ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Avian Immunology

دانلود کتاب ایمونولوژی پرندگان

Avian Immunology

مشخصات کتاب

Avian Immunology

ویرایش: 3 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128187085, 9780128187081 
ناشر: Academic Press 
سال نشر: 2021 
تعداد صفحات: 626 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 42 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Avian Immunology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب ایمونولوژی پرندگان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title-page_2022_Avian-Immunology
	Avian Immunology
Copyright_2022_Avian-Immunology
	Copyright
Dedication_2022_Avian-Immunology
	Dedication
Contents_2022_Avian-Immunology
	Contents
List-of-contributors_2022_Avian-Immunology
	List of contributors
Foreword_2022_Avian-Immunology
	Foreword
Acknowledgments_2022_Avian-Immunology
	Acknowledgments
Appendix-1---Genetic-stocks-for-immunological-research_2022_Avian-Immunology
	Appendix 1 Genetic stocks for immunological research
		A.1 Introduction
		A.2 Major histocompatibility complex lines
			A.2.1 Inbred lines
			A.2.2 Congenic lines
			A.2.3 Randombred lines
			A.2.4 Selected lines
		A.3 General lines
		A.4 Genetically modified lines
		Acknowledgments
		References
Chapter-1---The-importance-of-the-avian-immune-system-and-_2022_Avian-Immuno
	1 The importance of the avian immune system and its unique features
		1.1 Introduction
		1.2 The contribution from avian lymphocytes
		1.3 Contribution of the bursa of Fabricius
			1.3.1 Gene conversion and the bursa
		1.4 The contribution of the chicken MHC
		1.5 Contributions to vaccinology
			1.5.1 Embryonic (in ovo) vaccination
		1.6 Conclusion
		References
Chapter-2---Structure-of-the-avian-lymphoid-system_2022_Avian-Immunology
	2 Structure of the avian lymphoid system
		2.1 Introduction
		2.2 The thymus
			2.2.1 Anatomy and histological organization
			2.2.2 Thymic cortex
			2.2.3 Thymic medulla
				Thymic corticomedullary border
		2.3 The bursa of Fabricius
			2.3.1 Anatomy and histology
			2.3.2 Bursal surface epithelium
			2.3.3 Bursal follicle
			2.3.4 Medulla
			2.3.5 Bursal medullary epithelial cells
			2.3.6 Bursal secretory dendritic cells
			2.3.7 Bursal macrophages
			2.3.8 Bursal lymphocytes
			2.3.9 Cortex
			2.3.10 Peripheral lymphoid tissue of the bursa of Fabricius
			2.3.11 Germinal center of the peripheral lymphoid organs
		2.4 The spleen
			2.4.1 Origin and anatomy
				Red pulp
				White pulp
			2.4.2 Periarteriolar lymphoid sheath
			2.4.3 Ellipsoids and periellipsoid white pulp
			2.4.4 The marginal-zone equivalent and antigen handling
		2.5 Gut-associated lymphoid tissue
			2.5.1 Follicle-associated epithelium or lymphoepithelium
			2.5.2 Esophageal and pyloric tonsils
			2.5.3 Peyer’s patches
			2.5.4 Meckel’s diverticulum
			2.5.5 Cecal tonsils
		2.6 Harderian gland
		2.7 Mural lymph node
		2.8 Ectopic lymphatic tissue and pineal gland
		2.9 Bone marrow
		2.10 Blood
		References
Chapter-3---Development-of-the-avian-hematopoietic-and-im_2022_Avian-Immunol
	3 Development of the avian hematopoietic and immune systems
		3.1 Introduction
		3.2 Origins and migration routes of hematopoietic cells using quail/chicken complementary chimeras
			3.2.1 Looking for the source of hematopoeietic cells during development
			3.2.2 Macrophage production by the yolk sac
			3.2.3 The aortic region produces HSCs
		3.3 Aortic clusters as the intraembryonic source of definitive hematopoiesis
			3.3.1 Cellular and molecular identification of the clusters
			3.3.2 The paraaortic foci
			3.3.3 Tracing the origins and fates of the aortic clusters
		3.4 Formation of the aorta: a dorsal angioblastic lineage and a ventral hemangioblasts lineage
			3.4.1 Two endothelial lineages form the vascular network of the embryo
			3.4.2 Chimeric origin of the aortic endothelial cells
		3.5 Developing an in vitro model of hemogenic endothelium commitment and endothelial-to-hematopoietic transition
		3.6 Spatiotemporal emergence and organization of the chicken IAHCs
