ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deep Learning: A Visual Approach

دانلود کتاب یادگیری عمیق: یک رویکرد بصری

Deep Learning: A Visual Approach

مشخصات کتاب

Deep Learning: A Visual Approach

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781718500723, 2020047327 
ناشر: No Starch Press 
سال نشر: 2021 
تعداد صفحات: 0 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 15 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Deep Learning: A Visual Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری عمیق: یک رویکرد بصری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری عمیق: یک رویکرد بصری

یادگیری عمیق: یک رویکرد بصری به ابهام زدایی از الگوریتم‌هایی کمک می‌کند که رایانه‌ها را قادر می‌سازد تا ماشین‌ها رانده شوند، در مسابقات شطرنج برنده شوند و سمفونی بسازند، در حالی که به خوانندگان ابزار لازم برای ساختن سیستم‌های خود را می‌دهد تا به آنها کمک کند اطلاعات پنهان شده در داده‌های خود را پیدا کنند، ایجاد کنند. آثار هنری رویای عمیق، و یا خلق داستان های جدید به سبک نویسندگان مورد علاقه خود.


توضیحاتی درمورد کتاب به خارجی

Deep Learning: A Visual Approach helps demystify the algorithms that enable computers to drive cars, win chess tournaments, and create symphonies, while giving readers the tools necessary to build their own systems to help them find the information hiding within their own data, create 'deep dream' artwork, or create new stories in the style of their favorite authors.



