ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Algae: Multifarious Applications for a Sustainable World

دانلود کتاب جلبک: کاربردهای متنوع برای جهانی پایدار

Algae: Multifarious Applications for a Sustainable World

مشخصات کتاب

Algae: Multifarious Applications for a Sustainable World

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9789811575174, 9789811575181 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 384
[377] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 Mb 

قیمت کتاب (تومان) : 58,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Algae: Multifarious Applications for a Sustainable World به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جلبک: کاربردهای متنوع برای جهانی پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب جلبک: کاربردهای متنوع برای جهانی پایدار

این کتاب مهیج کاربردهای متنوعی از منابع تجدیدپذیر ریزجلبکی را برای پاسخگویی به تقاضاهای مدرن برای انرژی و محصولات با ارزش افزوده ارائه می دهد. همچنین به طور جامع نقش جلبک ها را در استراتژی های تصفیه فاضلاب پایدار و مقرون به صرفه توصیف می کند و آخرین تحقیقات در مورد، پیشرفت ها و ارتباط بیوتکنولوژیکی جلبک ها در زمینه های انرژی زیستی، زیست پالایی، داروسازی، مواد غذایی و اقتصاد سبز را برجسته می کند. این کتاب با ارائه اطلاعات گسترده در مورد تولید انرژی زیستی، استراتژی های مدیریت، توسعه دارو، محصولات غذایی و اقتصاد مبتنی بر زیست با استفاده از جلبک ها در سطح تجاری، به شکاف های موجود در زمینه های انرژی زیستی، مدیریت زباله، سلامت و اقتصاد می پردازد. این کتاب محققان را با نوآوری های کلیدی و نوظهور در زمینه تحقیقات زیست شناسی جلبکی آشنا می کند و به سیاست گذاران، محیط بانان، دانشمندان، دانشجویان و متفکران جهانی در تعریف اهداف توسعه پایدار برای آینده کمک می کند. بر این اساس، مطالعه بسیار مهمی برای محققان و دانشجویان در علوم محیطی، علوم زیستی و شیمی، کارشناسان بخش انرژی و سیاستگذاران است.


توضیحاتی درمورد کتاب به خارجی

This exciting book presents diverse applications of microalgal renewable resources to meet modern demands for energy and value-added products. It also comprehensively describes the role of algae in sustainable and cost-effective wastewater treatment strategies, and highlights the latest research on, advances in and biotechnological relevance of algae in the areas of bioenergy, bioremediation, pharmaceuticals, nutraceuticals and green economy. The book addresses gaps in the fields of bioenergy, waste management, health and economy by providing broad information on bioenergy production, management strategies, drug development, nutraceuticals products and biobased economy using algae at the commercial level. The book introduces researchers to key and emerging innovations in the field of algal biology research and will assist policymakers, environmentalists, scientists, students and global thinkers in defining sustainable developmental goals for the future. Accordingly, it is an extremely important read for researchers and students in the environmental sciences, life sciences and chemistry, experts in the energy sector and policymakers alike.