		3.7 Ecs of the late fetus/young adult bone marrow harbor hemogenic potential and generate multilineage hematopoiesis
		3.8 Spatial transcriptomics in the chicken embryo reveals regulators of hematopoiesis
		3.9 The avian thymus and T-cell development
			3.9.1 Thymic development
			3.9.2 Colonization of the thymus
			3.9.3 T-cell differentiation
			3.9.4 TCR rearrangement
		3.10 The bursa of Fabricius, B-cell ontogeny, and immunoglobulins
			3.10.1 Bursal development
			3.10.2 Formation of the bursal epithelial anlage
			3.10.3 Hematopoietic colonization of the bursal rudiment and follicle bud formation
			3.10.4 Development of the follicle-associated epithelium and the follicular cortex
			3.10.5 Immunoglobulins
		3.11 Lymphocyte-differentiating hormones
		3.12 Development of the immune responses
			3.12.1 Early immune responses
			3.12.2 Antibody isotype switching and hypersensitivity reaction
			3.12.3 Allograft rejection
		3.13 Conclusion
		Acknowledgments
		References
Chapter-4---B-cells--the-bursa-of-Fabricius--and-the-generat_2022_Avian-Immu
	4 B cells, the bursa of Fabricius, and the generation of antibody repertoires
		4.1 Introduction
		4.2 The generation of avian antibody repertoires
			4.2.1 Immunoglobulin light chains
			4.2.2 Immunoglobulin heavy chains
			4.2.3 Generation of Ig molecules by V(D)J recombination
			4.2.4 Generation of Ig diversity by somatic gene conversion
			4.2.5 Implications of gene conversion for allelic exclusion
		4.3 The development of avian B cells
			4.3.1 Prebursal B cell development
			4.3.2 Colonization of the bursa by B cell progenitors
			4.3.3 Colonization of lymphoid follicles in the bursa
			4.3.4 Growth of bursal B cells in bursal follicles
			4.3.5 Development of the bursa after hatch
			4.3.6 Role of cell adhesion molecules and chemokines in bursal cell development
			4.3.7 Development of peripheral B cell populations
			4.3.8 Activation of peripheral B cells
			4.3.9 Plasma cell development
			4.3.10 Cytokines in chicken B cell development and activation
			4.3.11 Application of B cell cultures
		References
Chapter-5---Structure-and-evolution-of-avian-immunoglobu_2022_Avian-Immunolo
	5 Structure and evolution of avian immunoglobulins
		5.1 The basic structure of immunoglobulins
		5.2 Avian immunoglobulins
			5.2.1 Avian IgM
			5.2.2 Avian IgY (IgG)
			5.2.3 Avian IgA
			5.2.4 Avian homologues of IgD and IgE
			5.2.5 L chains
			5.2.6 Genomic organization of the IgH and IgL locus
				Avian Ig allotypes
		5.3 Ig half-life
		5.4 Natural antibodies
		5.5 Maternal antibodies
		5.6 Fc receptors
			5.6.1 Chicken polymeric Ig receptor
			5.6.2 Chicken FcRn homologue
			5.6.3 Chicken Fc receptor cluster
			5.6.4 ggFcR
			5.6.5 CHIR-AB1
		5.7 Avian antibody responses
		5.8 The chicken egg as a source of antibodies
			5.8.1 Avian antibodies as tools for research
		References
Chapter-6---Avian-T-cells--Antigen-Recognition-and-Linea_2022_Avian-Immunolo
	6 Avian T cells: Antigen Recognition and Lineages
		6.1 Introduction
		6.2 T cell receptor structure and lineages
			6.2.1 Somatic DNA recombination
			6.2.2 Organization of the T cell receptor clusters
				TCRα/δ cluster
				TCRβ cluster
				TCRγ cluster
				The genomic T cell receptor regions in other birds
		6.3 CD3 signaling complex
			6.3.1 Mammalian CD3
			6.3.2 Chicken CD3γ/δ and CD3ε
			6.3.3 ζζ homodimer
			6.3.4 T cell receptor complex—structural models
			6.3.5 T cell receptor signal transduction
		6.4 CD4 and CD8
		6.5 Costimulatory molecules
		6.6 T cell lineages
		6.7 Methods to study T cell function
		6.8 Perspectives
		References
Chapter-7---The-avian-major-histocompatibility-complex_2022_Avian-Immunology
	7 The avian major histocompatibility complex
		7.1 Introduction
		7.2 The biology of the major histocompatibility complex
		7.3 The major histocompatibility complex: a genomic region or a biological unit?
		7.4 The chicken major histocompatibility complex and the major histocompatibility complex syntenic region
		7.5 Classical and nonclassical major histocompatibility complex molecules
		7.6 Chicken classical major histocompatibility complex molecules
