ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Applications of space-time adaptive processing

دانلود کتاب برنامه های کاربردی پردازش تطبیقی ​​فضا-زمان

Applications of space-time adaptive processing

مشخصات کتاب

Applications of space-time adaptive processing

دسته بندی: موجک و پردازش سیگنال
ویرایش: illustrated edition 
نویسندگان:   
سری: IEE radar, sonar and navigation series 14 
ISBN (شابک) : 0852969244, 9780852969243 
ناشر: Institution of Electrical Engineers 
سال نشر: 2004 
تعداد صفحات: 976 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 45 مگابایت 

قیمت کتاب (تومان) : 47,000



کلمات کلیدی مربوط به کتاب برنامه های کاربردی پردازش تطبیقی ​​فضا-زمان: ابزار دقیق، پردازش سیگنال



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Applications of space-time adaptive processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب برنامه های کاربردی پردازش تطبیقی ​​فضا-زمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب برنامه های کاربردی پردازش تطبیقی ​​فضا-زمان

این متن جدید، از پرفروش‌ترین اصول پردازش تطبیقی ​​فضا-زمان (IEE، 2002)، کاربردهای مختلف پردازش تطبیقی ​​فضا-زمان، از جمله برنامه‌های کاربردی در رادار OTH، ردیابی هدف زمینی، STAP در محیط‌های بهم ریخته دنیای واقعی، لغو مسدود کردن، وضوح فوق العاده، سونار فعال، لرزه نگاری و ارتباطات. این کتاب یک نمای کلی منحصر به فرد از حوزه وسیع پردازش فضا-زمان ارائه می دهد و به دو بخش تقسیم می شود: اولی که به سرکوب کلاسیک تطبیقی ​​درهم ریختگی راداری در هوا و فضا می پردازد و دومی شامل کاربردهای متفرقه در زمینه های دیگر مانند ارتباطات است. صدای زیر آب و لرزه نگاری.

همچنین در دسترس است:

اصول پردازش تطبیقی ​​فضا-زمان، ویرایش سوم - ISBN 9780863415661 اندازه گیری های راداری باند فراعرض: تجزیه و تحلیل و پردازش - ISBN 9780852968949 - ISBN 9780852968949 انجمن های حرفه ای پیشرو جهان برای جامعه مهندسی و فناوری. IET هر سال بیش از 100 عنوان جدید منتشر می کند. ترکیبی غنی از کتاب ها، مجلات و مجلات با کاتالوگ متشکل از بیش از 350 کتاب در 18 موضوع مختلف از جمله:

- نیرو و انرژی - انرژی های تجدیدپذیر - رادار، سونار و ناوبری - الکترومغناطیسی - اندازه گیری الکتریکی - تاریخچه فناوری -مدیریت فناوری


توضیحاتی درمورد کتاب به خارجی

This new text, from the bestselling Principles of Space-Time Adaptive Processing (IEE, 2002), discusses various applications of space time adaptive processing, including applications in OTH-radar, ground target tracking, STAP in real world clutter environments, jammer cancellation, supperresolution, active sonar, seismics and communications. The book provides a unique overview of the broad field of space-time processing and is divided into two parts: the first dealing with the classical adaptive suppression of airborne and spacebased radar clutter, and the second comprising miscellaneous applications in other fields such as communications, underwater sound and seismics.

Also available:

Principles of Space-Time Adaptive Processing, 3rd Edition - ISBN 9780863415661 Ultrawideband Radar Measurements: analysis and processing - ISBN 9780852968949

The Institution of Engineering and Technology is one of the world's leading professional societies for the engineering and technology community. The IET publishes more than 100 new titles every year; a rich mix of books, journals and magazines with a back catalogue of more than 350 books in 18 different subject areas including:

-Power & Energy -Renewable Energy -Radar, Sonar & Navigation -Electromagnetics -Electrical Measurement -History of Technology -Technology Management