فهرست مطالب

Preface
Contents
About the Editors
1: Valorization of Wastewater via Nutrient Recovery Using Algae-Based Processes
	1.1 Introduction
	1.2 Current-Status of Nutrient Recovery Using Microalgae-Based Processes
		1.2.1 Municipal Wastewater
		1.2.2 Agricultural and Industrial Wastewater
	1.3 Algae-Microbe Interaction in Wastewater and Its Significance
	1.4 Perspectives of Wastewater-Grown Microalgal Biomass
		1.4.1 Bioenergy
		1.4.2 Biofertilizer
		1.4.3 Food and Feed
	1.5 Future Outlook and Conclusions
	References
2: Constructed Wetland and Microalgae: A Revolutionary Approach of Bioremediation and Sustainable Energy Production
	2.1 Introduction
	2.2 Constructed Wetland
		2.2.1 Role of Plants in CW
		2.2.2 Designing of Constructed Wetland
		2.2.3 Treatment and Operation
	2.3 Algae and Bioremediation
	2.4 Strategies of Bioremediation
		2.4.1 Phytoextraction: (Phytoaccumulation, Phytoabsorption, or Phytosequestration)
		2.4.2 Phytodegradation
		2.4.3 Phytostabilization
		2.4.4 Rhizofiltration
		2.4.5 Phytovolatilization
	2.5 Algae as Source of Renewable Energy
	2.6 Extraction and Production of Lipid by Algae
		2.6.1 Folch Extraction Method
		2.6.2 Bligh and Dyer Method
		2.6.3 Microwave Assisted Extraction
		2.6.4 Ultrasound Assisted Extraction
	2.7 Potential Aspects and Future Prospects of Algae and Constructed Wetland
	2.8 Conclusion
	References
3: Mitigation of Heavy Metals Utilizing Algae and Its Subsequent Utilization for Sustainable Fuels
	3.1 Introduction
	3.2 What Are Heavy Metals?
		3.2.1 Entry of Heavy Metals into Ecosystem
			3.2.1.1 Mercury
			3.2.1.2 Lead
			3.2.1.3 Arsenic
	3.3 Impact of Heavy Metals on Microorganisms
	3.4 Impact of Heavy Metals on Plants
	3.5 Impact of Heavy Metal on Humans
		3.5.1 Mercury
		3.5.2 Lead
		3.5.3 Arsenic
	3.6 Algae as a Potential Candidate for Bioremediation
		3.6.1 Defence Mechanism of Algae Against Heavy Metals
		3.6.2 Effect of pH on Biosorption
		3.6.3 Effect of Temperature on Biosorption
		3.6.4 Impact of Contact Time
	3.7 Algal Biofuel Production
		3.7.1 Cultivation of Algae
			3.7.1.1 Open Raceway Ponds
			3.7.1.2 Photobioreactor
		3.7.2 Harvesting Methods
			3.7.2.1 Chemical Flocculation
			3.7.2.2 Microbial Flocculation
			3.7.2.3 Electroflocculation
		3.7.3 Oil Extraction
		3.7.4 Transesterification of Algal Oil
	References
4: Adaptive and Tolerance Mechanism of Microalgae in Removal of Cadmium from Wastewater
	4.1 Introduction
	4.2 Sources of Cadmium Pollution
		4.2.1 Natural Sources of Cadmium Emission
		4.2.2 Anthropogenic Sources of Cadmium Emission
	4.3 Microalgae: A Potential Candidate for Cadmium Mitigation
	4.4 Mechanism of Cadmium Remediation by Microalgae
		4.4.1 Physiological and Morphological Response of Microalgae to Cadmium Toxicity
	4.5 Indicators of Cadmium Stress in Microalgae: Enzymatic and Non-enzymatic Markers
	4.6 Integration of Cadmium Mitigation with Bioenergy Production
	4.7 Conclusions and Future Perspectives
	References
5: Algae as Miniature Wastewater Scavengers
	5.1 Introduction
	5.2 Wastewater Composition
		5.2.1 Sewage Microbial Composition
	5.3 Methods of Treatment
		5.3.1 Conventional Method
		5.3.2 Preliminary Sewage Treatment
		5.3.3 Primary Sewage Treatment
		5.3.4 Secondary Sewage Treatment
		5.3.5 Tertiary Sewage Treatment
	5.4 Microalgal Wastewater Treatment
		5.4.1 Heavy Metal Removal by Algae
	5.5 Algal Production and Utilization of Algal Biomass
	5.6 Conclusion
	References
6: Parametric Modeling and Optimization of Phycoremediation of Cr(VI) Using Artificial Neural Network and Simulated Annealing
	6.1 Introduction
	6.2 Materials and Methods
		6.2.1 Isolation, Identification, and Cultivation of Isolated Strain
		6.2.2 Growth Study of Microalgal Isolate
		6.2.3 Characterization of Collected Microalgal Strain
		6.2.4 Effect of Input Variables on Bioremoval of Cr(VI) Using OFAT Approach in Batch Study
