 Phonon contributions to defect-related photo-luminescence spectra in 2D materials 2.10 Conclusions and outlook Acknowledgment References 3 Defects in two-dimensional elemental materials beyond graphene 3.1 Introduction 3.2 Borophene 3.2.1 Synthesis and atomic structure 3.2.2 Defects in borophene 3.3 Silicene 3.3.1 Synthesis and atomic structure 3.3.2 Defects in silicene 3.4 Germanene 3.4.1 Synthesis and atomic structure 3.4.2 Defects in germanene 3.5 Stanene 3.5.1 Synthesis and atomic structure 3.5.2 Defects in stanene 3.6 Plumbene 3.6.1 Synthesis and atomic structure 3.6.2 Defects in plumbene 3.7 Phosphorene 3.7.1 Synthesis and atomic structure 3.7.2 Defects in phosphorene 3.8 Arsenene (h-As) and Antimonene (h-Sb) 3.8.1 Synthesis and atomic structure 3.8.2 Defects in arsenene and antimonene 3.9 Bismuthene 3.9.1 Synthesis and atomic structure 3.9.2 Defects in bismuthene 3.10 Selenene and tellurene 3.11 Gallenene 3.12 Hafnene 3.13 Conclusions and outlook References 4 Defects in transition metal dichalcogenides 4.1 Introduction 4.2 Point defects 4.2.1 Defect inventory 4.2.2 Defect classification 4.2.3 The nature of vacancies 4.2.4 Complex defects created by annealing of WSe2 4.3 Impurities 4.3.1 Contaminants 4.3.2 Intercalants 4.3.3 Dopants 4.3.4 Alloys 4.4 Line defects 4.5 Control of defects and their applications 4.6 Summary References 5 Realization of electronic grade graphene and h-BN 5.1 Challenges overview: growth, transfer, and integration 5.2 Apparatus and methodology overview 5.2.1 Bulk crystal production and layer exfoliation 5.2.2 Chemical vapor deposition and related methods overview 5.3 Scalable growth by chemical vapor deposition 5.3.1 Pyrolytic growth 5.3.2 Catalytic CVD: substrate and catalyst effects 5.3.3 Catalytic CVD: growth parameters and process optimization 5.3.3.1 Overview 5.3.3.2 Precursor choice 5.3.3.3 Process pressure 5.3.3.4 Precursor and auxiliary gas pressures 5.3.3.5 Temperature 5.3.3.6 Time-dependent controls 5.4 Material optimization 5.4.1 Designed catalysts 5.4.1.1 Oxidation & impurity scavenging 5.4.1.2 Catalyst bulk solubility tuning 5.4.1.3 Designed solubility by alloying 5.4.1.4 Growth on liquid surfaces 5.4.1.5 Solid source precursors 5.4.2 Transfer routes overview 5.4.3 State-of-the-art: large area single 2D crystal production 5.4.3.1 Single domain growth 5.4.3.2 Domain stitching 5.4.3.3 Large area production 5.5 Conclusions and outlook References 6 Realization of electronic-grade two-dimensional transition metal dichalcogenides by thin-film deposition techniques 6.1 Current challenges in transition metal dichalcogenide synthesis 6.2 Current synthesis techniques 6.2.1 Reactor design 6.2.2 Solid-source chemical vapor deposition (SS-CVD) 6.2.3 Metal-organic chemical vapor deposition (MOCVD) 6.2.4 Molecular beam epitaxy (MBE) 6.3 Controlling nucleation and crystal growth 6.3.1 Substrate engineering 6.3.2 Precursor chemistry 6.3.3 Impact of growth temperature 6.3.4 Impact of growth pressure 6.4 Materials engineering 6.4.1 Defect engineering 6.4.2 Heterostructures 6.4.3 Doping and alloying 6.5 Summary Note Acknowledgments References 7 Materials engineering – defect healing & passivation 7.1 Introduction 7.2 Defect formation and healing in 2D TMDs 7.2.1 Point defects 7.2.2 Line defects 7.3 Defect engineering by chemical treatment and applications 7.3.1 Vacancy healing 7.3.2 Covalent functionalization 7.3.3 Interfacial charge transfer 7.4 Defect control by external sources 7.4.1 Thermal annealing 7.4.2 Electron beam irradiation 7.4.3 Plasma treatment 7.4.4 Encapsulation 7.5 Future perspectives References 8 Nonequilibrium synthesis and processing approaches to tailor heterogeneity in 2D materials 8.1 Introduction 8.2 Non-equilibrium synthesis – effects of chemical potential on the heterogeneity of 2D materials 8.2.1 Point defects control by nonequilibrium laser-based synthesis and Au-assisted CVD growth 8.2.2 Forming line defects, edges, and morphologies of 2D materials through controlled kinetics 8.3 Strain induced