فهرست مطالب

Front Matter......Page 1
Preface......Page 3
Glossary......Page 5
List of Contributors......Page 14
Table of Contents......Page 0
Table of Contents......Page 18
1.1 Introduction......Page 38
1.2 STAP Fundamentals......Page 39
1.3.1 Straight and Level Flight......Page 42
1.3.2 Effect of Variations in Platform Orientation......Page 44
1.4.1 Mainlobe Clutter Suppression......Page 45
1.4.2 Sidelobe Clutter Suppression......Page 51
1.5.1 Effects of Platform Manoeuvre......Page 56
1.5.2 Motion Compensation......Page 57
1.6.2 Advantages of Using STAP......Page 60
1.7 Summary......Page 66
2.1 Introduction......Page 69
2.2 Adaptive Linear Filters......Page 70
2.3 AR-based FIR Filters......Page 77
2.4 Non-linear Combination of Non-adaptive Filters......Page 83
2.4.1 Filter Bank Design......Page 84
2.4.2 Detection Threshold and Performance......Page 87
2.4.3 AR-based Non-linear Detector......Page 88
2.5 Non-linear Combination of Adaptive AR-based Two-dimensional FIR Filters......Page 93
2.6 Conclusions......Page 98
2.8 Appendix: ML Estimation of Two-dimensional AR parameters......Page 101
3.2 Description of the Problem and State of the Art......Page 104
3.3.1 Aberrations Due to Target Motion......Page 107
3.3.2 Space-time-frequency Representation......Page 108
3.4.1 Taxonomy of Processing Schemes for MSAR......Page 113
3.4.2 MTI + PD......Page 118
3.4.3 DPCA......Page 125
3.4.4 Along-track Interferometry (ATI)-SAR......Page 126
3.4.5 Processor in the Space-time-frequency Domain......Page 130
3.4.6 Optimum Processing for MSAR......Page 139
3.5 Conclusions......Page 151
3.6 Acknowledgments......Page 152
4.1 Definition of the Difference (Delta) Beams......Page 155
4.2 SigmaDelta-STAP Algorithms......Page 157
4.3.1 SINR Potential......Page 161
4.3.2 Probabilities of Detection and False Alarm......Page 162
4.4 A Real-data Demonstration of SigmaDelta-STAP......Page 163
4.5 Desired Delta-beam Characteristics......Page 167
4.5.1 Mathematical Equivalence of Subarray and SigmaDelta-STAP......Page 174
4.6.1 Advantages of the SigmaDelta-STAP Approach......Page 175
4.6.2 Limitations of SigmaDelta-STAP......Page 177
4.6.3 Potential Applications of SigmaDelta-STAP......Page 178
5.1.1 Preliminaries on STAP Antennas......Page 180
5.1.2 The Circular Ring Array Concept......Page 182
5.2 Array Configurations for 360° Coverage......Page 183
5.2.1 Four Linear Arrays......Page 184
5.2.2 Displaced Circular Rings......Page 187
5.2.3 Circular Planar Array with Randomly Distributed Elements......Page 188
5.2.4 Octagonal Planar Array......Page 191
5.3.1 Directivity Patterns......Page 195
5.3.2 Range-ambiguous Clutter......Page 196
5.4.1 Side-looking Linear and Rectangular Arrays......Page 198
5.4.2 Omnidirectional Arrays......Page 199
5.5 Conclusions......Page 200
6.1.1 Background......Page 207
6.1.2 Addition of MTI Modes to Spaceborne SAR......Page 208
6.1.3 RADARSAT-2 Moving Object Detection Experiment......Page 209
6.2 Analysis of SAR-GMTI Modes for RADARSAT-2......Page 210
6.2.1 Background......Page 211
6.2.2 Statistical Models of Measured Signals......Page 214
6.2.3 SCNR Optimum Processing......Page 218
6.2.4 SAR Displaced Phase Centre Antenna......Page 223
6.2.5 SAR Along-track Interferometry......Page 224
6.3.1 Detection......Page 226
6.3.2 Parameter Estimation......Page 231
6.4 Conclusions......Page 232
6.5 List of Symbols......Page 233
7.1 Introduction......Page 237
7.2.1 Spaceborne MTI Radar Applications......Page 238