		6.2.5 Variation of Bioremoval of Cr(VI) and Production of Biomass and Biomolecules with Time at Different Operating Conditions
	6.3 Theoretical Analysis
		6.3.1 Artificial Intelligence Based ANN Modeling
		6.3.2 Application of Simulated Annealing (SA) Optimization
			6.3.2.1 Simulated Annealing at a Glance
			6.3.2.2 Algorithm of SA
	6.4 Results and Discussions
		6.4.1 Growth Study of Isolated Algal Strain
		6.4.2 Characterization and Identification of Chlorococcum Sp.
		6.4.3 Effect of Input Variables on Bioremoval of Cr(VI) Using OFAT Approach in Batch Study
			6.4.3.1 Effect of IC
			6.4.3.2 Effect of pH
			6.4.3.3 Effect of IS
		6.4.4 Variation of Bioremoval of Cr(VI) and Production of Biomass and Biomolecules with Time at Different Operating Conditions
		6.4.5 ANN Model
		6.4.6 Simulated Annealing Optimization
	6.5 Conclusion
	References
7: An Insight into the Potential Application of Microalgae in Pharmaceutical and Nutraceutical Production
	7.1 Introduction
	7.2 Microalgal and Their Bioactive Compounds
	7.3 Pharmaceutical and Nutraceutical Properties of Microalgal Compounds
		7.3.1 Anticancer Properties
		7.3.2 Antioxidant Properties
		7.3.3 Antihypertensive Properties
		7.3.4 Anti-Obesity Properties
		7.3.5 Anti-Inflammatory Properties
		7.3.6 Anti-Cardiovascular Disease Properties
		7.3.7 Antimicrobial Properties
		7.3.8 Antidiabetic Properties
		7.3.9 Alzheimer´s Disease
		7.3.10 Functional Materials in Cosmetics
	7.4 Strategies of Profitable Production of Microalgae Biomass for Pharmaceutical and Nutraceutical products Production
		7.4.1 Strain Selection and Improvement
		7.4.2 Suitability of Medium
		7.4.3 Conditions Optimization
	7.5 Extraction of Pharmaceutical and Nutraceutical Products from Algal Biomass
		7.5.1 Supercritical Fluid Extraction
		7.5.2 Ultrasound
		7.5.3 Microwave
		7.5.4 Ionic Liquids (I.L.S)
		7.5.5 Combined Technique
	7.6 Capital and Operational Expenditures of Pharmaceutical and Nutraceutical Products from Microalgae
	7.7 The Commercial Potential of Algae-Based Pharmaceutical and Nutraceutical
	7.8 Safety and Regulatory Issues of Algal Pharmaceutical and Nutraceutical Products
	7.9 Future Prospects
	7.10 Conclusion
	References
8: The Budding Potential of Algae in Cosmetics
	8.1 Introduction
		8.1.1 Structure, Function, and Composition of the Skin
		8.1.2 The Cosmetic Industry
		8.1.3 The Need for Natural Substitutes
	8.2 Algal Species Used in Cosmetic Industry
		8.2.1 Microalgae
		8.2.2 Macroalgae
			8.2.2.1 Green Algae
			8.2.2.2 Red Algae
			8.2.2.3 Brown Algae
	8.3 Use of Algae in Cosmetic Industry
		8.3.1 Industrial Applications of Algae
		8.3.2 Extracts of Algae as Ingredient in Cosmetics
	8.4 Algal Pigments Used in Cosmetic Industry
		8.4.1 Algae as Moisturizing Agent
		8.4.2 Algae as Thickening Agent
		8.4.3 Algae in Hair Care
	8.5 Other Benefits of Algae
		8.5.1 Antimicrobial Properties
		8.5.2 Skin Anti-Aging
		8.5.3 Skin Whitening
		8.5.4 UV Protection
	8.6 Thalassotherapy: An Algal Treatment
	8.7 Conclusion
	References
9: Food Supplements Formulated with Spirulina
	9.1 Introduction
	9.2 Morphology of Spirulina
	9.3 Functions of Spirulina
		9.3.1 Nutritional Function
		9.3.2 Antioxidant Function
	9.4 Domestic and Commercial Cultivation of Spirulina
		9.4.1 Domestic Cultivation
		9.4.2 Important Parameters
		9.4.3 Climatic Factors
		9.4.4 Commercial Cultivation
		9.4.5 Spirulina Harvesting
		9.4.6 Drying
	9.5 Economic Importance and Commercial Value of Spirulina
	9.6 Business Opportunities
		9.6.1 Global Spirulina Market
		9.6.2 Commercial Spirulina Innovative Products
	9.7 Challenges in Spirulina Production
	9.8 Environmental Benefits of Spirulina
	9.9 Conclusion
	References
10: Fucoxanthin Production from Diatoms: Current Advances and Challenges
	10.1 Introduction
	10.2 Fucoxanthin Biosynthesis in Diatoms
	10.3 Abiotic Factors Affecting Fucoxanthin Production
	10.4 Genetic Engineering Strategies to Improve Fucoxanthin Productivity
