ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Biomass for bioenergy and biomaterials

دانلود کتاب زیست توده برای انرژی زیستی و بیومواد

Biomass for bioenergy and biomaterials

مشخصات کتاب

Biomass for bioenergy and biomaterials

ویرایش: [First edition.] 
نویسندگان: , ,   
سری: Emerging materials and technologies 
ISBN (شابک) : 9780367745554, 0367745585 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [399] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 Mb 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Biomass for bioenergy and biomaterials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب زیست توده برای انرژی زیستی و بیومواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1 Chemistry of Plant Biomass
	1.1 Introduction
	1.2 Classification of Plant-Derived Biomass
		1.2.1 Woody Biomass
		1.2.2 Herbaceous Biomass
	1.3 Plant Cell Wall Composition and Architecture
		1.3.1 Chemistry of Cellulose
		1.3.2 Chemistry of Hemicellulose
			1.3.2.1 Xylan
			1.3.2.2 Mannan
			1.3.2.3 Xylogalactan
			1.3.2.4 Xyloglucan
		1.3.3 Chemistry of Lignin
		1.3.4 Chemistry of Starch
			1.3.4.1 Amylose
			1.3.4.2 Amylopectin
	1.4 Other Low Molecular Weight Constituents
		1.4.1 Extractives
		1.4.2 Inorganic Constituents
		1.4.3 Fluid Content
	1.5 Conclusions
	References
Chapter 2 Lignin to Platform Chemicals and Biomaterials: Chemical and Biological Perspectives
	2.1 Introduction to Lignocellulosic Biomass
	2.2 Lignin: Structure and Its Components
	2.3 Valorization of Lignin: Chemical Perspective
		2.3.1 Photocatalytic Degradation
		2.3.2 Enzymatic Degradation of Lignin
			2.3.2.1 Lignin-Degrading (LD) and Lignin-Modifying (LM) Enzymes
			2.3.2.2 Lignin Peroxidase (EC 1.11.1.14)
			2.3.2.3 Manganese-Dependent Peroxidase (EC 1.11.1.13)
			2.3.2.4 Laccase (Lac, Benzenediol: Oxygen Oxidoreductases; EC 1.10.3.2)
			2.3.2.5 Superoxide Dismutases
	2.4 Lignin in Biological Agents
		2.4.1 Drug Carrier
		2.4.2 Microbicidal Agent
		2.4.3 Theranostic Agent
	2.5 Future Perspective
	References
Chapter 3 LCA and TEA for Biomass Conversion Technology
	3.1 Introduction
	3.2 Techno Economic Analysis (TEA)
		3.2.1 TEA Methodology
			3.2.1.1 Technology Maturity
			3.2.1.2 Goal and Scope
			3.2.1.3 Inventory
			3.2.1.4 Assumptions
		3.2.2 Case Studies
		3.2.3 Challenges and Research Gaps
	3.3 Life Cycle Assessment
		3.3.1 LCA: Methodology
			3.3.1.1 Goal and Scope Definition
			3.3.1.2 Life Cycle Inventory
			3.3.1.3 Impact Assessment
			3.3.1.4 Interpretation
		3.3.2 Case Studies
		3.3.3 Challenges and Research Gaps
	3.4 Conclusions
	References
Chapter 4 Biomass Pre-Treatment and Liquefaction
	4.1 Introduction
	4.2 Structure and Composition of LB
		4.2.1 Cellulose
		4.2.2 Hemicellulose
		4.2.3 Lignin
	4.3 Different Pre-Treatment Strategies
		4.3.1 Physical Pre-Treatments
		4.3.2 Biological Pre-Treatments
		4.3.3 Chemical Pre-Treatments
			4.3.3.1 Acid Pre-Treatment
			4.3.3.2 Alkali Pre-Treatment
			4.3.3.3 Organosolv Pre-Treatment
			4.3.3.4 Ionic Liquid Pre-Treatment
		4.3.4 Physicochemical Pre-Treatments
			4.3.4.1 Steam Explosion
			4.3.4.2 Liquid Hot Water Pre-Treatment
			4.3.4.3 Ammonia Fibre Explosion
			4.3.4.4 Microwave Irradiation
			4.3.4.5 Ultrasound Irradiation
			4.3.4.6 Wet Oxidation
	4.4 Hydrothermal Liquefaction (HTL)