7.2.2 Spaceborne MTI Radar Design......Page 239
7.3.1 Typical GMTI Signal Processing......Page 242
7.3.2 Extension to Other Modes......Page 245
7.3.3 Other Issues......Page 246
7.4 Simulation and Processing for SBR......Page 247
7.4.1 User Interface......Page 248
7.4.2 Model the Radar......Page 254
7.4.3 Model the Environment......Page 255
7.4.4 Generate the Signals......Page 257
7.4.5 Model the Processing......Page 258
7.4.6 Evaluate the Results......Page 259
7.5 Discussion and Conclusions......Page 261
8.1 Introduction......Page 264
8.2 Moving Target Detection with SBR......Page 265
8.2.1 STAP for SBR Systems......Page 267
8.3 Clutter Characteristics of Pulse-Doppler Waveforms in SBR......Page 269
8.3.1 Clutter Doppler Ambiguities......Page 270
8.3.2 Clutter Range Ambiguities......Page 271
8.4 Impact of Range-ambiguous Clutter on STAP Performance......Page 273
8.5.1 PRF Diversity......Page 276
8.5.2 Aperture Trade Offs......Page 278
8.6 Long Single Pulse Phase-encoded Waveforms......Page 279
8.6.1 Properties of Long Single Pulse Phase-encoded Waveform (LSPW)......Page 281
8.6.2 Integrated Sidelobe Clutter Levels......Page 283
8.6.3 STAP Simulations......Page 286
8.7 Summary......Page 289
9.2 Baseline Systolic Algorithm......Page 292
9.3 Lattice and Vectorial Lattice Algorithms......Page 296
9.4 Inverse QRD-based Algorithms......Page 298
9.5 Experiments with General Purpose Parallel Processors......Page 299
9.6 Experiments with VLSI-based CORDIC Board......Page 300
9.7 Modern Signal Processing Technology Overview and Its Impact on Real-time STAP......Page 302
9.8.1 Systolic Algorithm for Live Data Processing......Page 304
9.8.2 Data Files Used in the Data Reduction Experiments......Page 305
9.8.3 Performance Evaluation......Page 307
9.8.4 Detection of Vehicular Traffic......Page 311
9.9 Concluding Remarks......Page 312
9.10 Appendix A: Givens Rotations and Systolic Implementation of Sidelobe Canceller......Page 313
9.11 Appendix B: Lattice Working Principle......Page 315
9.12 Appendix C: the CORDIC Algorithm......Page 316
9.13 Appendix D: the SLC Implementation via CORDIC Algorithm......Page 319
9.14 Appendix E: an Example of Existing Processors for STAP......Page 320
10.1 Introduction......Page 331
10.1.1 Adaptivity with Finite Sample Support......Page 333
10.1.2 STAP Performance Metrics......Page 334
10.1.3 Covariance Matrix Errors......Page 337
10.2 Classes of Space-time Clutter Heterogeneity......Page 338
10.3.1 Clutter Discretes......Page 341
10.3.2 Range-angle Varying Clutter RCS......Page 346
10.3.3 Clutter Edges......Page 348
10.4 Spectral Heterogeneity......Page 351
10.5 CNR-induced Spectral Mismatch......Page 354
10.6 Targets in the Secondary Data......Page 357
10.7 Joint Angle-Doppler Mismatch and Clutter Heterogeneity......Page 364
10.8.1 Measured Multichannel Airborne Radar Data......Page 366
10.8.2 Site-specific Simulation......Page 369
10.9.1 Data-dependent Training Techniques......Page 371
10.9.2 Minimal Sample Support STAP......Page 375
10.9.4 Targets in Training Data......Page 377
10.9.5 Covariance Matrix Tapers......Page 378
10.9.6 Knowledge-aided Space-time Processing......Page 379
10.11 Acknowledgments......Page 380
11.1 Introduction......Page 385
11.2 Training of STAP Algorithms......Page 387
11.3 Post-Doppler STAP Algorithms......Page 390
11.4 Phase and Power-selected Training for STAP......Page 391
11.5 Experimental Results......Page 393
11.5.1 Example of Phase/Power Selection......Page 394
11.5.2 STAP Results......Page 395
