دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: حمل و نقل ویرایش: 1 نویسندگان: P. A. Lakshminarayanan, Nagaraj S. Nayak سری: ISBN (شابک) : 047082882X, 9780470828847 ناشر: Wiley سال نشر: 2011 تعداد صفحات: 448 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
کلمات کلیدی مربوط به کتاب سایش قطعات مهم در موتورهای سنگین: حمل و نقل، موتورهای احتراق داخلی (ICE)، قابلیت اطمینان موتورهای احتراق داخلی
در صورت تبدیل فایل کتاب Critical Component Wear in Heavy Duty Engines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سایش قطعات مهم در موتورهای سنگین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بخشهای حیاتی یک موتور سنگین از نظر تئوری برای عمر بینهایت بدون خرابی خستگی مکانیکی طراحی شدهاند. با این حال عمر یک موتور در واقع با سایش قطعات حیاتی تعیین می شود. حتی اگر موتوری طوری طراحی و ساخته شود که عمر سایش معمولی داشته باشد، سایش غیرعادی یا به دلیل شرایط کاری خاص یا افزایش بارگذاری رخ می دهد. درک سایش غیرعادی و معمولی مهندس را قادر میسازد تا شرایط خارجی را که منجر به سایش زودرس میشود کنترل کند، یا قطعات مهمی را طراحی کند که عمر سایش طولانیتری دارند و در نتیجه هزینههای کمتری دارند. ادبیات مربوط به پدیده سایش مربوط به موتورها در نشریات و کتاب های متعدد پراکنده شده است. برای اولین بار، Lakshminarayanan و Nayak جنبههای تریبولوژیکی اجزای مختلف موتور حیاتی را در یک جلد گرد هم میآورند و اجزای کلیدی مانند آستر، پیستون، رینگها، سوپاپ، قطار سوپاپ و یاتاقانها را با روشهایی برای شناسایی و تعیین مقدار سایش پوشش میدهند. کتابی برای ترکیب راهحلهایی برای سایش اجزای حیاتی در یک جلد، مطالعات موردی دنیای واقعی را با مدلهای ریاضی مناسب برای محرکهای زمین، ژنراتورهای برق، و کشتیهای دریایی ارائه میکند، شامل مطالبی از محققان Shaeffer Manufacturing (ایالات متحده آمریکا)، Tekniker (اسپانیا)، Fuchs (آلمان)، BAM (آلمان)، Kirloskar Oil Engines Ltd (هند) و Tarabusi (اسپانیا) شبیهسازیها و محاسبات پوشیدن موجود در ضمیمهها، اسلایدهای ارائههای مدرس با شکلهای کتاب موجود در سایت همراه Critical Component Wear in Heavy Duty Engines برای فارغالتحصیلان رشتههای مهندسی خودرو و مهندسی خودرو است. طراحی، تریبولوژی، احتراق و دست اندرکاران تحقیق و توسعه موتور برای کاربردهایی مانند وسایل نقلیه تجاری، اتومبیل ها، موتورهای ثابت (برای ژنراتورها، پمپ ها و غیره)، قایق ها و کشتی ها. این کتاب همچنین یک مرجع کلیدی برای دانشجویان ارشد است که به دنبال تحصیل پیشرفته در موضوعات فوق، مشاوران و مدیران محصولات در صنعت، و همچنین مهندسین درگیر در طراحی کورهها، توربینهای گاز و احتراق موشک هستند. وبسایت همراه برای کتاب : www.wiley.com/go/lakshmi
The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading. Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon related to engines is scattered in numerous periodicals and books. For the first time, Lakshminarayanan and Nayak bring the tribological aspects of different critical engine components together in one volume, covering key components like the liner, piston, rings, valve, valve train and bearings, with methods to identify and quantify wear.The first book to combine solutions to critical component wear in one volumePresents real world case studies with suitable mathematical models for earth movers, power generators, and sea going vesselsIncludes material from researchers at Schaeffer Manufacturing (USA), Tekniker (Spain), Fuchs (Germany), BAM (Germany), Kirloskar Oil Engines Ltd (India) and Tarabusi (Spain)Wear simulations and calculations included in the appendicesInstructor presentations slides with book figures available from the companion siteCritical Component Wear in Heavy Duty Engines is aimed at postgraduates in automotive engineering, engine design, tribology, combustion and practitioners involved in engine R&D for applications such as commercial vehicles, cars, stationary engines (for generators, pumps, etc.), boats and ships. This book is also a key reference for senior undergraduates looking to move onto advanced study in the above topics, consultants and product mangers in industry, as well as engineers involved in design of furnaces, gas turbines, and rocket combustion.Companion website for the book: www.wiley.com/go/lakshmi