		7.7 Gene coevolution in the chicken major histocompatibility complex
		7.8 Other chicken genes important for the major histocompatibility complex
		7.9 Polymorphism and typing chicken major histocompatibility complex genes
		7.10 Avian major histocompatibility complexes
		7.11 Immunity, disease resistance, and the major histocompatibility complex in wild birds
		7.12 Sexual selection and the major histocompatibility complex in wild birds
		7.13 Origin and evolution of the immune system
		Acknowledgments
		References
Chapter-8---Introduction-to-the-avian-innate-immune-system--pro_2022_Avian-I
	8 Introduction to the avian innate immune system; properties, effects, and integration with other parts of the immune system
Chapter-8-1---Macrophages-and-dendritic-cells_2022_Avian-Immunology
	8.1 Macrophages and dendritic cells
		8.1.1 Introduction
			8.1.1.1 Antigen presentation
			8.1.1.2 Dendritic cells
			8.1.1.3 Macrophages
			8.1.1.4 Development of myeloid cells
			8.1.1.5 Sources of avian macrophages and dendritic cells
			8.1.1.6 Avian myeloid cell lines
			8.1.1.7 Cell surface markers for avian myeloid cells
			8.1.1.8 Characterization of macrophages and DC in tissue sections
			8.1.1.9 Functional properties of chicken macrophages
			8.1.1.10 Macrophage migration
			8.1.1.11 Phagocytosis
			8.1.1.12 Respiratory burst activity
			8.1.1.13 Nitric oxide production: a readout system for avian macrophage activation
			8.1.1.14 Cytokine response of avian macrophages
		8.1.2 Functional properties of chicken antigen-presenting cells
			8.1.2.1 Maturation from antigen sampling to antigen presenting
			8.1.2.2 Migration
			8.1.2.3 Other nonmyeloid antigen-presenting cells
		8.1.3 Concluding remarks
		References
Subchapter-8-2---Avian-granulocytes_2022_Avian-Immunology
	Subchapter 8.2 Avian granulocytes
		8.2.1 Functional activities of heterophils
		8.2.2 Receptors
		8.2.3 Other innate immune receptors
		8.2.4 Genetic effects on heterophil genotype and phenotype
		8.2.5 Heterophil isolation
		References
		Further reading
Chapter-8-3---Thrombocyte-functions-in-the-avian-immune-_2022_Avian-Immunolo
	8.3 Thrombocyte functions in the avian immune system
		8.3.1 Introduction
		8.3.2 Avian thrombocyte structure
			8.3.2.1 Physical characteristics
			8.3.2.2 Surface protein expression
		8.3.3 Avian thrombocytes and immune responses
			8.3.3.1 Innate responses
			8.3.3.2 Adaptive immune responses
		8.3.4 Infection of thrombocytes
		8.3.5 Conclusion
		References
Chapter-8-4---Natural-killer-cells_2022_Avian-Immunology
	8.4 Natural killer cells
		8.4.1 Potential natural killer cell receptor families
		8.4.2 Phenotype of chicken natural killer cells
		8.4.3 Natural killer cell function
		References
Chapter-8-5---Soluble-components-and-acute-phase-protei_2022_Avian-Immunolog
	8.5 Soluble components and acute-phase proteins
		8.5.1 Soluble components
			8.5.1.1 Host defense peptides
			8.5.1.2 Collagenous lectins
			8.5.1.3 Surfactant protein A and cLL
			8.5.1.4 Mannose-binding lectin
			8.5.1.5 Collectin 10, -11, and -12
			8.5.1.6 Complement
			8.5.1.7 Components of the classical pathway
			8.5.1.8 Components of the lectin pathway
			8.5.1.9 Components of the alternative pathway
			8.5.1.10 Downstream components of complement
		8.5.2 The acute-phase response
			8.5.2.1 C-reactive protein
			8.5.2.2 Serum amyloid A
			8.5.2.3 α1-acid glycoprotein
			8.5.2.4 (Ovo)transferrin
			8.5.2.5 PIT54
			8.5.2.6 Hemopexin
			8.5.2.7 Ceruloplasmin
			8.5.2.8 Fibrinogen
			8.5.2.9 Other potential chicken APPs
		References
Chapter-8-6---Pattern-recognition-receptors_2022_Avian-Immunology
	8.6 Pattern recognition receptors
		8.6.1 Introduction
		8.6.2 Tissue fluid and secreted pattern recognition receptors
			8.6.2.1 C-reactive protein
			8.6.2.2 Collectins
			8.6.2.3 Mannose-binding lectin
			8.6.2.4 Ficolins
			8.6.2.5 Surfactants: surfactant protein A and surfactant protein D
			8.6.2.6 Other collectins
			8.6.2.7 Chicken mannose (or mannan)-binding lectin-associated serine protease proteins, linking soluble pattern recognition...