11.6 Summary......Page 398
12.1 Introduction......Page 401
12.2 Direct Data Domain Least-squares (D3LS) Approach, One Dimension......Page 405
12.3 D3LS Approach with Main Beam Constraints......Page 411
12.4 A D3LS Approach with Main Beam Constraints for Space-time Adaptive Processing......Page 413
12.4.1 Space-time D3LS Eigenvalue Processor......Page 415
12.4.2 Space-time D3LS Forward Processor......Page 416
12.4.3 Space-time D3LS Backward Processor......Page 418
12.4.4 Space-time D3LS Forward-backward Processor......Page 419
12.5 Determining the Degrees of Freedom......Page 420
12.6.1 Simulation Setup......Page 422
12.6.2 Case I: Single Constraint Space-time Example......Page 424
12.6.3 Case II: Multiple Constraint Space-time Example......Page 429
12.8 List of Variables......Page 434
13.1 Introduction......Page 438
13.1.1 Initial Development of Space-time Adaptive Processing (STAP) Algorithms......Page 439
13.1.2 Hypothesis Testing Problem......Page 442
13.2 Real-world Detection Environments......Page 443
13.3 Non-homogeneity - Causes and Impact on Performance......Page 445
13.3.1 Signal Contamination......Page 448
13.3.2 Non-homogeneity Detection......Page 450
13.3.4 Analysis of Degraded Performance Due to Non-homogeneity......Page 453
13.4 Antenna Array Errors......Page 455
13.5 Deviation from Gaussian Assumption......Page 456
13.6 Jamming and Terrain Scattered Interference......Page 459
13.6.2 Two-stage Processors......Page 460
13.6.3 Three-dimensional STAP......Page 462
13.7.1 Reduced-rank Methods and Covariance Matrix Tapers......Page 463
13.7.2 Techniques Implementing Limited Reference Cells......Page 465
13.7.3 Low Complexity Approaches to STAP......Page 467
13.8 Conclusions......Page 469
Color Plates: Applications of Space-time Adaptive Processing......Page 488
14.2 Properties of the STAP Radar Sensor......Page 506
14.2.1 Processing Techniques......Page 507
14.2.2 Array Properties......Page 511
14.2.3 Summary of the Data Output Provided by the STAP Radar......Page 512
14.3.1 SNIR and Pd of a Moving Target......Page 513
14.3.2 System Aspects......Page 519
14.4.1 Bandwidth Effects......Page 525
14.4.2 Doppler Ambiguities......Page 527
14.4.3 Range Ambiguities......Page 528
14.4.4 STAP Radar under Jamming Conditions......Page 531
14.5 Issues in Convoy Tracking......Page 533
14.5.1 Convoy Detection by Range-only Information......Page 534
14.5.2 Convoy Detection by Azimuth Variance Analysis......Page 535
14.6 Summary......Page 538
15.1 Introduction......Page 540
15.1.1 Discussion of an Idealised Scenario......Page 541
15.1.2 Summary of Observations......Page 544
15.2.1 Coordinate Systems......Page 546
15.2.2 Target Dynamics Model......Page 548
15.3.1 GMTI Characteristics......Page 549
15.3.2 Convoy Resolution......Page 551
15.3.4 Measurements......Page 552
15.4.1 Prediction......Page 553
15.4.2 Data Processing......Page 554
15.4.3 Filtering Process......Page 556
15.4.4 Realisation Aspects......Page 557
15.4.5 Discussion......Page 558
15.4.6 Retrodiction......Page 561
15.4.7 Effect of Doppler Ambiguities......Page 563
15.5 Road Map Information......Page 567
15.5.1 Modelling of Roads......Page 568
15.5.2 Densities on Roads......Page 569
15.6.1 Simulation Parameters......Page 572
15.6.2 Numerical Results......Page 573
15.7 List of Variables......Page 576
16.1 Introduction......Page 581
16.2 Broadband Array Signal Model and Beamforming......Page 582
16.2.1 Received Signal and Notation......Page 583