CRITICAL COMPONENT WEAR IN HEAVY DUTY ENGINES......Page 1
Contents......Page 7
List of Contributors......Page 17
Preface......Page 19
Acknowledgements......Page 23
PART I: OVERTURE......Page 25
1.2 Engine Life......Page 27
1.3.1 Natural Aging......Page 28
1.5 Wear of Engine Bearings......Page 29
1.8 Reduction in Wear Life of Critical Parts Due to Contaminants in Oil......Page 30
1.8.1 Oil Analysis......Page 31
1.9.1 Engine Oil Developments and Trends......Page 32
1.10.1 Air Filter......Page 33
1.11.1 Adhesive Wear......Page 34
References......Page 35
2.2 Engine Life......Page 37
2.4.1 Mechanical Efficiency......Page 38
2.5.1 Characteristic Size of an Engine......Page 39
2.5.2 Velocity......Page 40
2.5.3 Oil Film Thickness......Page 41
2.5.6 Indicated Power and Efficiency......Page 42
2.7.1 Wear Life......Page 44
2.7.2 Nondimensional Wear Depth Achieved During Lifetime......Page 45
2.8 Summary......Page 47
Appendix 2.A: Engine Parameters, Mechanical Efficiency and Life......Page 49
Appendix 2.B: Hardness and Fatigue Limits of Different Copper–Lead–Tin (Cu–Pb–Sn) Bearings......Page 50
Appendix 2.C: Hardness and Fatigue Limits of Different Aluminium–Tin (Al–Sn) Bearings......Page 52
References......Page 53
PART II VALVE TRAIN COMPONENTS......Page 55
3.1 Introduction......Page 57
3.2.1 Design Aspects to Reduce Valve Seat Wear Life......Page 58
3.4 Wear Model......Page 59
3.4.1 Wear Rate......Page 60
3.5 Finite Element Analysis......Page 61
3.6 Experiments, Results and Discussions......Page 62
3.6.2 Improved Valve and Seat Insert......Page 63
References......Page 69
4.1 Introduction......Page 71
4.2.1 Wear Mechanism of the Cam Follower......Page 72
4.3 Typical Modes of......Page 74
4.4.1 Follower Measurement......Page 75
4.5.1 Elastohydrodynamic and Transition of Boundary Lubrication......Page 76
4.5.2 Cam and Follower Dynamics......Page 77
4.6.2 Valve Train Dynamics and Stress on the Follower......Page 79
4.6.3 Wear Depth......Page 85
4.8 Wear of the Cast Iron Rocker Toe......Page 88
References......Page 90
PART III LINER, PISTON AND PISTON RINGS......Page 93
5.1 Introduction......Page 95
5.2.3 Surface Finish Parameters......Page 96
5.2.4 Bearing Area Curve......Page 98
5.2.5 Representation of Bearing Area Curve of Normally Honed Surface or Surfaces with Peaked Roughness......Page 99
5.3.2 Radius of the Asperity in the Transverse Direction......Page 100
5.3.4 Sparse Contact......Page 101
5.3.6 Friction......Page 103
5.3.8 Detachment of Asperities......Page 104
5.4.3 Fatigue Loading of Asperities......Page 105
5.4.4 Wear Rate......Page 106
5.4.5 Plateau Honed and Other Liners not Normally Honed......Page 107
5.5 Liner Wear Model for Wear of Roughness Peaks in Sparse Contact......Page 109
5.5.1 Parametric Studies......Page 110
5.5.2 Comparison with Archard’s Model......Page 112
5.6 Discussions on Wear of Liner Roughness Peaks due to Sparse Contact......Page 113
5.7 Summary......Page 116
References......Page 117
6.1 Introduction......Page 119
6.2.2 Skirt......Page 120
6.3 Experimental Mapping of Temperature Field in the Piston......Page 121
6.5 Calculation of Piston Shape......Page 122
6.5.1 Popular Methods Used Before Finite Element Analysis......Page 123
6.5.2 Calculation by Finite Element Method......Page 125
6.5.3 Experimental Validation......Page 127
6.6 Summary......Page 132
References......Page 133
7.1 Introduction......Page 135
7.2.1 Bore Polishing......Page 136
7.3.3 Piston Growth by Finite Element Method......Page 137
7.3.4 Piston Secondary Movement......Page 138
7.4.1 Contact Pressures......Page 139
7.5.1 Finite Element Analysis......Page 140