		8.6.3 Cell-associated pattern recognition receptors
			8.6.3.1 Avian Toll-like receptors
				Background
				The avian Toll-like receptor repertoire
			8.6.3.2 TLR1/6/10-related molecules
			8.6.3.3 TLR2
			8.6.3.4 TLR3
			8.6.3.5 TLR4
			8.6.3.6 TLR5
			8.6.3.7 TLR7 and TLR8
			8.6.3.8 The absence of TLR9
			8.6.3.9 Avian Toll-like receptor without mammalian orthologues: chTLR15 and chTLR21
			8.6.3.10 Toll-like receptor signaling pathways in chickens
			8.6.3.11 Genetic diversity and evidence of selection in avian Toll-like receptors
			8.6.3.12 Other transmembrane pattern recognition receptor
		8.6.4 Cytosolic pattern recognition receptor
			8.6.4.1 Nucleotide-binding oligomerization domain-like receptors
			8.6.4.2 Retinoic acid-inducible gene-like receptors
		8.6.5 Closing comments: general considerations in pattern recognition
		Acknowledgments
		References
Chapter-9---Avian-cytokines-and-their-receptors_2022_Avian-Immunology
	9 Avian cytokines and their receptors
		9.1 Introduction
		9.2 Avian cytokine and chemokine families
		9.3 The interleukins
			9.3.1 The interleukin-1 family
			9.3.2 T-cell proliferative interleukins
			9.3.3 T-helper interleukins
			9.3.4 Th1 interleukins
			9.3.5 Th2 interleukins
			9.3.6 Th1–Th2 paradigm
			9.3.7 Other Th subsets
				Th9 cells
				Th17 cells
				Th22 cells
				Follicular T-helper cells
				Regulatory T cells
		9.4 Other interleukins
			9.4.1 The interleukin-10 family
			9.4.2 The interleukin-6 family
			9.4.3 Other interleukins
		9.5 The interferons
			9.5.1 Type I interferon
			9.5.2 Type II interferon
			9.5.3 Type III interferon
		9.6 Other factors
			9.6.1 The transforming growth factor-β family
			9.6.2 The tumor necrosis factor superfamily
			9.6.3 Colony-stimulating factors
			9.6.4 Cytokines and factors in other birds
		9.7 Chemokines
			9.7.1 XC and CX3C chemokines
			9.7.2 CC Chemokines
			9.7.3 CXC chemokines
		9.8 Cytokine and chemokine receptors
			9.8.1 Type I receptors
			9.8.2 Type II receptors
			9.8.3 Transforming growth factor-β family receptors
			9.8.4 Tumor necrosis factor superfamily receptors
			9.8.5 Chemokine receptors
			9.8.6 Interleukin-1 family receptors
		9.9 The importance of regulation of cytokine responses
		9.10 Therapeutic potential of chicken cytokines
			9.10.1 Alternatives to antibiotic growth promoters
			9.10.2 Potential use of cytokines as vaccine adjuvants
		9.11 Conclusion
		References
Chapter-10---Immunogenetics-and-the-mapping-of-immunologi_2022_Avian-Immunol
	10 Immunogenetics and the mapping of immunological functions
		10.1 Introduction
		10.2 Genetics and immunological traits in the chicken
		10.3 Key gene loci for immunological traits
		10.4 Detecting quantitative trait loci
			10.4.1 Linkage disequilibrium
			10.4.2 Experimental designs to detect quantitative trait loci
				Line or breed crosses
				Within-family linkage disequilibrium in outbred populations
				Population-wide linkage disequilibrium in outbred populations
		10.5 Statistical procedures for quantitative trait loci detection
		10.6 Strategies to use molecular data in genetic selection
			10.6.1 Marker-assisted selection
			10.6.2 Whole-genome prediction
		10.7 Systems biology
		10.8 Transgenic animals
		10.9 Future directions for systems biology in avian immunology