	10.5 Conclusion and Future Perspectives
	References
11: Liquid Biofuels from Algae
	11.1 Introduction
	11.2 Conversion Technologies and Products
		11.2.1 Lipid Extraction
		11.2.2 Hydrothermal Liquefaction
	11.3 Upgrading Technologies for Fungible Biofuels
		11.3.1 Transesterification of Lipids
		11.3.2 Catalytic Upgrading
		11.3.3 Thermal Upgrading
	11.4 Co-processing of Algae Derived Bio-Oils
	11.5 Resource Requirements
	11.6 Financial Feasibility
		11.6.1 Capital and Operating Costs
		11.6.2 Cost Breakdown
		11.6.3 Cost Drivers
		11.6.4 Minimum Fuel Selling Price
	11.7 Commercialization Efforts
	References
12: UV-B Coupled Lipid Induction: A Strategy Towards Economical Biofuel Production Through Algae
	12.1 Introduction
	12.2 Impact of UV-B Radiation on Algae
	12.3 UV-B and Photosynthetically Active Radiation (PAR)
	12.4 Microalgae and Lipid Production
		12.4.1 Strategies of UV-B Based Lipid Alteration in Microalgae
		12.4.2 Defense Responses in Algae Under UV-B Radiation
	12.5 Conclusion and Future Prospects
	References
13: Microalgae Mediated Nanomaterials Synthesis
	13.1 Introduction
	13.2 Different Methods of Nanomaterials Synthesis
		13.2.1 Conventional Physical and Chemical Synthesis Methods
		13.2.2 Biological/Green Methods
			13.2.2.1 Plants Assists Synthesis Method
			13.2.2.2 Bacteria Assists Synthesis Method
			13.2.2.3 Fungi Assists Synthesis Method
			13.2.2.4 Yeast Assists Synthesis Method
			13.2.2.5 Actinomycetes Assists Synthesis Method
	13.3 Algae Mediated Nanoparticle Synthesis
		13.3.1 Metallic Nanoparticles Synthesis Using Algae
		13.3.2 Metal Salt Nanoparticles Synthesis Using Algae
		13.3.3 Metal Oxide Nanoparticles Synthesis Using Algae
	13.4 Characterization of the Nanomaterials
	13.5 Application of Nanoparticles Synthesized by Microalgae
	13.6 Conclusions and Future Prospect
	References
14: Algae-Mediated Biological Synthesis of Nanoparticles: Applications and Prospects
	14.1 Introduction
	14.2 Classification of Nanoparticles
	14.3 Types of Metallic Nanomaterials (NPs)
	14.4 Synthesis of Nanoparticles
		14.4.1 Intracellular Mode of Nanoparticles Synthesis
		14.4.2 Extracellular Mode of Nanoparticles Synthesis
	14.5 Green Microalgae and NPs Synthesis
		14.5.1 Silver Nanoparticles Synthesis from pheophyceaen Algae
		14.5.2 Green Algae and Gold Nanoparticles Synthesis
	14.6 Spectroscopic and Diffractographic Techniques
	14.7 Mechanism of Nanoparticles Synthesis
	14.8 Factors Controlling Synthesis of Nanoparticles
		14.8.1 Effect of Microalgal Extracts
		14.8.2 Effect of Contact Time
		14.8.3 Effect of pH
		14.8.4 Effect of Temperature
	14.9 Applications of Microalgal Nanoparticles
	14.10 Conclusion
	References
15: Cyanobacterial blooms and Cyanotoxins: Occurrence and Detection
	15.1 Introduction
	15.2 Toxic CHABs and Cyanotoxins
	15.3 Ecological Factors
		15.3.1 Nutritional drivers of CHABs
		15.3.2 Nutrient Drivers for Release of Extracellular Metabolites/Toxins
	15.4 Methods of Detection
		15.4.1 Sample Handling
		15.4.2 Sample Analysis
	15.5 Cyanotoxin Treatment and Bloom Management
		15.5.1 Developing an Exigency Strategy
	15.6 Future Prospects and Conclusion
	References
16: Potential of Golden Brown Algae in Forensic Analysis: A Review
	16.1 Introduction
	16.2 Structure of a Diatom Cell
	16.3 Diatoms in Forensic Limnology
	16.4 Course of Penetration of Diatoms Inside the Body of a Drowned Victim
	16.5 Extraction Methods
		16.5.1 Chemical Digestion Method
			16.5.1.1 Limitations of Acid Digestion Method
		16.5.2 Enzymatic Method
		16.5.3 Combined Approachof Microwave Digestion, Vacuum Filtration and Scanning Electron Microscopy
		16.5.4 Soluene-350 Digestion
		16.5.5 Ash Digestion Method
		16.5.6 Polymerase Chain Reaction (PCR) Method
		16.5.7 Whole Slide Imaging
	16.6 Status of Diatom Test in Solving Forensic Cases
	16.7 Controversies in the Validation of Diatom Test in Solving Cases
	16.8 Conclusion
	References




نظرات کاربران