16.2.2 Digital Beamforming with Subarray Outputs......Page 586
16.2.3 Influence of Channel Imperfections......Page 591
16.3 Superresolution with Broadband Arrays......Page 598
16.3.1 Spatial-only Processing of Broadband Data......Page 600
16.3.2 Space and Time Processing Methods......Page 605
16.3.3 Conclusions on Broadband Superresolution......Page 620
16.4 Jammer Suppression with Broadband Arrays......Page 622
16.4.1 General Principles of Adaptive Interference Suppression......Page 623
16.4.2 Spatial-only Adaptation......Page 629
16.4.3 Space and Time Adaptation......Page 630
16.5 Final Remarks......Page 635
17.1 Overview......Page 641
17.2 SC STAP Fundamentals and Supervised Training Applications......Page 642
17.2.1 SC STAP Algorithm: Analytic Solution......Page 649
17.2.2 SC STAP Algorithm: Operational Routines......Page 663
17.2.3 SC STAP Algorithm: Efficiency Analysis by Simulation Results......Page 665
17.2.4 SC STAP Algorithm: Efficiency Analysis by Real Data Processing......Page 677
17.2.5 Summary......Page 681
17.3 SC STAP Unsupervised Training Applications......Page 687
17.3.1 Operational Routine for Unsupervised Training......Page 689
17.3.2 Operational SC STAP Algorithm: Simulation and Real Data Processing Results......Page 696
17.3.3 Summary......Page 704
17.4.1 Introduction......Page 706
17.4.2 Conditional Loss Factor eta1 Analysis: LSMI Versus SMI for SC SAP......Page 708
17.4.3 Conditional Loss Factor eta1 Analysis: LSMI for SC STAP......Page 719
17.4.4 Conditional Loss Factor eta2 Analysis: Exact PDF for a Single Stochastic Constraint......Page 722
17.4.5 Conditional Loss Factor eta2 Analysis: Approximate PDF for Multiple Stochastic Constraints......Page 726
17.5 List of Variables......Page 731
18.1 Introduction......Page 740
18.2 Adaptive Matched Field Processing (MFP)......Page 742
18.3 Wideband-narrowband Feedback Loop White-noise-constrained Method (FLWNC)......Page 744
18.4 MFP Examples......Page 746
18.5 Space-time Adaptive Matched Field Processing (STAMP)......Page 748
18.6 Forward Sector Processing Simulation Geometry......Page 750
18.7 Summary......Page 752
19.1 Introduction......Page 753
19.2.1 Data Model......Page 758
19.2.2 Fully Adaptive CW Processing......Page 759
19.2.3 Partially Adaptive Processing Techniques......Page 761
19.3 FM Processing......Page 762
19.3.3 Automatic Echogram Detection......Page 764
19.4.1 Sonar System Description......Page 765
19.4.2 CW Pulse Sea Data Analysis......Page 766
19.4.3 Echogram Sea Data Analysis (ACTAS)......Page 767
19.4.5 Automatic Echogram Detection......Page 768
20.1 Introduction......Page 771
20.2 Signal Model......Page 772
20.3.1 EM Algorithm......Page 774
20.3.2 SAGE Algorithm......Page 777
20.4 Fast EM and SAGE Algorithms......Page 779
20.5 Recursive EM and SAGE Algorithms......Page 780
20.5.1 Recursive EM Algorithm......Page 781
20.5.2 Recursive SAGE Algorithm......Page 783
20.6 Experimental Results......Page 784
20.6.1 EM and SAGE Algorithms......Page 785
20.6.2 Recursive EM and SAGE Algorithms......Page 787
20.7 Conclusions......Page 789
21.1 Introduction......Page 792
21.2.1 The Seismic Wavefield......Page 793
21.2.2 Acquisition of Reflection Seismic Data......Page 795
21.2.3 Seismic Reflection Processing......Page 799
21.3 Common Reflection Surface Stack......Page 803
21.3.1 Classic Data-driven Approaches......Page 804
21.3.2 Second-order Traveltime Approximations......Page 805
21.3.3 Physical Interpretation of the Coefficients......Page 806