		Acknowledgments
		References
Chapter-11---The-mucosal-immune-system_2022_Avian-Immunology
	11 The mucosal immune system
		References
Chapter-11-1---The-avian-enteric-immune-system-in-health-_2022_Avian-Immunol
	11.1 The avian enteric immune system in health and disease
		11.1.1 General considerations
		11.1.2 Gut structure and immune compartments
			11.1.2.1 Chicken gut-associated lymphoid tissue structures
			11.1.2.2 Cellular composition of the avian gut-associated lymphoid tissues
			11.1.2.3 The enterocyte as part of an integrated gut immune system
		11.1.3 Development of the enteric immune system
			11.1.3.1 Development of immune responses to model antigens
			11.1.3.2 Immunity to enteric pathogens
			11.1.3.3 Development of immunity to enteric pathogens
			11.1.3.4 Maternal antibody and protection of the young chick
		11.1.4 Viral infections of the gut
		11.1.5 Bacterial infections of the gut
			11.1.5.1 Salmonella
			11.1.5.2 Campylobacter
			11.1.5.3 Necrotic enteritis
		11.1.6 Parasitic infections of the gut
			11.1.6.1 Eimeria spp
			11.1.6.2 Other parasitic infections
		11.1.7 Concluding remarks
		Acknowledgments
		References
Chapter-11-2---The-avian-respiratory-immune-system_2022_Avian-Immunology
	11.2 The avian respiratory immune system
		11.2.1 Introduction
		11.2.2 Anatomy of the respiratory tract
		11.2.3 The paraocular lymphoid tissue
		11.2.4 Nasal-associated lymphoid tissue
		11.2.5 The contribution of the trachea to respiratory tract immune responses
		11.2.6 The bronchus-associated lymphoid tissue
		11.2.7 The immune system in the parabronchi
		11.2.8 The phagocytic system of the respiratory tract
		11.2.9 Handling of particles in the respiratory tract
		11.2.10 The secretory IgA system in the respiratory tract
		11.2.11 Gene expression analysis as a tool to investigate host–pathogen interaction
		References
Subchapter-11-3---The-avian-reproductive-immune-system_2022_Avian-Immunology
	Subchapter 11.3 The avian reproductive immune system
		11.3.1 Introduction
		11.3.2 The structure and function of the avian reproductive tract
		11.3.3 Structure and development of the reproductive tract-associated immune system in the chicken
			11.3.3.1 Organization of lymphocytes in the reproductive tract
			11.3.3.2 Distribution of macrophages and other cells
		11.3.4 Local and systemic changes to the immune system at the onset of sexual maturity in hens
		11.3.5 The innate immune system and the reproductive tract
		11.3.6 The reproductive tract immune system in infection
			11.3.6.1 Bacterial infections of the reproductive tract
			11.3.6.2 The immune response to Salmonella infection of the reproductive tract
				11.3.6.2.1 Viral infections of the reproductive tract
			11.3.6.3 Responses to vaccination in the reproductive tract
			11.3.6.4 The chicken as a model-understanding immunity in ovarian cancer
			11.3.6.5 What do we need to know—directions for future research?
			11.3.6.6 What are the functions and phenotypes of the cells in the reproductive tract?
			11.3.6.7 How does the immune tissue of the reproductive tract integrate with the rest of the immune system?
		References
Chapter-12---Impact-of-the-gut-microbiota-on-the-immune-_2022_Avian-Immunolo
	12 Impact of the gut microbiota on the immune system