7.5.2 Simulation......Page 141
7.6.1 Visual Observations......Page 142
7.6.3 Results of Finite Element Analysis......Page 143
7.6.4 Piston Motion......Page 145
7.6.5 Wear Profile......Page 147
7.6.7 Methods Used to Reduce Liner Wear......Page 149
References......Page 151
8.1 Introduction......Page 153
8.2.2 Wear Mechanism......Page 154
8.3.3 Wear Rate......Page 156
8.4.1 Validation of the Model......Page 158
8.4.2 Wear Measurement......Page 159
8.5 Estimation of Wear Using Sarkar’s Model......Page 161
8.5.1 Parametric Study......Page 162
8.6 Summary......Page 163
References......Page 164
9.2 Wear of Liner and Ring Surfaces......Page 165
9.3.2 Abrasive Wear......Page 167
9.4.2 Abrasive Wear of Piston Pin and Liners......Page 168
9.4.3 Accelerated Abrasive Wear Test on an Engine to Simulate Operation in the Field......Page 170
9.5 Winnowing Effect......Page 173
9.7 Critical Dosage of Sand and Life of Piston–Ring–Liner Assembly......Page 174
9.7.1 Simulation of Engine Life......Page 175
9.8 Summary......Page 176
References......Page 177
10.2.1 Corrosive Wear......Page 179
10.3.1 Accelerated Corrosive Wear Test......Page 180
10.4.2 Coolant Related Wear......Page 185
References......Page 189
11.1 Introduction......Page 191
11.2.1 Testing Friction and Wear of the Tribo-System Piston Ring and Cylinder Liner Outside of Engines......Page 192
11.3 Test Procedures Assigned to the High Frequency, Linear Oscillating Test Machine......Page 194
11.4.3 Reagents and Materials......Page 196
11.5.1 Selection of Coatings for Piston Rings......Page 199
11.5.2 Scuffing Tribological Test......Page 202
11.5.3 Hot Endurance Test......Page 203
11.6 Selection of Lubricants......Page 208
11.7.2 Polyalkyleneglycols......Page 209
11.8.1 Thematic ‘Piston Rings’......Page 214
11.9.1 Piston Ring Cylinder Liner Simulation......Page 216
References......Page 218
PART IV ENGINE BEARINGS......Page 221
12.1 Introduction......Page 223
12.2.1 Babbitt or White Metal......Page 226
12.2.2 Copper–Lead Alloys......Page 227
12.2.3 Aluminium-based Materials......Page 228
12.3 Functions of Engine Bearing Layers......Page 229
12.4 Types of Overlays/Coatings in Engine Bearings......Page 230
12.4.4 Polymer-based Overlays......Page 232
12.5 Coatings for Engine Bearings......Page 233
12.6 Relevance of Lubrication Regimes in the Study of Bearing Wear......Page 234
12.6.1 Boundary Lubrication......Page 236
12.6.2 Mixed Film Lubrication......Page 239
12.6.3 Fluid Film Lubrication......Page 240
12.7.1 Friction......Page 241
12.8 Wear......Page 242
12.9 Mechanisms of Wear......Page 243
12.9.1 Adhesive Wear......Page 244
12.9.2 Abrasive Wear......Page 247
12.9.3 Erosive Wear......Page 254
12.10 Requirements of Engine Bearing Materials......Page 258
12.11 Characterization Tests for Wear Behaviour of Engine Bearings......Page 262
12.11.2 Pin-on-disk Test......Page 263
12.11.3 Scratch Test for Bond Strength......Page 265
12.12 Summary......Page 275
References......Page 276
PART V LUBRICATING OILS FOR MODERN ENGINES......Page 277
13.1 Introduction......Page 279
13.2.1 Role of the Government......Page 280
13.2.2 OEMs’ Role......Page 281
13.3.1 Overview and What an Engine Oil Must Do......Page 282
13.4.1 Viscosity......Page 289
13.5 How Engine Oil Performance Standards are Developed......Page 292
13.5.1 Phase 1: Category Request and Evaluation (API, 2011a, pp. 36, 37)......Page 293
13.5.2 Phase 2: Category Development (API, 2011a, pp. 41, 42)......Page 295
13.5.3 Phase 3: Category Implementation (API, 2011a, p. 45)......Page 297
13.5.4 API Licensing Process......Page 299
13.7 ACEA Specifications......Page 300
13.7.1 Current E Sequences......Page 302
13.9 Why Some API Service Classifications Become Obsolete......Page 303
13.10.1 Base Oils......Page 304