21.3.4 Implementation......Page 808
21.3.5 Practical Aspects......Page 809
21.3.6 A Synthetic Data Example......Page 810
21.4 CRS Attributes and Velocity Model Estimation......Page 812
21.5 Conclusions......Page 814
21.6.1 List of Variables......Page 815
21.6.2 Specific Terminology......Page 816
22.1 Introduction......Page 821
22.2 System Model......Page 825
22.3 Time Domain Linear Joint Detection......Page 827
22.3.1 Zero Forcing Block Linear Equalisation......Page 828
22.4.1 Block-diagonal FD System Model......Page 829
22.4.2 FD ZF-BLE and MMSE-BLE......Page 832
22.5 Performance of FD Joint Detection......Page 834
22.5.1 Exploitation of Spatial and Frequency Diversity......Page 835
22.5.2 Intracell Interference Cancellation......Page 841
22.5.3 Intra- and Intercell Interference Cancellation......Page 850
22.6 Conclusions......Page 858
22.7.1 Variables with Roman/Calligraphic Letters......Page 859
22.7.3 Variables with Greek Letters......Page 860
23.1 Introduction......Page 864
23.2.1 Transmission Loss and Ambient Noise......Page 865
23.2.2 Sound Speed Variability......Page 866
23.2.3 Multipath Propagation......Page 867
23.2.4 Doppler Effect......Page 868
23.3.1 Incoherent Digital Receivers......Page 869
23.3.2 Coherent Digital Receivers......Page 870
23.4.1 Communication Over Channels with ISI......Page 871
23.4.2 Multichannel Digital Receiver......Page 872
23.4.3 Signal Model......Page 874
23.4.4 Multichannel Equalisation......Page 876
23.5.1 Blind Stochastic Gradient Descent Algorithms......Page 878
23.5.2 The Constant Modulus Algorithm......Page 879
23.5.3 Experimental Results......Page 881
23.6.1 Iterative Shalvi-Weinstein Algorithm......Page 884
23.6.2 Recursive Shalvi-Weinstein Algorithm......Page 886
23.6.3 Adaptive Implementation......Page 887
23.7 Concluding Remarks......Page 890
24.1.1 Motivation for Reduced-rank MMSE Processing......Page 894
24.1.2 Understanding the Multistage Wiener Filter......Page 895
24.1.3 Lattice Structure of the MSWF......Page 898
24.1.4 MSWF Related to Wiener-Hopf Filter Weights......Page 899
24.2.1 Introduction......Page 901
24.2.2 Data and Channel Model......Page 902
24.2.4 Chip-level MMSE Estimator......Page 903
24.2.5 Performance Examples......Page 905
24.3.2 Power Minimisation and Joint Space-time Preprocessing......Page 908
24.3.3 Space-time Filter Characteristics......Page 909
24.3.4 Data and Channel Model......Page 910
24.3.5 Dimensionality Reduction Techniques......Page 912
24.3.6 Performance Examples......Page 913
24.4 Summary of Concepts Involving Reduced-rank Filtering......Page 916
25.1 Introduction......Page 920
25.2 Multiple Antenna Channel Model......Page 922
25.3.1 Array Gain......Page 924
25.3.2 Diversity Gain......Page 925
25.3.3 Multiplexing Gain......Page 928
25.3.4 Interference Reduction......Page 930
25.4 Background on Space-time Codes......Page 931
25.4.1 Space-time Trellis Codes......Page 932
25.4.2 Linear Space-time Block Codes......Page 934
25.5 New Design Criteria......Page 935
25.5.1 Error Performance......Page 936
25.5.2 Capacity Performance......Page 937
25.5.3 Unified Design......Page 938
25.6.1 Modulation and Coding for MIMO......Page 942
25.7 Concluding Remarks......Page 943
A......Page 945
B......Page 948
C......Page 949
D......Page 952
F......Page 954
G......Page 955
I......Page 957
L......Page 959
M......Page 960
N......Page 962
P......Page 963
R......Page 964
S......Page 966
T......Page 973
U......Page 974
W......Page 975
Sigma......Page 976




نظرات کاربران