		12.1 Introduction to the microbiota and avian immune system
		12.2 Microbiota, metagenome, and microbiome
		12.3 GI tract and immune system of poultry
			12.3.1 Intestinal barrier system
		12.4 Influence of the microbiota in immunity
			12.4.1 Germ-free chickens
			12.4.2 Antibiotic-treated chickens
			12.4.3 Fecal microbial transplants
			12.4.4 Layer-type chickens versus broiler chickens
		12.5 Gut microbiota–immune system communication
			12.5.1 Components of the microbiota
			12.5.2 Microbial metabolites
			12.5.3 Microbial epigenetic modifications
		12.6 Gut microbiota: immune homeostasis
		12.7 Gut microbiota: immune dysfunction: dysbiosis and inflammation
		12.8 Managing the microbiome for immune modulation
		References
Chapter-13---Innate-defenses-of-the-avian-egg_2022_Avian-Immunology
	13 Innate defenses of the avian egg
		13.1 Introduction
		13.2 Egg basic structures and their role in innate defense
			13.2.1 Physicochemical barriers
				The eggshell
				Egg white
				Perivitelline layer (vitelline membrane)
				Yolk
			13.2.2 Antimicrobial molecules
		13.3 Modification of egg structures during embryonic development
		13.4 Embryonic immunity
			13.4.1 Toll-like receptors
			13.4.2 Macrophages
			13.4.3 Heterophils
			13.4.4 Dendritic cells
			13.4.5 T lymphocytes
			13.4.6 Natural Killer cells
			13.4.7 Cytokines and chemokines
		13.5 Extraembryonic structures and innate immunity
			13.5.1 Amniotic sac
			13.5.2 Yolk sac
			13.5.3 The allantoic sac
				Morphology and structure of the chorioallantoic membrane
				Composition and function of the allantoic fluid
		13.6 Concluding remarks
		References
Chapter-14---Avian-immunosuppressive-diseases-and-immune-_2022_Avian-Immunol
	14 Avian immunosuppressive diseases and immune evasion
		14.1 Introduction
		14.2 Immunosuppression
			14.2.1 Introduction
			14.2.2 Stress-induced immunosuppression
			14.2.3 Mycotoxin-induced immunosuppression
			14.2.4 Coccidia-induced immunosuppression
			14.2.5 Virus-induced immunosuppression
				Infectious bursal disease virus
				Chicken infectious anemia virus
				Reovirus
				Adenovirus
				Tumor viruses
				Marek’s disease virus
				Avian leukosis virus and reticuloendotheliosis virus
		14.3 Mechanisms of immunosuppression
			14.3.1 Corticosteroids and stress-induced immunosuppression
			14.3.2 Apoptosis, necroptosis, and pyroptosis
			14.3.3 Virus-induced changes in the regulation of immune responses
		14.4 Immunoevasion
			14.4.1 Introduction
			14.4.2 Immunoevasion by viral proteases
			14.4.3 Immunoevasion mechanisms of avian coronaviruses
			14.4.4 Immunoevasion mechanisms of the avian herpesviruses
			14.4.5 Immunoevasion mechanism of the avian poxviruses
			14.4.6 Immunoevasion mechanism of the avian orthomyxoviruses
			14.4.7 Immunoevasion mechanism of the avian paramyxoviruses
			14.4.8 Immunoevasion mechanism of the avian reoviruses
			14.4.9 Immunoevasion mechanism of the avian birnaviruses
		14.5 Conclusions
		References
Chapter-15---Factors-modulating-the-avian-immune-system_2022_Avian-Immunolog
	15 Factors modulating the avian immune system
		15.1 Endocrine regulation of immunity
			15.1.1 Stress hormones: epinephrine, norepinephrine, dopamine, and glucosteroids
			15.1.2 Sex hormones
				Androgens
				Estrogen
			15.1.3 Metabolic hormones: thyroid hormone, growth hormone, and leptin