		4.4.1 Properties of Sub- and Supercritical Water
		4.4.2 Reaction Mechanism of HTL
			4.4.2.1 Reaction Mechanism for Degradation of Carbohydrates
			4.4.2.2 Reaction Mechanism for Degradation of Lignin
		4.4.3 Effect of Operating Parameters on HTL of Biomass
			4.4.3.1 Effect of Feedstock Type and Particle Size
			4.4.3.2 Effect of Temperature
			4.4.3.3 Effect of Heating Rate and Thermal Gradient
			4.4.3.4 Effect of Residence Time
			4.4.3.5 Effect of Biomass/Water Mass Ratio
			4.4.3.6 Effect of Pressure
			4.4.3.7 Effect of Catalyst
	4.5 Overview of Industrial Applications of HTL
	4.6 Challenges and Future Perspective
	4.7 Conclusions
	References
Chapter 5 Role of Systems Biology in Enhancing Efficiency of Biocatalysts
	5.1 Introduction
	5.2 Need for Systems Biology
	5.3 Reconstruction of Genome-Scale Metabolic Model
		5.3.1 KEGG
		5.3.2 BioCyc
		5.3.3 MetaCyc
		5.3.4 ExPASy
		5.3.5 UniProt
		5.3.6 BRENDA
		5.3.7 ModelSEED
		5.3.8 BiGG
		5.3.9 BioModels
	5.4 Refinement of the Draft Metabolic Model
	5.5 Different Optimization Criteria
	5.6 Experimental Data Used for Model Reconstruction
	5.7 Toolboxes Available for Metabolic Modelling and FBA
		5.7.1 COBRA Toolbox
		5.7.2 COBRApy
		5.7.3 ScrumPy
– Metabolic Modelling in Python
		5.7.4 Sybil
		5.7.5 Pathway Tools
		5.7.6 ModelSEED
		5.7.7 RAVEN
		5.7.8 MERLIN
		5.7.9 CoReCo
		5.7.10 CarveMe
	5.8 Methods of Analyses of GSMM for Metabolic Engineering
	5.9 Pathway Prediction for Synthetic Biology Applications
	5.10 Genetic Engineering Tools
	5.11 Improving Tolerance to Inhibitors through Systems Biology Analyses
	5.12 Enzyme Discovery
	5.13 Future Directions for Systems Biology – Integrative Analyses
	References
Chapter 6 Enzyme-Based Saccharicatfiion
	6.1 Introduction
	6.2 Advent of Cellulase Producers
		6.2.1 Fungus
– Workhorse for Industrial Production
		6.2.2 Bacterial Cellulase Systems
			6.2.2.1 Cell-Bound System
– Cellulosome
			6.2.2.2 Cell-Free Cellulase Enzymes
	6.3 Molecular and Biochemical Approaches for Enhanced Cellulase and Hemicellulase Production
		6.3.1 Modulation of Expression of Transcriptional Activators and Repressors
		6.3.2 Combating Carbon Catabolite Repression
	6.4 Other Factors Influencing Cellulase Production and Downstream Saccharification
		6.4.1 Biochemical Factors
– Effect of Carbon Sources
		6.4.2 Impact of Different Nitrogen Sources
		6.4.3 Influence of pH and Temperature
	6.5 Enzyme-Based Saccharification at Laboratory and Industrial Scales
	6.6 Enzyme Cocktails for Enhanced Saccharification
	6.7 Applications of Cellulases
	6.8 Case Studies
– Industrial Success Stories in India
		6.8.1 India Glycols Ltd
		6.8.2 PRAJ Industries, Pune
		6.8.3 DBT-IOCL, Faridabad
	References
Chapter 7 Enhancement of Biomass for Deconstruction
	7.1 Introduction
	7.2 In planta Modification of Cellulose Structure
		7.2.1 Biosynthesis of Cellulose
			7.2.1.1 Enhancement of the SuSy Activity
			7.2.1.2 Disrupting Native Cellulose Biosynthesis Pathway
			7.2.1.3 Altering Crystallinity of Cell Wall
			7.2.1.4 In planta Expression of Cellulose-Degrading Enzymes
	7.3 In planta Modification of Xylan Structure
		7.3.1 Structural Feature and Biosynthesis of Xylan
			7.3.1.1 Modulating Xylan Synthetic Complexes
			7.3.1.2 Altering Xylan Reducing End Sequence and Methyl Glucuronic Acid Level