فهرست مطالب

About the Author
About the Technical Reviewers
Brief Contents
Contents in Detail
Acknowledgments
Introduction
	Who This Book Is For
		This Book Has No Math and No Code
		There Is Code, If You Want It
		The Figures Are Available, Too!
		Errata
		About This Book
			Part I: Foundational Ideas
			Part II: Basic Machine Learning
			Part III: Deep Learning Basics
			Part IV: Deep Beyond the Basics
		Final Words
Part I: Foundational Ideas
	Chapter 1: An Overview of Machine Learning
		Expert Systems
		Supervised Learning
		Unsupervised Learning
		Reinforcement Learning
		Deep Learning
		Summary
	Chapter 2: Essential Statistics
		Describing Randomness
		Random Variables and Probability Distributions
		Some Common Distributions
			Continuous Distributions
			Discrete Distributions
		Collections of Random Values
			Expected Value
			Dependence
			Independent and Identically Distributed Variables
		Sampling and Replacement
			Selection with Replacement
			Selection Without Replacement
		Bootstrapping
		Covariance and Correlation
			Covariance
			Correlation
		Statistics Don’t Tell Us Everything
		High-Dimensional Spaces
		Summary
	Chapter 3: Measuring Performance
		Different Types of Probability
			Dart Throwing
			Simple Probability
			Conditional Probability
			Joint Probability
			Marginal Probability
		Measuring Correctness
			Classifying Samples
			The Confusion Matrix
			Characterizing Incorrect Predictions
			Measuring Correct and Incorrect
			Accuracy
			Precision
			Recall
			Precision-Recall Tradeoff
			Misleading Measures
			f1 Score
			About These Terms
			Other Measures
		Constructing a Confusion Matrix Correctly
		Summary
	Chapter 4: Bayes’ Rule
		Frequentist and Bayesian Probability
			The Frequentist Approach
			The Bayesian Approach
			Frequentists vs. Bayesians
		Frequentist Coin Flipping
		Bayesian Coin Flipping
			A Motivating Example
			Picturing the Coin Probabilities
			Expressing Coin Flips as Probabilities
			Bayes’ Rule
			Discussion of Bayes’ Rule
		Bayes’ Rule and Confusion Matrices
		Repeating Bayes’ Rule
			The Posterior-Prior Loop
			The Bayes Loop in Action
		Multiple Hypotheses
		Summary
	Chapter 5: Curves and Surfaces
		The Nature of Functions
		The Derivative
			Maximums and Minimums
			Tangent Lines
			Finding Minimums and Maximums with Derivatives
		The Gradient
			Water, Gravity, and the Gradient
			Finding Maximums and Minimums with Gradients
			Saddle Points
		Summary
	Chapter 6: Information Theory
		Surprise and Context
			Understanding Surprise
			Unpacking Context
		Measuring Information
		Adaptive Codes
			Speaking Morse
			Customizing Morse Code
		Entropy
		Cross Entropy
			Two Adaptive Codes
			Using the Codes
			Cross Entropy in Practice
		Kullback–Leibler Divergence
		Summary
Part II: Basic Machine Learning
	Chapter 7: Classification
		Two-Dimensional Binary Classification
		2D Multiclass Classification
		Multiclass Classification
			One-Versus-Rest
			One-Versus-One
		Clustering
		The Curse of Dimensionality
			Dimensionality and Density
			High-Dimensional Weirdness
		Summary
	Chapter 8: Training and Testing
		Training
		Testing the Performance
			Test Data
			Validation Data
		Cross-Validation
		k-Fold Cross-Validation
		Summary
	Chapter 9: Overfitting and Underfitting
		Finding a Good Fit
			Overfitting
			Underfitting
		Detecting and Addressing Overfitting
			Early Stopping
			Regularization
		Bias and Variance
			Matching the Underlying Data
			High Bias, Low Variance
			Low Bias, High Variance
			Comparing Curves
		Fitting a Line with Bayes’ Rule
		Summary
	Chapter 10: Data Preparation
		Basic Data Cleaning
		The Importance of Consistency
		Types of Data
		One-Hot Encoding
		Normalizing and Standardizing
			Normalization
			Standardization
			Remembering the Transformation
		Types of Transformations
			Slice Processing
			Samplewise Processing
			Featurewise Processing
			Elementwise Processing
		Inverse Transformations
		Information Leakage in Cross-Validation
		Shrinking the Dataset
			Feature Selection
			Dimensionality Reduction
		Principal Component Analysis
			PCA for Simple Images
			PCA for Real Images
		Summary
	Chapter 11: Classifiers
		Types of Classifiers
		k-Nearest Neighbors
		Decision Trees
			Introduction to Trees
			Using Decision Trees
			Overfitting Trees
			Splitting Nodes
		Support Vector Machines
			The Basic Algorithm
			The SVM Kernel Trick
		Naive Bayes
		Comparing Classifiers
		Summary
	Chapter 12: Ensembles
		Ensembles of Decision Trees
			Bagging
			Random Forests
			Extra Trees
		Boosting
		Summary
		Voting
Part III: Deep Learning Basics
	Chapter 13: Neural Networks
		Real Neurons
		Artificial Neurons
			The Perceptron
			Modern Artificial Neurons
		Drawing the Neurons
		Feed-Forward Networks
		Neural Network Graphs
		Initializing the Weights
		Deep Networks
		Fully Connected Layers