			15.1.4 Environmentally responsive hormones: melatonin
		15.2 Physiological states
			15.2.1 Temperature and housing as immune modulators
				Temperature
				Housing
		15.3 Dietary effects on immunity
			15.3.1 Contribution of the microbiome
			15.3.2 Immunomodulatory nutrients and feed additives
				Amino acids
				Microminerals
			15.3.3 Immunometabolism
		15.4 Assessment of immunocompetence
			15.4.1 Functional activity of the immune response
				Ex vivo measures
				In vivo measures
		References
Chapter-16---Autoimmune-diseases-of-poultry_2022_Avian-Immunology
	16 Autoimmune diseases of poultry
		16.1 General characteristics of autoimmune diseases
		16.2 Autoimmune vitiligo in Smyth-line chickens
			16.2.1 Introduction
			16.2.2 The Smyth line chicken model for autoimmune vitiligo
			16.2.3 Characteristics of the Smyth-line chicken
			16.2.4 Pigmentation and normal melanocyte function
			16.2.5 Target cell defects
			16.2.6 Immunological mechanisms
				Humoral immunity
				Cell-mediated immunity
			16.2.7 Environmental factors
			16.2.8 Summary
		16.3 Spontaneous autoimmune (Hashimoto’s) thyroiditis in obese-strain chickens
			16.3.1 Introduction
			16.3.2 Development and characteristics of OS chickens
			16.3.3 Immunological mechanisms
			16.3.4 Target cell/organ defects
			16.3.5 Summary
		16.4 Scleroderma in UCD 200/206 chickens
			16.4.1 Introduction
			16.4.2 Development and characteristics of the UCD 200/206 lines
			16.4.3 Immunological mechanisms
			16.4.4 Summary
		Acknowledgments
		References
Chapter-17---Tumors-of-the-avian-immune-system_2022_Avian-Immunology
	17 Tumors of the avian immune system
		17.1 Introduction
		17.2 Tumors of the immune system
			17.2.1 Marek’s disease
			17.2.2 Avian leukosis
			17.2.3 Reticuloendotheliosis
		17.3 Oncogenic mechanisms of tumor viruses
			17.3.1 Oncogenic mechanisms of retroviruses
			17.3.2 Oncogenic mechanisms of DNA tumor viruses
		17.4 Immune responses to oncogenic viruses
			17.4.1 Immune responses to leukosis/sarcoma viruses
			17.4.2 Immune responses to reticuloendotheliosis virus
			17.4.3 Immune responses to Marek’s disease virus
		17.5 Antitumor responses
		17.6 Conclusion
		References
Chapter-18---Practical-aspects-of-poultry-vaccination_2022_Avian-Immunology
	18 Practical aspects of poultry vaccination
		18.1 Introduction
		18.2 Vaccine types
			18.2.1 Live vaccines
				Attenuated live vaccines
				Immune-complex vaccines
				Genetically modified organisms
			18.2.2 Inactivated vaccines
			18.2.3 Poultry vaccine adjuvants
		18.3 Vaccine application
			18.3.1 Mass application
				Spray vaccination
				Drinking water vaccination
			18.3.2 Individual applications
				Eye-drop or intranasal vaccination
				Subcutaneous and intramuscular injection
				Wing-web inoculation
				In ovo vaccination
		18.4 Factors influencing vaccine responses
			18.4.1 Status of the immune system at the time of vaccination
			18.4.2 Maternally derived antibodies
			18.4.3 Vaccine storage, preparation, and administration
			18.4.4 Age at vaccination
			18.4.5 Duration of immunity
			18.4.6 Interference between vaccines
			18.4.7 Time intervals between vaccinations
		18.5 Immunosuppression
			18.5.1 Stress and immunosuppression
			18.5.2 Mycotoxins
			18.5.3 Immunosuppression by vaccines