			7.3.1.3 Modifying Polysaccharide Acetyltransferase Expression
			7.3.1.4 In planta Expression of Xylan Hydrolytic Enzymes
	7.4 In planta Modification of Pectin Structure
		7.4.1 Types of Pectin-Degrading Enzymes
		7.4.2 Bioengineering of Pectin
	7.5 In planta Modification of Mannan
		7.5.1 Structural Features of Different Types of Mannan
		7.5.2 Introduction to Mannan Biosynthesis
			7.5.2.1 Mannan Acetylation in Plants
			7.5.2.2 Mannan-Degrading Enzymes
	7.6 In planta Modification of Lignin
		7.6.1 Introduction to Lignin Biosynthesis
			7.6.1.1 Reducing the Lignin Content
			7.6.1.2 Fine-tuning the Lignin Monomer Composition
			7.6.1.3 Disrupting Cross-Linkages between Lignin and Other Cell Wall Components
			7.6.1.4 Addition of Labile Monolignols
			7.6.1.5 Modifying Lignin Polymerisation
	7.7 Conclusions
	References
Chapter 8 Lignocellulosic Biorefineries – A Step towards a Carbon- Neutral Economy
	8.1 Introduction
	8.2 Lignocellulosic Biorefinery
		8.2.1 Fractionation Technologies and Their Importance
		8.2.2 Evaluation of Sustainable Technology for LBM Feedstock Biorefinery
			8.2.2.1 Technology Efficiency
			8.2.2.2 Technology Flexibility
			8.2.2.3 Technology Maturity
			8.2.2.4 Technology Profitability
			8.2.2.5 Robustness
		8.2.3 Expected Challenges in the Commercialization of LBM
	8.3 Commodity Chemicals
		8.3.1 Opportunities, Uses, Market, Technology, and Challenges
		8.3.2 Lactic Acid
		8.3.3 Succinic Acid
		8.3.4 Diol Compounds
		8.3.5 Levulinic Acid
		8.3.6 2, 5-Furandicarboxylic Acid
		8.3.7 Isoprene
		8.3.8 Lignin-Derived Chemicals
	8.4 Valorization of LBM into Gaseous and Liquid Fuels
		8.4.1 Biogas
		8.4.2 Synthesis Gas
		8.4.3 Drop-in Fuels
	8.5 Conclusions
	References
Chapter 9 Targeted Strain Engineering to Produce Bioenergy
	9.1 Introduction
	9.2 Different Generations of Biofuels
		9.2.1 First Generation
		9.2.2 Second Generation
			9.2.2.1 Resistance Engineered against Inhibitors
		9.2.3 Third Generation
	9.3 High-Energy Advanced Biofuels
		9.3.1 Bioalcohols
			9.3.1.1 n-Butanol
			9.3.1.2 Isobutanol
		9.3.2 Hydrocarbons
		9.3.3 Metabolic Engineering for the Production of Alkanes/Alkenes
	References
Chapter 10 Saccharide to Biodiesel
	10.1 Introduction
	10.2 Physicochemical Properties and Chemical Constitution of Saccharides
	10.3 Source of Saccharides
	10.4 Oleaginous Microbial Platform for Biodiesel Production
		10.4.1 Oleaginous Microalgae
		10.4.2 Oleaginous Yeast and Filamentous Fungi
		10.4.3 Oleaginous Bacteria
		10.4.4 Co-Cultivation of Microorganisms
	10.5 Sugar Conversion into SCO
	10.6 Lipid Extraction Methods
	10.7 Transesterification
	10.8 Purification of Biodiesel
	10.9 Fatty Acid Profiles and Biodiesel Properties
	10.10 Conclusions
	References
Chapter 11  Second-Generation Biobutanol
– Methods
and Prospects
	11.1 Introduction
	11.2 Feedstocks and Their Composition
	11.3 Conversion of Biomass to Biofuels/Biochemicals
	11.4 Pretreatment Strategies
		11.4.1 Physical Pretreatment Methods
			11.4.1.1 Mechanical Pretreatment
			11.4.1.2 Irradiation Pretreatment
		11.4.2 Chemical Pretreatment Methods
			11.4.2.1 Acid Pretreatment
			11.4.2.2 Alkaline Pretreatment
			11.4.2.3 Organic Solvent Pretreatment
		11.4.3 Physicochemical Pretreatment Methods
			11.4.3.1 Steam Explosion
			11.4.3.2 Liquid Hot Water