		Tensors
		Preventing Network Collapse
		Activation Functions
			Straight-Line Functions
			Step Functions
			Piecewise Linear Functions
			Smooth Functions
			Activation Function Gallery
			Comparing Activation Functions
		Softmax
		Summary
	Chapter 14: Backpropagation
		A High-Level Overview of Training
			Punishing Error
			A Slow Way to Learn
			Gradient Descent
		Getting Started
		Backprop on a Tiny Neural Network
			Finding Deltas for the Output Neurons
			Using Deltas to Change Weights
			Other Neuron Deltas
		Backprop on a Larger Network
		The Learning Rate
			Building a Binary Classifier
			Picking a Learning Rate
			An Even Smaller Learning Rate
		Summary
	Chapter 15: Optimizers
		Error as a 2D Curve
		Adjusting the Learning Rate
			Constant-Sized Updates
			Changing the Learning Rate over Time
			Decay Schedules
		Updating Strategies
			Batch Gradient Descent
			Stochastic Gradient Descent
			Mini-Batch Gradient Descent
		Gradient Descent Variations
			Momentum
			Nesterov Momentum
			Adagrad
			Adadelta and RMSprop
			Adam
		Choosing an Optimizer
		Regularization
			Dropout
			Batchnorm
		Summary
Part IV: Beyond the Basics
	Chapter 16: Convolutional Neural Networks
		Introducing Convolution
			Detecting Yellow
			Weight Sharing
			Larger Filters
			Filters and Features
			Padding
		Multidimensional Convolution
		Multiple Filters
		Convolution Layers
			1D Convolution
			1×1 Convolutions
		Changing Output Size
			Pooling
			Striding
			Transposed Convolution
		Hierarchies of Filters
			Simplifying Assumptions
			Finding Face Masks
			Finding Eyes, Noses, and Mouths
			Applying Our Filters
		Summary
	Chapter 17: Convnets in Practice
		Categorizing Handwritten Digits
		VGG16
		Visualizing Filters, Part 1
		Visualizing Filters, Part 2
		Adversaries
		Summary
	Chapter 18: Autoencoders
		Introduction to Encoding
			Lossless and Lossy Encoding
		Blending Representations
		The Simplest Autoencoder
		A Better Autoencoder
		Exploring the Autoencoder
			A Closer Look at the Latent Variables
			The Parameter Space
			Blending Latent Variables
			Predicting from Novel Input
		Convolutional Autoencoders
			Blending Latent Variables
			Predicting from Novel Input
		Denoising
		Variational Autoencoders
			Distribution of Latent Variables
			Variational Autoencoder Structure
		Exploring the VAE
			Working with the MNIST Samples
			Working with Two Latent Variables
			Producing New Input
		Summary
	Chapter 19: Recurrent Neural Networks
		Working with Language
			Common Natural Language Processing Tasks
			Fine-Tuning and Downstream Networks
			Transforming Text into Numbers
		Fully Connected Prediction
			Testing Our Network
			Why Our Network Failed
		Recurrent Neural Networks
			Introducing State
			Rolling Up Our Diagram
			Recurrent Cells in Action
			Training a Recurrent Neural Network
			Long Short-Term Memory and Gated Recurrent Networks
		Using Recurrent Neural Networks
			Working with Sunspot Data
			Generating Text
			Different Architectures
		Seq2Seq
		Summary
	Chapter 20: Attention and Transformers
		Embedding
			Embedding Words
			ELMo
		Attention
			A Motivating Analogy
			Self-Attention
			Q/KV Attention
			Multi-Head Attention
			Layer Icons
		Transformers
			Skip Connections
			Norm-Add
			Positional Encoding
			Assembling a Transformer
			Transformers in Action
		BERT and GPT-2
			BERT
			GPT-2
			Generators Discussion
			Data Poisoning
		Summary
	Chapter 21: Reinforcement Learning
		Basic Ideas
		Learning a New Game
		The Structure of Reinforcement Learning
			Step 1: The Agent Selects an Action
			Step 2: The Environment Responds
			Step 3: The Agent Updates Itself
			Back to the Big Picture
			Understanding Rewards
		Flippers
		L-Learning
			The Basics
			The L-Learning Algorithm
			Testing Our Algorithm
			Handling Unpredictability
		Q-Learning
			Q-Values and Updates
			Q-Learning Policy
			Putting It All Together
			The Elephant in the Room
			Q-learning in Action
		SARSA
			The Algorithm
			SARSA in Action
			Comparing Q-Learning and SARSA
		The Big Picture
		Summary
	Chapter 22: Generative Adversarial Networks
		Forging Money
			Learning from Experience
			Forging with Neural Networks
			A Learning Round
			Why Adversarial?
		Implementing GANs
			The Discriminator
			The Generator
			Training the GAN
		GANs in Action
			Building a Discriminator and Generator
			Training Our Network
			Testing Our Network
		DCGANs
		Challenges
			Using Big Samples
			Modal Collapse
			Training with Generated Data
		Summary
	Chapter 23: Creative Applications
		Deep Dreaming
			Stimulating Filters
			Running Deep Dreaming
		Neural Style Transfer
			Representing Style
			Representing Content
			Style and Content Together
			Running Style Transfer
		Generating More of This Book
		Summary
		Final Thoughts
	References
	Image Credits
	Index




نظرات کاربران