			18.5.4 Influence of immunosuppression on vaccination
		18.6 Quality control of response to vaccination
			18.6.1 Serology
			18.6.2 PCR/culture
		Acknowledgments
		References
Chapter-19---Comparative-immunology-of-agricultural-bir_2022_Avian-Immunolog
	19 Comparative immunology of agricultural birds
		19.1 Introduction
		19.2 Innate immunity
			19.2.1 Toll-like receptors
			19.2.2 Retinoic acid induced gene-I (R)-like receptors
			19.2.3 Antimicrobial peptides
		19.3 Cytokines
			19.3.1 Interferons
				Type-I interferon
				Type-II interferon
				Type III interferons
			19.3.2 Interleukins
				Interleukin-1
				Interleukin-2
				Interleukin-6
				Interleukin-8
				Interleukin-10
				Interleukin-12
				Interleukin-15
				Interleukin-16
				Interleukin-17
				Interleukin-18
			19.3.3 Tumor necrosis factor family
			19.3.4 Th2 cytokines
		19.4 Chemokines
			19.4.1 CXC chemokines
			19.4.2 CC chemokines
		19.5 CCR7
		19.6 Cell surface antigens
			19.6.1 Anti-chicken monoclonal antibodies cross-reacting with turkey, quail, and duck leukocytes
			19.6.2 Evidence for T and B cell populations in ducks
			19.6.3 Antigens expressed on duck lymphocyte subsets
				CD4 and CD8 antigen
				The CD3/TCR complex
				The CD28 antigen and CTLA-4 and their ligands CD80 and CD86
			19.6.4 C-type lectin immune receptors
			19.6.5 Surface immunoglobulin
			19.6.6 Major histocompatibility complex
		19.7 Secreted antibodies
		19.8 Cell lines
		Acknowledgments
		References
Chapter-20---Evolutionary-and-ecological-immunology_2022_Avian-Immunology
	20 Evolutionary and ecological immunology
		20.1 Introduction
		20.2 Assessing immune function in free-living birds
			20.2.1 Single-time-point assays
			20.2.2 Multiple-time-point assays
		20.3 Development of the immune system in free-living birds
			20.3.1 Ontogeny
			20.3.2 Parental transmission of antibodies
		20.4 Factors causing variation in immune responses
			20.4.1 Age-related variation
			20.4.2 Social environment
			20.4.3 Condition, nutrition and individual quality
			20.4.4 Seasonality/annual cycles
			20.4.5 Parasite exposure
			20.4.6 Other factors with immunomodulating effects
		20.5 Molecular variation and evolution in immune genes
			20.5.1 The major histocompatibility complex
			20.5.2 Innate immune genes
		20.6 Immune function as an evolving life history trait
			20.6.1 Costs of mounting immune responses
			20.6.2 Parasite-mediated natural selection and immune function
			20.6.3 Links with male secondary characters
		20.7 Priorities for future research
		Acknowledgment
		References
Chapter-21---Advances-in-genetic-engineering-of-the-avian_2022_Avian-Immunol
	21 Advances in genetic engineering of the avian genome
		21.1 Methods to manipulate the avian genome
			21.1.1 Viral vectors
			21.1.2 Transposons
			21.1.3 Direct in vivo transfection
			21.1.4 Sperm transfection-assisted gene editing
			21.1.5 Primordial germ cells
		21.2 Genetically modified chickens
			21.2.1 Chicken models for immunological research
			21.2.2 Disease-resistant chickens
			21.2.3 Genetically engineered chickens for basic research and agriculture
		21.3 Genetically modified quails
		References
Index_2022_Avian-Immunology
	Index
Backcover
Abbreviations_2022_Avian-Immunology
	Abbreviations




نظرات کاربران