			11.4.3.3 Ammonia Fiber Explosion
		11.4.4 Biological Pretreatment Methods
			11.4.4.1 Microbes-Based Pretreatment
			11.4.4.2 Enzyme-Based Pretreatment
	11.5 Enzymatic Hydrolysis
		11.5.1 Enzymes for Hydrolysis of Lignocellulosic Biomass
			11.5.1.1 Cellulases
			11.5.1.2 Xylanases
		11.5.2 Factors Affecting Enzymatic Hydrolysis
			11.5.2.1 Enzyme-Related Factors
			11.5.2.2 Substrate-Related Factors
	11.6 Bioethanol
		11.6.1 Fermentative Microorganisms
		11.6.2 Thermophilic Fermentative Microorganisms for Lignocellulosic Ethanol Production
		11.6.3 Downstream Processing of Ethanol
			11.6.3.1 Distillation
			11.6.3.2 Alternative Recovery Techniques
			11.6.3.3 Pervaporation
			11.6.3.4 Gas Stripping
			11.6.3.5 Vacuum Fermentation
			11.6.3.6 Adsorption
			11.6.3.7 Solvent Extraction
		11.6.4 Improvements in Ethanol Production
		11.6.5 Opportunities and Challenges
	11.7 Biobutanol
		11.7.1 ABE/IBE Fermentation—Role of Clostridia
		11.7.2 Amelioration of Butanol Fermentation
		11.7.3 Consolidated Bioprocessing
		11.7.4 Downstream Processing of Butanol
			11.7.4.1 Pervaporation
			11.7.4.2 Hybrid Technologies
		11.7.5 Opportunities and Challenges
	11.8 Comparison of Fuel Characteristics of Gasoline and Bioalcohols
	11.9 Conclusions
	References
Chapter 12 Biological Production of  Diols
– Current Perspective
	12.1 Introduction: Overview on the Importance and Production of Diols
	12.2 Biological Production of Various Diols
		12.2.1 1,3-Propanediol (1,3-PDO)
		12.2.2 1,2-Propanediol (1,2-PDO)
		12.2.3 2,3-Butanediol (2,3-BDO)
		12.2.4 1,4-Butanediol (1,4-BDO)
		12.2.5 2,4-Pentanediol
	12.3 A Brief Outline on the Various Aspects and Applications of Diols
	12.4 Production of 2,3-Butanediol from Lignocellulosic Biomass
– A Brief
		12.4.1 Feedstock Used for 2,3-BDO Production
		12.4.2 Potential Microorganism
		12.4.3 Fermentation Strategies
		12.4.4 Effect of Substrate Concentration
		12.4.5 Downstream Processing
	References
Chapter 13 Market Analysis of Biomass for Biofuels and Biomaterials
	13.1 Introduction
	13.2 Commercially Available Biomass
		13.2.1 Classification of Agricultural Biomass
	13.3 Opportunities, Growth Drivers and Challenges in Biomass-Derived Products
		13.3.1 Affordable and Clean Energy
		13.3.2 Climate Action
		13.3.3 Life Below Water
		13.3.4 Good Health and Well-Being
	13.4 Global Biomass Supply Analysis in the Energy and Fuels Segment
	13.5 Market Analysis of Biomass-Based Fuel Production
	13.6 Global Market Analysis of Biomaterials
		13.6.1 Bio-based Polymers
– Supply–
Demand Analysis
		13.6.2 Analysis of Biomass Consumption to Produce Biopolymers in 2019
	13.7 Market and Industry Analysis of Bio-based Chemicals
		13.7.1 Biorefinery
			13.7.1.1 Syngas Platform
			13.7.1.2 Biogas Platform
			13.7.1.3 C6 and C6/C5 Sugar Platform
			13.7.1.4 Selective Dehydration, Hydrogenation and Oxidation Processes
			13.7.1.5 Organic Solutions Platform
			13.7.1.6 Lignin-Based Platform
		13.7.2 Bio-based Chemicals Industry
			13.7.2.1 C1-Containing Compounds
			13.7.2.2 C2-Containing Compounds
			13.7.2.3 C3-Containing Compounds
			13.7.2.4 Bio-based Propylene Glycol
			13.7.2.5 C4-Containing Compounds
			13.7.2.6 C5-Containing Compounds
			13.7.2.7 C6-Containing Compounds
			13.7.2.8 Others
	13.8 Conclusions
	References
Index




نظرات کاربران