phenomena in 2D materials 8.3.1 Strain estimates from PL/absorption spectra 8.3.2 Strain estimates from Raman spectra 8.3.3 Second harmonic generation (SHG) for strain estimates 8.3.4 Extended compressive strain at grain boundaries of merged monolayer crystals 8.3.5 Strain generation by growth on curved surfaces: strain tolerant growth 8.3.6 Strain induced 2D crystal growth acceleration 8.3.7 Strain induced exciton funneling: single photon emitters 8.4 Heterogeneity introduced by the self-assembly of nanoscale `building blocks\' 8.5 The effects of kinetic energy on defects and doping: hyperthermal implantation for the formation of Janus monolayers 8.6 Summary and outlook Acknowledgments References 9 Two-dimensional materials under ion irradiation: from defect production to structure and property engineering 9.1 Introduction 9.2 Response of two-dimensional materials to ion irradiation: theoretical aspects 9.2.1 Theoretical background and methods 9.2.2 Simulations of ion impacts on free-standing 2D materials 9.2.3 Simulations of ion irradiation of supported 2D materials 9.2.4 Simulations of the interaction of light or swift ions with two-dimensional materials when electronic stopping dominates 9.3 Experiments on ion irradiation of two-dimensional materials 9.3.1 Low- and medium-energy heavy ion irradiation of two-dimensional materials and direct ion implantation 9.3.2 High-energy proton irradiation 9.3.3 Swift heavy ions 9.3.4 Highly charged ions 9.3.5 Atomic structure engineering by using focused ion beams 9.3.6 Irradiation tolerance 9.4 Applications 9.5 Summary, challenges, and outlook Acknowledgments References 10 Tailoring defects in 2D materials for electrocatalysis 10.1 Introduction 10.2 Defect-tailored 2D electrocatalysts for hydrogen evolution reaction (HER) 10.2.1 Fundamental principles of electrocatalytic HER 10.2.2 Catalytic activity descriptors of electrocatalytic HER 10.2.3 Defect-tailored 2D electrocatalysts for HER 10.3 Defect-tailored 2D electrocatalysts for oxygen evolution reaction (OER) 10.3.1 Fundamental principles of electrocatalytic OER 10.3.2 Catalytic activity descriptors of electrocatalytic OER 10.3.3 Defect-tailored 2D electrocatalysts for OER 10.4 Defect-tailored 2D electrocatalysts for nitrogen reduction reaction (NRR) 10.4.1 Fundamental principles of electrocatalytic NRR 10.4.2 Catalytic activity descriptors of electrocatalytic NRR 10.4.3 Defect-tailored 2D electrocatalysts for NRR 10.5 Defect-tailored 2D electrocatalysts for carbon dioxide reduction reaction (CO2RR) 10.5.1 Fundamental principles of electrocatalytic CO2RR 10.5.2 Catalytic activity descriptors of electrocatalytic CO2RR 10.5.3 Defect-tailored 2D electrocatalysts for CO2RR 10.6 Challenges and perspectives of defect engineering for 2D electrocatalysts Acknowledgments References 11 Devices and defects in two-dimensional materials: outlook and perspectives 11.1 Introduction 11.2 Defect characterization in 2D TMDs using ultrafast pump-probe spectroscopy 11.2.1 Motivation 11.2.2 Pump-probe spectroscopy 11.2.3 Point defects 11.2.4 Edges/grain boundaries 11.3 Devices fabricated on 2D CVD-grown TMDs 11.3.1 Effect of top gate dielectrics 11.3.1.1 Al2O3 11.3.1.2 HfO2 11.3.1.3 ZrO2 11.3.2 Embedded gate FETs 11.3.3 Effect of growth substrates 11.3.3.1 Al2O3 11.3.3.2 ZrO2 11.3.4 Effect of encapsulation and protective layer 11.3.5 Defects in CVD MoS2 11.3.6 MOCVD MoS2 11.4 Devices fabricated on MBE-grown TMDs 11.5 2D van der Waals (vdW) heterostructures 11.5.1 Device fabrication 11.5.2 Applications 11.6 Enhancing 2D device performance using defect engineering 11.6.1 Defect passivation techniques 11.6.2 Doping & defect engineering using dielectrics 11.6.3 Substitutional doping & alloying 11.7 Theoretical investigation of defects in 2D TMDs 11.7.1 Computational details 11.7.2 Results and discussion 11.7.2.1 Monolayer MoS2 on HfO2 slab 11.7.2.2 Monolayer MoS2 on HfO2 slab with O vacancy 11.7.2.3 Mo and S vacancies in MoS2 References 12 Concluding remarks References Index Back Cover