13.10.2 Refining Processes Used to Produce Lubricating Oil Base Stocks......Page 305
13.10.3 Synthetic Base Oils......Page 309
13.10.5 API Base Oil Categories......Page 310
13.11.1 Detergent–Dispersant Additives......Page 314
13.11.2 Anti-Wear Additives......Page 318
13.11.3 Friction Modifiers......Page 319
13.11.5 Oxidation Inhibitors (Antioxidants)......Page 320
13.11.6 Viscosity Index Improvers......Page 322
13.11.7 Pour Point Depressants......Page 324
13.11.8 Foam Inhibitors......Page 325
13.12 Maintaining and Changing Engine Oils......Page 326
13.12.2 Used Engine Oil Analysis......Page 327
13.14 Engine Design Technologies and Strategies Used to Control Emissions......Page 330
13.14.1 High Pressure Common Rail (HPCR) Fuel System......Page 333
13.14.2 Combustion Optimization......Page 334
13.14.3 Advanced Turbocharging......Page 336
13.14.4 Exhaust Gas Recirculation (EGR)......Page 337
13.14.5 Advanced Combustion Emissions Reduction Technology......Page 338
13.14.7 Exhaust After-Treatment......Page 339
13.15 Impact of Emission Strategies on Engine Oils......Page 348
13.15.1 Impact of Cooled EGR on Engine Oil......Page 349
13.15.2 Effects of Post-Injection on Engine Oils......Page 351
13.16 How Have Engine Oils Changed to Cope with the Demands of Low Emissions?......Page 352
13.17.1 API CH-4......Page 353
13.17.2 API CI-4......Page 354
13.17.3 API CI-4 Plus......Page 355
13.17.4 API CJ-4......Page 357
13.18 Paradigm Shift in Engine Oil Technology......Page 360
13.18.1 Backward Compatibility and Engine Tests......Page 361
13.18.2 New Engine Sequence Tests......Page 362
13.18.3 Previous Engine Oil Sequence Tests......Page 367
13.18.4 Differences Between CJ-4 and Previous Categories and Benefits of Using CJ-4 Engine Oils......Page 371
13.19 Future Engine Oil Developments......Page 372
13.20 Summary......Page 376
References......Page 377
PART VI FUEL INJECTION EQUIPMENT......Page 379
14.2.1 Lubricity of Mineral Diesel Fuel......Page 381
14.3.1 Wear of Injector Nozzle due to Heat and Dust......Page 385
14.3.2 Fuel Filters......Page 388
14.4.2 Use of Emulsified Water for Reducing Nitric Oxides in Large Engines......Page 389
14.4.3 Microbiological Contamination of Fuel Systems......Page 390
References......Page 391
PART VII HEAVY FUEL ENGINES......Page 393
15.1 Introduction......Page 395
15.2 Fuel Treatment: Filtration and Homogenization......Page 397
15.4.1 Fuel Injection Equipment......Page 398
15.5 Deposit Build Up on Top Land and Anti-polishing Ring for Reducing the Wear of Liner, Rings and Piston......Page 399
15.6.2 Mechanism of Corrosive Attack by Sulfuric Acid......Page 401
15.6.3 Control of Corrosion by Basicity and Oil Consumption......Page 402
15.6.4 Control of Sulfur Corrosion by Maintaining Cooling Water Temperature High......Page 403
15.7.1 Lubricity......Page 404
15.7.2 Lack of Formation of Oil Pockets on the Liner Bore......Page 405
15.7.3 Sudden Severe Wear of Liner and Rings......Page 406
15.9 High Temperature Corrosion......Page 407
15.9.2 Exhaust Valves......Page 409
15.10.1 Wear of Bearings......Page 412
15.11.1 Steps to Satisfy Emission Standards......Page 415
15.13 Summary......Page 417
References......Page 418
PART VIII FILTERS......Page 421
16.1 Introduction......Page 423
16.3 Classification of Filtration......Page 424
16.3.1 Classification by Filter Media......Page 425
16.3.3 Classification by Filter Size......Page 426
16.4.4 β Ratio......Page 427
16.5 Filter Selection......Page 428
16.6.1 Air Filters......Page 429
16.7 Oil Filters and Impact on Oil and Engine Life......Page 433
16.7.1 Oil Performance and Life......Page 434
16.7.2 Oil Stress......Page 435
16.8 Engine Wear......Page 437
16.9 Full Flow Oil Filters......Page 439
16.9.1 Bypass Filters......Page 441
16.9.2 Centrifugal Filters......Page 442
References......Page 443
Index......Page 445